

Reachability of Black-Box Nonlinear Systems after Koopman Operator Linearization

Authors:

ncl.ac.uk

Stanley Bak, Sergiy Bogomolov, Parasara Sridhar Duggirala, Adam R. Gerlach, Kostiantyn Potomkin Presenter: Kostiantyn Potomkin

冊

- Motivation
- Koopman Operator
- Challenges
- Verifying linear systems with nonlinear observables
- Evaluation
- Conclusions

Motivation

ncl.ac.uk

Koopman Operator

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$
$$\dot{x}_2 = x_2 - x_1^2$$

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$
$$\dot{x}_2 = x_2 - x_1^2$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}$$

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$
$$\dot{x}_2 = x_2 - x_1^2$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}$$

$$\frac{d}{dt}y_3 = \frac{d}{dt}x_1^2 = 2x_1\dot{x}_1$$

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$
$$\dot{x}_2 = x_2 - x_1^2$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}$$

$$\frac{d}{dt}y_3 = \frac{d}{dt}x_1^2 = 2x_1\dot{x}_1$$

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$
$$\dot{x}_2 = x_2 - x_1^2$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}$$

$$\frac{d}{dt}y_3 = \frac{d}{dt}x_1^2 = 2x_1\dot{x}_1 = 2x_1^2$$

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$
$$\dot{x}_2 = x_2 - x_1^2$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}$$

$$\frac{d}{dt}y_3 = \frac{d}{dt}x_1^2 = 2x_1\dot{x}_1 = 2x_1^2 = 2y_3$$

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$
$$\dot{x}_2 = x_2 - x_1^2$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix} \qquad \begin{array}{c} \dot{y}_1 = y_1 \\ \dot{y}_2 = y_2 - y_3 \\ \dot{y}_3 = 2y_3 \end{array}$$

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$

 $\dot{x}_2 = x_2 - x_1^2$

Koopman linear system:

$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \text{ for } \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}$$

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$

 $\dot{x}_2 = x_2 - x_1^2$

Koopman linear system:

$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \text{ for } \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}$$

Nonlinear dynamics:

$$\dot{x}_1 = x_1$$
$$\dot{x}_2 = x_2 - x_1^2$$

Koopman linear system:

$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \text{ for } \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix}$$

Koopman operator:
$$\mathcal{K}_t = e^{\widetilde{\mathcal{K}}t}$$

Red dots – linear system, green curves – trajectories of the original nonlinear system, blue sets – output of Flow*

Challenges

- Obtain a Koopman linearized model of the nonlinear dynamics with a good approximation of the original system (ideally no approximation).
- Add a support of nonlinear initial state sets to state-ofthe-art linear reachability algorithms.

- Obtain a Koopman linearized model of the nonlinear dynamics with a good approximation of the original system (ideally no approximation).
- Add a support of nonlinear initial state sets to state-ofthe-art linear reachability algorithms.

Verifying linear systems with nonlinear observables

$y_1(0) \in [1,3]$ $y_3(0) = y_1(0)^2 \in [1,9]$

From Newcastle. For the world.

Evaluation

ncl.ac.uk

- SMT Solver: dReal
- Programming Language: Julia
- Koopman Linearization: DataDrivenDiffEq.jl github.com/SciML/DataDrivenDiffEq.jl

Model Name	Number of original state variables	Number of observables
Roessler	3	70
Steam	3	71
Coupled Van der Pol oscillator	4	131
Biological	7	104

From HyPro benchmark repository: <u>https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/</u>

Computational time (seconds) comparing Flow*, Direct Encoding and the Zonotope Domain Splitting. The dReal tool timed out on all models.

- dReal TO's on all original nonlinear models
- Flow* outperforms Direct Encoding on most of the instances.
- Zonotope Domain Splitting outperforms all other tools on most of the instances.

Name	i	Flow*	Direct	Zono
Roessler	0	55.28	181.06	9.53
	10	78.33	177.92	5.01
	20	55.29	174.63	3.5
Steam	0	61.06	197.08	182.62
	5	285.20	59.53	37.27
	10	77.68	29.21	18.52
Coupled VP	1	251.11	788.45	0.57
	8	497.61	680.61	53.91
	16	1665.16	557.24	18.52
Biological	1	260.69	470.59	0.59
	5	250.26	426.37	49.41
	10	238.56	427.00	179.25

Conclusions

- We presented novel techniques to efficiently handle non-linear initial sets which demonstrate competitive results.
- Koopman operator can be used as part of reachability analysis workflow.