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Abstract

Reachable set computation is one of the many widely-used techniques for the verification
of safety properties of dynamical systems. One of the simplest algorithms for computing
reachable sets for discrete nonlinear systems uses parallelotope bundles and Bernstein
polynomials. In this paper, we describe Kaa, a terse Python implementation of reachable
set computation which leverages the widely used symbolic package sympy. Additionally,
we simplify the user interface and provide easy-to-use plotting utilities. We believe that
our tool has pedagogical value given the simplicity of the implementation and its user-
friendliness.

1 Introduction

Reachable set computation is one of the important tools for verification of safety properties of
dynamical and hybrid systems. A simpler and easier-to-understand reachable set computation
algorithm that utilizes Bernstein polynomials and parallelotopes has been presented in [4].
Several cumulative improvements [5, 15, 3, 7, 8] have been proposed to improve its accuracy and
efficiency. The tool SAPO [6] which implements these algorithms in C++ is available publicly. In
this paper, we present a Python implementation of algorithm presented in [8]. Our motivation
for reimplementing the algorithms in Python is two-fold. First, using standard libraries for
symbolic manipulation in Sympy, the algorithm for reachability can be implemented concisely.
In fact, the main algorithm for computing the reachable set has be implemented in only one file
with 150 lines of code. The total code base for Kaa is roughly only 650 lines of code. In contrast,
SAPO consists of more than 2000 lines of C++ code with memory and pointer management
performed completely by the developer. We believe that such a simple implementation can be
used for teaching one of the main algorithms for reachability of nonlinear systems. Second,
reimplementing the tool in Python makes user interaction significantly simpler. In SAPO, one
has to recompile the code along with the model file to generate the binary. Subsequently the user
has to execute the binary to compute the reachable set. Additionally, visualizing the reachable
set using SAPO is a two step process. In the first step, SAPO generates a MATLAB script
which plots projections of reachable set for visualizing time or phase plots of the reachable
set. In the second step, the user feeds the generated script into either MATLAB or GNU
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Octave to illustrate the reachable set. In contrast, Kaa offers plotting functionalities through
the matplotlib library for visualizing the reachable set. The models and the code for computing
reachable set using Kaa are provided in Python and do not require any compilation steps.
Integrating these two, we provide an easy-to-use Jupyter notebook interface for computing and
visualizing reachable set with Kaa for some of the standard benchmark models.

Bernstein polynomials are also an active area of research in the domain of global opti-
mization [14, 10, 13]. Several heuristics have been proposed for improving the performance of
optimization using Bernstein polynomials [1, 16, 12]. Having an accessible and flexible tool
would make it more conducive to implement these heuristics and determine if they are helpful
in the domain of reachability. In light of these features and advantages, we believe Kaa could
be used as a natural first step for introducing reachability in a pedagogical setting.

2 Preliminaries

The state of a system, denoted as x, lies in a domain D C R". A discrete-time polynomial
nonlinear system is denoted as

ot = f(2) (1)
where f(z) : R® — R"™ is polynomial in . The trajectory of the system that evolves according
to Equation (1), denoted as &(zp), is the sequence zg,x1,... where 2;,1 = f(z;). The k'"

element in this sequence is denoted as xp = £(xo, k). Given an initial set ©, the reachable set
at time k, denoted as Oy = { &(zo, k) | 20 € O}.

A parallelotope P is a set of states in R denoted as (A, ¢) where A € R?"*" and ¢ € R?",
ANixn =—A;and i € {1,...,n} such that

x € P if and only if Az < ec.

A is called the direction matriz A; denotes the i*" row of A. ¢ is called the offset. Alternatively,
a parallelotope can also be represented in vertex-generator representation as (v, g1,...,gn)-
Here v € R™ is called vertex and g1,...,gn, g; € R”, are called generators. The parallelotope
is defined as

P2 {z|3ay,...,an,z=v+a191 + ...+ angn,0 < a; <1}

This representation is very similar to Zonotopes [11, 2] and Star sets [9]. Notice that for a
parallelotope P, the vertex-generator representation also defines the affine transformation that
maps [0,1]"™ to P. We denote this affine transformation as T,,. A parallelotope bundle @ is a
set of parallelotopes {Py,..., Py} where Q@ = N, P;.

Given two multi-indices ¢ and d of size n, where i < d, the Bernstein polynomial of degree
d and index ¢ is

Bi.a = Biy,d, (€1)Biy.a. (x2) - . . Biyya, (@)
dm

where ;. 4. (Tm) = (lm)xin(l — Zp,)%~Pm . Any polynomial function can be expressed in
the Bernstein basis. The primary advantage of the Bernstein representation of a polynomial
h(x1,...,2y,) is that an upper bound on the supremum and lower bound on the infimum of
h(z1,...,x,) in [0,1]™ can be computed purely by observing the coefficients of the polynomial
in the Bernstein basis.
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In other words, given a polynomial h(zy,...,z,) = ZjeJ a;x; where J is a set of multi-
indices iterating through the degrees found in p with a; € R, then h(x1,...,z,) can be converted
into its counterpart under the Bernstein basis, h(z1,...,2,) = Z]EJ b;jB; where b; are the
corresponding Bernstein coefficients. The upper and lower bounds of h(z1,...,x,) over [0,1]"
are bounded by the Bernstein coefficients:

min{by,...,bm} < infieoanh() < supgepnh(z) < omaxdb, ... by}

As mentioned earlier, a parallelotope P can also be represented as an affine transformation
T, from [0,1]™ to P. Therefore, upper bounds on the suprenum of a function h over P is
equivalent to upper bound of hoT), over [0,1]™. A similar argument follows for the lower bound
on the infimum.

For the remainder of the document, we assume that by using functional composition and
the Bernstein representation, we can compute the upper bound on supremum and the lower
bound on the infimum of polynomial functions over parallelotopes. We denote the procedures
for calculating such upper and lower bounds for a polynomial h over some parallelotope P as
BernsteinUpper(h, P) and BernsteinLower(h, P) respectively.

3 Reachability of Nonlinear Systems Using Parallelotope
Bundles and Bernstein Polynomials

Given a set represented as a parallelotope bundle Q = { Py, Ps, ..., P,,} and a discrete dynamical
system T = f(x), we now present the method for computing an overapproximation of the image
f(Q) as a new parallelotope bundle Q' = {P], Pj,..., P/, }. We ensure that direction matrix of
P! is same as P; and the computation is required only to compute the offsets. Let us denote
the j** offset of P; and P/ as ¢;; and ¢}, respectively and the j* direction in P; (same as P/)
as Aj;. Therefore, given A, transformation f, and offsets c;; for P;, we have to compute the
values of ¢} ;.

If j < n, any offset ¢} ;

?

such that VyeqA,; - f(z) < ¢, is valid. If j > n, then any offset

J»i
¢} ; such that VoeqAj_ni- f(z) > ¢} is valid. Therefore, one can compute the §1 offset of P/,
ie., c;z for j < n by computing an upper bound of the function A;; - f(x) over the x € P;.
Similarly, the j 4+ n'" offset can be computed from a lower bound of the function A; ;- f(z) over

each parallelotope = € P;. This is given in Equations 2 and 3.

Cj4ni = maxzj’,qBernsteinLower(A;; - f(x), P}) ¢ otherwise. (3)

cji = mz’nlﬁl{BernsteinUpper(Aj,i : f(x),Pl)} if j <n. (2)

3.1 Python Implementation of Reachable Set Computation

One of the primary reasons for preferring Python as the implementation language for this al-
gorithm is the presence of powerful, well-tested symbolic and matrix-computation libraries.
Python’s numpy libraries are popular matrix-computation libraries which allow higher-level
manipulation of matrices. This gives us an avenue of overcoming the verbosity and the pos-
sibility of memory leaks inherent in implementing identical features in C++. We believe that

3
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overcoming these obstacles results in a more readable, more compact approach to parallelotope
reachability suitable for graduate students and curious practitioners. In addition, these libraries
are known for their extensive set of useful functionalities which allow us to avoid reimplementing
many fundamental operations.

As we have seen before, there are two main sub-routines for computing the reachable set
using Bernstein polynomials. First, performing functional composition for computing the upper
bound of a polynomial over a parallelotope. Second, computing the Bernstein representation
of a polynomial. The library of sympy has powerful symbolic manipulation tools which allow
us to comfortably perform many sensitive symbolic function composition of polynomials. We
use sympy’s internal representation of polynomials to (a) perform functional composition and
(b) compute the Bernstein representations of the resulting polynomial. Additionally, the mat-
plotlib library has accessible plotting facilities that we integrate into our tool for visualizing the
reachable set. In particular, matplotlib facilitates the ability to plot several reachable sets simul-
taneously. This will aid others in performing more complex bundle-transformation experiments
in the future.

Finally, Python contains a rich set of multiprocessing libraries, namely multiprocessing or
mp for short. We plan to exploit the parallelizable nature of bundle-transformtion computations
using mp’s ability to provide powerful multiprocessing features without much verbosity.

4 Evaluations

We evaluate our tool on the benchmarks that are shipped along with SAPO. With each bench-
mark, the reachable sets of SAPO are juxtaposed with that of Kaa’s to demonstrate the accu-
racy and quality of our reachable sets. A comparison of time taken by Kaa and SAPO for each
benchmark is provided in Table 3.

4.1 SIR Epidemic Model

The SIR Epidemic model is a 3-dimensional dynamical system governed by the following dy-
namics:

Sk+1 = Sk — (Bskir)A
k1 = ik + (Bspir — vig) A (4)
The1 = Tk + (ViR)A

where s,i,r represent the fractions of a population of individuals designated as susceptible,
infected, and recovered respectively. There are two parameters, namely 8 and -y, which influence
the evolution of the system. § is labeled as the contraction rate and 1/+ is mean infective period.
Finally, A is simply the discretization step. For the benchmarks, we set 8 = 0.34, v = 0.05,
and A = 0.5. The reachable sets are displayed in Figure 1. The table of numerical value
comparisions between Sapo and Kaa is shown in Table 1.

Here, offu is the vector of upper offsets of the parallelotope and offl is the vector for the lower
offsets. We define the upper facets of parallelotope P as the ¢; for i < n where n is the dimension
of the system and P = (A, ¢) is the parallelotope. Similarly, the lower facets are defined as the
Ci+n for i« < mn. In the case above, we are looking at values in co and cao43 = c5.

4
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Time Steps | Kaa (offu) Sapo (offu) Kaa (offl) Kaa (offl)
50 0.470716 0.470716 -0.435191 -0.43519
51 0.475839 0.475839 -0.439599 -0.439599
52 0.480906 0.480906 -0.443945 -0.443945
53 0.485915 0.485915 -0.448227 -0.448227
54 0.490862 0.490862 -0.452443 -0.452443
55 0.495747 0.495747 -0.456591 -0.456591
56 0.500566 0.500566 -0.460669 -0.460669
57 0.505317 0.505317 -0.464675 -0.464675
58 0.509999 0.509999 -0.4686075  -0.468608
59 0.514610 0.514610 -0.472465 -0.472465
60 0.519147 0.519147 -0.476246 -0.476246

Table 1: Comparision of offu, offl values along variable i for the SIR model. We select the steps
50-60

4.2 Rossler Model

The Rossler model is another 3-dimensional system governed under the dynamics:

Tpr1 =z + —(y — 2)A
Ye+1 = Yk + (T + ayr) A (5)
zp+1 = 2k + (b+ zi(zp — €)A

where a, b, c are parameters which we set to a = 0,1, b = 0.1, and ¢ = 14. We set our
discretization step to be A = 0.025. The reachable sets are displayed in Figure 2 and the table
showing the comparisions between the numerical values are shown in Table 2.

Time Steps | Kaa (offu) Sapo (offu) Kaa (offl) Kaa (offl)
50 1.95908 1.96043 -1.9209 -1.9193
51 1.83552 1.83688 -1.7963 -1.7947
52 1.71044 1.71181 -1.67016 -1.6685
53 1.58392 1.58531 -1.54255 -1.5409
54 1.45604 1.45744 -1.41355 -1.4119
55 1.32687 1.32829 -1.28324 -1.2815
56 1.19649 1.19792 -1.15168 -1.1500
57 1.06499 1.06642 -1.01896 -1.0172
58 0.932432 0.933877 -0.885157 -0.88339
59 0.798905 0.800358 -0.75035 -0.74857
60 0.664489 0.665949 -0.614619 -0.61282

Table 2: Comparision of offu, offl values along variable y for the Rossler model. We select the
steps 50-60
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4.3 Quadcopter Model

The Quadcopter model is a 17-dimensional dynamical system with the following variables: A set
of inertial positions: (pp,pe, ), linear velocities (u, v, w), the quaternions expressing the Euler
angles (qo, 1,92, q3), the angular velocities (p, ¢,7), and finally the parameters (hr,ur, v, ¥r).
The complete set of dynamics and relevant parameters is found in [8] and reachable sets are
shown in Figure 3.

4.4 Lotka-Volterra Model

We also test on the competetitive Lotka-Volterra models for predator-prey biological systems.
Our instance is a 5-dimensional system governed as below:
Thp1r =z + (@e(1 = (T + ayr + Bl)))A
Yrtr = Yk + (Y (1 = (Yr + @z + Bai)))A
Zp+1 = 2k + (26(1 = (2 + ol + Byk))) A (6)
P =l + (hie(1 = (hi + oy, + Bz))) A
U1 = le + (Ge(1 = (b + oy + Bhi))) A

where «, 3 are parameters set to @« = 0.85 and § = 0.5. We set A = 0.01. The relevant
reachable sets are shown in Figure 4.

4.5 Phosphoraley Model

The Phosphoraley model describes a certain cellular regulatory system. It is captured by seven
variables governed by the following dynamics:

1 1 1 3 4
Ty = o), + (—oxy + frpry)A

Wr =23 + (aah — A
wi i = ) + (2 Baiay) A
4 4 5.6 3 4
Ty = Ty + (Bryay, — Bryay)A (7)

—BaRa} + frizi)A
axl — Briad)A

—axl + friad)A

5 _ 5
Thp1 = T+

6 _ .6
Ty = Tp +

Py

T _ .7
Ty =T+

where «a, 5 are two parameters assigned as « = 0.5 and § = 5. We set A = 0.01 here. The
figures can be found in Figure 5.

4.6 Times

It is evident from Table 3 that while the current implementation in Python is intuitive and
concise, it incurs severe performance penalties. Nevertheless, we pursued this direction because
of the pedagogical value in making this an accessible tool for implementing and understanding
reachability. To this end, the repository contains a Jupyter notebook with the name kaa-intro
designed to interactively introduce graduate students and practitioners to the usage of Kaa. The
notebook even contains a subset of the examples shown above, giving the auidence a hands-on
method to run the code for themselves. An immediate next step is to deploy extensive profiling
to find performance bottlenecks and subsequently improve on them.

6
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Table 3: Reachable Set Computation Time of Benchmarks

Model Kaa SAPO (C++)
SIR 11.41 sec 0.16 sec
Rossler 41.92 sec 1.17 sec
Quadcopter 78.21 sec 11.98 sec
Lotka-Volterra | 18 min 95.05 sec 57.48 sec
Phosphoraley 103.81 sec 24.86 sec

5 Conclusions

We present Kaa, a Python implementation of reachable set computation of nonlinear sys-
tems which is focused towards accessibility and pedagogical use. The usage of inbuilt sympy
libraries makes the implementation short and simple (only 650 LOC). While we do incur
performance drawbacks from selecting Python for implementing this algorithm, we believe
that it aids in fast prototyping and enables students to easily build on top of the library.
In particular, Python’s readability and extendibility will allow curious students to experi-
ment with more involved bundle-transformations. The code can be accessed through https:
//github.com/Tarheel-Formal-Methods/kaa.
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Figure 1: Figure depicting the reachable set computation of the SIR model.
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Figure 2: Figure depicting the reachable set computation of the Rossler model.
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