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Abstract:
Reachability analysis of nonlinear dynamical systems is a challenging and computationally
expensive task. Computing the reachable states for linear systems, in contrast, can often be
done efficiently in high dimensions. In this paper, we explore verification methods that leverage a
connection between these two classes of systems based on the concept of the Koopman operator.
The Koopman operator links the behaviors of a nonlinear system to a linear system embedded
in a higher dimensional space, with an additional set of so-called observable variables. Although,
the new dynamical system has linear differential equations, the set of initial states is defined
with nonlinear constraints. For this reason, existing approaches for linear systems reachability
cannot be used directly. In this paper, we propose the first reachability algorithm that deals with
this unexplored type of reachability problem. Our evaluation examines several optimizations,
and shows the proposed workflow is a promising avenue for verifying behaviors of nonlinear
systems.

Keywords: Reachability Analysis Nonlinear Systems Koopman Operator.

1. INTRODUCTION

Verification of cyber-physical systems requires algorithms
that can reason over both software and the behavior of
the physical world. In particular, computing the post op-
eration for a set of states is an important fundamental
operation. For software, the post operation computes how
a set of variables is modified after executing a block of
code. For the physical world, the post operation deter-
mines how state variables can change after some amount
of time has elapsed. In hybrid systems terminology, the
post operation is often called time-bounded reachability.
Given a set of initial states, some model of the physical
system, and a time bound, the goal is to compute how the
set of states can change up to the time bound, possibly
checking if some unsafe configuration is possible.

Reachability analysis for nonlinear systems is challenging,
and is often the bottleneck for formal cyber-physical sys-
tems (CPS) analysis methods. In this work we investigate
nonlinear reachability approaches based on Koopman op-
erator linearization Mauroy et al. (2020). Koopman opera-
tor linearization is a process where a nonlinear system can
be approximated as a linear system with a large number of
so-called observable variables, each of which can be a non-
linear function of the original state variables. This linear
system can be computed either symbolically from differ-

ential equations or—importantly for black-box systems—
from data derived from real-world system executions or
simulations Kutz et al. (2016). For reachability analysis,
such a method is promising, as there exist highly-scalable
methods to compute reachable sets for linear systems Gi-
rard (2005a); Le Guernic and Girard (2009); Bak et al.
(2019). However, directly applying existing algorithms is
not possible, as the observable variables are nonlinear
functions of the original state variables. If the original
initial set is described as a convex polytope, for example,
the initial set of the Koopman linearized system may be
nonconvex, which current algorithms do not support.

To apply the Koopman method for reachability analysis,
two issues must be overcome. First, a Koopman linearized
model of the nonlinear dynamics must be constructed
whose behavior is a good approximation of the original
system. Second, linear reachability analysis methods must
be modified to support nonlinear initial state sets. The
first problem is the focus of much current research on
dynamical system analysis with the Koopman operator,
and we do not focus on it here. Instead, this paper’s pri-
mary contribution is on the second problem, developing ef-
ficient algorithms for analysis for the class of systems with
linear dynamics and nonlinear initial sets. We first show
the problem can be solved using a nonlinear satisfiability
module theory (SMT) solver to enforce the initial state



constraints. This Direct Encoding Algorithm is correct but
may be slow in practice and even undecidable in theory.
We improve analysis efficiency through zonotope overap-
proximations of the nonlinear initial sets constructed using
interval arithmetic, as well as two abstraction-refinement
techniques: (i) Hyperplane Backprogation and (ii) Zono-
tope Domain Splitting.

This paper is organized as follows. First, we provide a brief
review of Koopman operator linearization in Section 3.
Next, we describe our proposed verification algorithm
and optimizations for Koopman linearized systems in
Section 4. We then demonstrate the feasibility of the
approach and evaluate each of the optimizations on a
number of nonlinear systems in Section 5. We finish with
related work and a conclusion.

2. PRELIMINARIES

Before detailing Koopman operator theory and our pro-
posed reachability algorithm, we first introduce a few
important mathematical preliminaries.

An interval [a, b] (with a ≤ b) denotes the set of numbers
x such that a ≤ x ≤ b. Arithmetic operations such
as addition and multiplication over intervals [a1, b1] and
[a2, b2] are defined using interval arithmetic Jaulin et al.
(2001) as follows.

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2]

[a1, b1]× [a2, b2] = [min{a1a2, a1b2, b1a2, b1b2},
max{a1a2, a1b2, b1a2, b1b2}]

The system under consideration evolves in the state space
Rn. Elements in the state space are denoted as x, and
scalars are denoted as x. Dynamical systems we consider
in this paper evolve according to the differential equation:

dx

dt
= f(x). (1)

Often, f is a nonlinear function of the state x. We
refer to such systems as non-linear dynamical systems. A
trajectory of such nonlinear dynamical system described
in Equation 1 is a function ξf (x0, t), the solution to the
differential equation f , that takes as input an initial state
x0 and time t and returns the state of the system after
time t. We often drop the subscript f from the solution
function ξf when it is clear from context.

When the function f(x) is a linear function, i.e., f(x) =
Ax where A ∈ Rn×n, the trajectory has a closed-form
solution. More specifically, ξ(x0, t) = eAtx0 where eAt is
the matrix exponential that can be defined as:

eAt = I +
At

1!
+

(At)2

2!
+

(At)3

3!
+ . . .

For the dynamical system ẋ = Ax, the set of states that
reach cTx ≤ d at time t is given by the set of states
((eAt)T c)Tx ≤ d. That is, the backward propagation of a
constraint cTx ≤ d is obtained by right multiplying c with
(eAt)T . We label this as hyperplane backpropagation.

An important part of Koopman linearization is the notion
of observable functions, or observables, which are scalar
functions from system’s state space, g : Rn → R. A vector
of k scalar-valued observables maps the state space to Rk

and is denoted as g : Rn → Rk. Sometimes, we denote the
observables as y = g(x).

In this paper we focus on safety verification at discrete
time instances with some step size h > 0, where h
is assumed to evenly divide the analysis time bound
T . This both simplifies the problem and allows us to
generate counterexamples demonstrating safety violations.
A trajectory on a nonlinear system can be safe in discrete
time with respect to a given set of unsafe states.

Definition 2.1. Trajectory ξ(x0, t) is discrete time safe
if and only if ∀0≤i≤T/h ξ(x0, ih) /∈ U , where U is an unsafe
state set and i ∈ Z≥0 is the step number.

The main problem we want to solve is a discrete-time
bounded nonlinear verification problem.

Problem 1. Given a set of initial states I, time step h, time
bound T , and nonlinear dynamics f , we want to prove
the system is discrete-time safe, meaning that ξ(x0, t) is
discrete-time safe for every initial state x0 ∈ I.

We assume I and U are given as as conjunctions of linear
constraints, unless indicated otherwise.

3. KOOPMAN OPERATOR LINEARIZATION

The modern study of dynamical systems is driven by
Poincaré’s state space view of the underlying system.
By considering the evolution of points in a state space,
this view enables intuitive tools for analyzing, designing,
controlling, and verifying dynamical systems. However, it
can be ill-suited for certain classes of problems such as
uncertain systems Budǐsić et al. (2012); Gerlach et al.
(2020) and systems without explicit equations describing
their evolution (data-driven or black-box models) Jones
(2001).

An alternative to this state space view is Koopman’s
observable space view of dynamical systems. In contrast to
the state space view, the observable space view considers
the evolution of observables, or functions, of the given
state space Budǐsić et al. (2012) instead of the states
themselves. This alternative view leads to the notion of
the so-called Koopman operator Koopman (1931). For
dynamical system S : Ω → Ω and observable g : Ω → R,
the Koopman operator K is defined by

Kg = g ◦ S, ∀g ∈ L∞ (2)

As such, the Koopman operator is an infinite-dimensional
linear operator on the space of scalar-valued functions of
the state space Koopman (1931). The spectral properties
of this linear operator describe the evolutionary prop-
erties of the underlying dynamical system S, similar to
finite-dimensional linear state space models (e.g., eigen
decomposition of a state matrix). However, unlike a finite-
dimensional linear state matrix which describes the evo-
lution of system states, the Koopman operator describes
the evolution of scalar-valued functions as driven by the
dynamics of the underlying system Narasingam and Kwon
(2019). For space reasons, we refer to our online appendix 1

for mor details on Koopman operator linearization.

1 https://www.dropbox.com/s/hu1f421n3jzgdxf/Appendix.pdf?

dl=0



As Eq. 2 is equally valid for linear and nonlinear systems,
the observable space view enables the linear treatment
of full nonlinear dynamics via the Koopman operator.
Thus, the Koopman operator has the potential to bridge
nonlinear systems and existing linear tools for analysis,
design, control, and verification Brunton et al. (2016);
Kutz et al. (2016) without sacrificing information, like with
traditional linearization techniques Budǐsić et al. (2012).
However, the Koopman operator linerization introduces
the nonlinear initial state sets and, thus, the question
arised on how to threat them efficiently. In the next
section, we strive to answer this question.

4. VERIFYING LINEAR SYSTEMS WITH
NONLINEAR OBSERVABLES

Koopman operator linearization creates approximations
to non-linear, possibly black-box systems. The resulting
systems have linear dynamics in the space of observables.
Reachability analysis of linear systems is a well-studied
topic, and existing methods are efficient even with thou-
sands or more state variables Bak et al. (2019). However,
the initial and unsafe constraints in the original problem
are defined on the original system variables, not on the
nonlinear observable variables. This nonlinear relationship
creates two additional tasks: (1) projection of initial set
from state space variables to the space of observables, and
(2) projection of reachable set in the space of observables
back into the state space. Problem (2) can be resolved by
including the original state variables within the dictionary
used during Koopman linearization. This means that the
projection from the space of observables to the original
state variable can be written as a simple linear transforma-
tion, x = Mg(x). Problem (1), however, is more difficult
to handle, and the main focus of the rest of this section.

4.1 Direct Encoding of Nonlinear Constraints with SMT
Solvers

Let the state space of the system to be x and the observ-
ables be g(x). Furthermore, the evolution of observables
is determined by a linear differential equations, g(xt) =
Kg(x0). The state after time t, denoted as xt is Mg(xt).
Given an initial set I, and unsafe set U , the safety verifi-
cation can be formulated as satisfiability of constraints in
Equation 3.

x0 ∈ I, y = g(x0),

yt = Kty, (3)

xt = Myt,xt ∈ U.

Given step size h > 0, for each time instant t = i × h, an
SMT solver can be invoked with the constraints in Equa-
tion 3. Often, the initial set I and unsafe set U are specified
as conjunctions of linear constraints. For such cases, ob-
serve that the only nonlinear constraint in Equation 3 is
y = g(x0). The complexity of finding an assignment of
variables that satisfies these linear constaints dependd on
the number and functions used for the observables.

For example, if the dictionary of observables are poly-
nomials, SMT solvers can use algorithms like cylindrical

algebraic decomposition Arnon et al. (1984) that are the-
oretically guaranteed to terminate with a correct result.
In practice, this algorithm is doubly exponential in the
number of variables, so a result may not be produced in a
reasonable time. If the dictionary includes transcendental
functions like sin or cos, the problem in general may not
even be decidable.

In our implementation, we use the δ-decidability SMT
solver dReal Dolzmann and Sturm (1997); Brown (2003);
Gao et al. (2013), which theoretically always terminates
but may produce an unknown result if the constraints are
on the boundary of satisfiability (within a tolerance δ),
which we can then still flag as potentially unsafe.

Although the direct encoding works, for the reasons stated
above it can be slow, so we next focus on optimizations and
efficiency improvements.

4.2 Overapproximating Nonlinear Constraints with Intervals

Suppose that the initial set I is given as hyperrectangles,
as is often the case. That is, I = [x10l;x

1
0u]× . . .× [xn0l;x

n
0u].

Over such a domain, it is possible to compute conservative
approximation of y = g(x0) where x0 ∈ I using interval
arithmetic. Alternatively, when I is defined with linear
constraints, we can compute upper and lower bounds on
each of the variables using linear programming (LP) to
construct box bounds, and then use those to construct the
conservative approximation of y = g(x0). Let the bounds
we obtain on y be such that y ∈ [y1l , y

1
u] × . . . × [ykl , y

k
u].

Substituting these in Equation 3 results in the following
constraints.

y ∈ [y1l , y
1
u]× . . .× [ykl , y

k
u],

yt = Kty, (4)

xt = Myt,xt ∈ U.

This set of constraints can be solved efficiently using LP,
as is done in linear systems reachability analysis using
zonotopes Girard (2005a) or linear star sets Bak and
Duggirala (2017).

While this method can be very efficient, the overapproxi-
mation of g(x) using interval arithmetic might yield a very
coarse overapproximation. This would mean that spurious
unsafe executions of the system may be found, due to the
overapproximation. To overcome this the Interval Encod-
ing Algorithm uses a hybrid approach, where an LP is first
solved at each step according to Equation 4, and only if
the LP is feasible will we then call the dReal SMT solver
with the nonlinear constraints from Equation 3.

4.3 Hyperplane Backpropagation

One of the building blocks that helps us improve efficiency
is the notion of hyperplane backpropagation. Consider
the unsafe set given as U = [U1

l ;U1
u ] × . . . × [Un

l ;Un
u ],

observables g(x), and x = Mg(x). Since we assumed the
Koopman dictionary contained the original state variables,
we can directly encode U as constraints in the observable
observable space, which we write as g(U). If qT y ≤ r is
a halfplane constraint in g(U), then the corresponding
constraint for propagating this constraint back by time



t is obtained by (KT q)T y ≤ r. We perform hyperplane
backpropagation for all the constraints in g(U). In the
Koopman linerization literature, this operation is called
pull-back operation Meyers et al. (2019). Any state that
satisfies all the constraints obtained by performing the
hyperplane backpropagation will end up in g(U) after
time t. We label these constraints as PropCons(U). While
we have explicitly specified this only for unsafe sets that
are intervals, this can be easily extended to unsafe sets
specified as conjunction of half-spaces.

We use the above process to backpropagate each of the
unsafe set constraints into the initial set, i.e., PropCons(U).
We then compute the overlap between the projection of
initial set into the observables (g(I)) and compute its over-
lap with propagated constraints, i.e., g(I)∩ PropCons(U),
using interval arithmetic. We then project this set back
into the initial set as M(g(I) ∩ PropCons(U)). If this
projected set I ′ is a strict subset of initial set I, then,
one can specify the possible violation of safety with higher
precision. We then repeat the process with the new set
I ′. If, during this process I ′ is empty, then, none of the
trajectories go into the unsafe set; we can declare the
system to be safe. If I ′ is same as the set I, then this
approach does not further improve precision. In this case,
the Hyperplane Backpropagation Algorithm would invoke
dReal and instantiate the constraints given in Equation 3
with I ′ instead of I. The pseudocode of the core step of
the algorithm is provided in Algorithm 1.

Algorithm 1 Hyperplane Backpropagation Algorithm

function Backpropagate(I, U, t,x, g(x),K)
Output: A smaller initial set I ′ after backpropa-

gation, or ∅ if safe.
Uo = g(U)
PropCons = K−1Uo

Io = g(I)
I ′ = M(Io ∩ PropCons)
while I ′ ⊂ I do

if I ′ = ∅ then
return safe.

Io = g(I ′)
I ′ = M(Io ∩ PropCons)

return I ′

4.4 Zonotope Domain Splitting

The reachable states at each time step encoded by Equa-
tion 4 can be represented using a zonotope Girard (2005b),
where the box domain of the zonotope is the initial set
[y1l , y

1
u] × . . . × [ykl , y

k
u]. The accuracy of this zonotope

overapproximation can be improved by splitting each di-
mension’s interval domain into several smaller subintervals
and computing the new interval overapproximation in each
of the subintervals.

For the proposed Zonotope Domain Splitting Algorithm,
we use a heuristic that always splits the variable with
the maximum range. After splitting, we then perform
hyperplane backpropagation on each of the smaller in-
tervals. This process can be repeated until either the
overapproximation is safe for the current step, or some
predetermined upperLimit is reached on the number of
splits. Upon reaching the limit, we then invoke dReal using

the nonlinear constraints from Equation 3. As a result,
dReal is invoked with smaller initial sets, thus helping
the numerical procedure to terminate faster. However, as
we show later in the evaluation, performing refinement
too often can harm the performance of the verification
procedure, as splitting can increase the number of queries
needed.

Notice that the order of applying hyperplane backprop-
agation and zonotope domain contraction can alter the
performance of the verification procedure. While we prefer
performing hyperplane backpropagation at each iteration,
delaying the process until the interval under considera-
tion becomes smaller could be a useful heuristic for some
examples. In our evaluation, we consider various possible
combinations of these two methods. In our experience,
invoking dReal with the smaller initial sets succeeds to
either prove safety or generate counterexample quicker
than larger initial sets.

5. EVALUATION

In this section, we present experimental results of using
the Koopman operator in reachability analysis. We imple-
mented our algorithms in Julia, using the LazySets pack-
age of JuliaReach Bogomolov et al. (2019), the PyCall.jl 2

package to call dReal Gao et al. (2013), the DataDriven-
DiffEq.jl 3 package for Koopman operator linearization
via Extended DMD and the DifferentialEquations.jl Rack-
auckas and Nie (2017) package to generate numerical sim-
ulations. A Sobol sequence in the set of initial conditions is
used to determine the initial conditions for the simulations.
The resulting data matrices for each simulation are then
combined via column-wise concatenation as in Tu et al.
(2014).

For each system, the dictionary of observables for Koop-
man linearization included multivariate polynomial basis
functions up to a fixed order for the original state vari-
ables, sin t and cos t, and combinations of these (e.g.,
x sina t cosb t). Lastly, SVD truncation was performed as
described in Kutz et al. (2016) to remove any non-
dominant modes.

Note that although we know the nonlinear differential
equations for each system, we only used simulation data
to perform Koopman linearization, treating each system as
a black box. Since few approaches can work directly with
black-box systems, this allows us to compare against other
reachability methods that require knowing the system’s
dynamics.

5.1 System Definitions

We evaluate our algorithms on four benchmark nonlinear
systems. As our algorithms are sensitive to the distance be-
tween the reachable set and the unsafe region, we consider
parameterized unsafe regions, where a parameter i controls
the distance of the reachable set to the unsafe region (if
the value of i is big enough then the system is unsafe). The

2 https://github.com/JuliaPy/PyCall.jl
3 https://datadriven.sciml.ai/



nonlinear differential equations for each system are avail-
able on HyPro Schupp et al. (2017) benchmark website 4 .

Roessler model We run the Roessler attractor 5 with
the following initial set: x(0) ∈ [−0.05, 0.05], y(0) ∈
[−8.45,−8.35], z(0) ∈ [−0.05, 0.05]. In our experiments we
use the following parameterized unsafe region: y ≥ 6.375−
0.025 · i, where i ∈ [0, 20]. The Koopman linearized system
contains 70 observables.

Steam model The steam governor Sotomayor et al.
(2007) system 6 is modeled with the following initial set:
x(0) ∈ [0.95, 1.05], y(0) ∈ [−0.05, 0.05], z(0) ∈ [0.95, 1.05].
In our experiments we use the unsafe region y ≤ −0.25 +
0.01 · i, where i ∈ [0, 10]. The Koopman linearized system
contains 71 observables.

Coupled Van der Pol oscillator The composed model
of two coupled Van der Pol oscillators Rand and Holmes
(1980) system 7 is modeled with the following initial
set: x1(0) ∈ [−0.025, 0.025], y1(0) ∈ [4.975, 5.025], x2(0) ∈
[−0.025, 0.025], y2(0) ∈ [4.975, 5.025]. In our experiments
we use the following unsafe region: x ≥ 1.25−0.05·i, where
i ∈ [1, 16] . The linearized system contains 131 observables.

Biological model We run the biological Klipp et al.
(2005) system 8 with the following initial set: x1(0), ...,
x7(0),∈ [0.99, 1.01]. In our experiments we use the follow-
ing unsafe region: x4 ≤ 0.883 + 0.002 · i, with i ∈ [1, 10].
The linearized system contains 104 observables.

Approximation Error Although the goal of this work
is not to investigate the Koopman linearization process,
it is important to show that accurate approximations are
plausible for the workflow to make sense.

For this purpose, we run simulations from the corners and
centers of the initial sets and compare the average and
maximum errors at different points in time. Although error
generally grows as the simulation time increases, it remains
acceptable within the time bound. While for most of the
models the and time bounds the error is less than 1%, the
maximum relative error observed is in the Roessler model
at time 0.6 ∗ T , where the error reaches 5.76%.

Further investigation into error bounds for the Koop-
man linearization process is a potential topic of future
research. For general black-box systems where only data
is provided, we do not expect guaranteed error bounds,
although it may be possible to provide statistical guaran-
tees. When the observables are derived symbolically from
the differential equations, guaranteed error bounds may be
possible, although existing approaches for this are fairly
pessimistic Forets and Pouly (2017).

4 https://ths.rwth-aachen.de/research/projects/hypro/

benchmarks-of-continuous-and-hybrid-systems/
5 https://ths.rwth-aachen.de/research/projects/hypro/

roessler-attractor/
6 https://ths.rwth-aachen.de/research/projects/hypro/

steam-governor/
7 https://ths.rwth-aachen.de/research/projects/hypro/

coupled-van-der-pol-oscillator/
8 https://ths.rwth-aachen.de/research/projects/hypro/

biological-model-i/
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Fig. 1. Evaluation results of Interval Encoding and Hy-
perplane Backpropagation algorithms for the Roessler
model for different values of i. Hyperplane Backprop-
agation is generally twice as fast for this problem.

5.2 Results

We run each of the models on a number of different
instances. As mentioned earlier, for each model we param-
eterize unsafe regions using a single parameter i for each
of the four systems. In this section, we evaluate each of the
proposed improvements to the direct encoding algorithm,
as well as provide a comparison with other verification
methods. For space reasons, we do not present a detailed
comparison of every optimization on every model instance,
but instead elaborate on the overall trends.

Performance of Hyperplane Backpropagation We com-
pare the performance of the Hyperplane Backpropagation
(Section 4.3) against the Interval Encoding algorithm (Sec-
tion 4.2). Figure 1 shows a comparison with the Roessler
model. We observe that the algorithm with backpropaga-
tion is around two times faster than the Interval Encoding
algorithm for all problem instances. In addition, the com-
putational time gets smaller as i is increased. The main
reason can be that we have a smaller time horizon when i
is large, because an unsafe state is reachable. We need to
compute up to t = 2.93 for i = 1 and up to t = 2.81 for
i = 21. We also call dReal less when i is large for the same
reason. For i = 1, with the Interval Encoding Algorithm
we call dReal 14 times, and only 8 times for Hyperplane
Backpropagation. For the last instance, i = 21, we call
dReal 7 and 3 times for the two algorithms respectively,
which leads to performance improvement.

Performance of Zonotope Domain Splitting We next
evaluate Zonotope Domain Splitting (Algorithm 1) on
the Coupled Van der Pol oscillator. We demonstrate the
performance of the algorithm on two instances of the
model: a safe case where i = 4 and an unsafe case where
i = 12. We further evaluate using different values of
max level. We can observe that when the system is safe,
Zonotope Domain Splitting with a large value ofmax level
generally benefits performance, whereas for i = 12 we
see the opposite. The explanation is that for the safe
instance we can save calls to dReal with backpropagation
and splitting together. For i = 12, on the other hand,
the system is unsafe and there are fewer steps where we
can avoid calls to dReal. Performing splitting in this case
is futile, as the overapproximation cannot prove safety of
the system.



Table 1. Evaluation results of the Zonotope
Domain Splitting algorithm for the Coupled
Van der Pol oscillator with max level ∈ [0, 5].
Safe corresponds to the i = 4 case and unsafe

to the i = 12 case.

max level 0 1 2 3 4 5

Safe 190.56 200.94 136.78 135.29 133.68 117.24
Unsafe 37.77 49.45 50.73 54.69 62.16 74.34
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Fig. 2. Comparison of Direct Encoding and Zonotope
Domain Splitting on the Biological model. When i
is small, the optimized Zonotope Domain Splitting
method verifies the system without calling dReal, and
is over 1000 times faster.

Overall Algorithm Performance We next compare per-
formance against the Direct Encoding algorithm (Sec-
tion 4.1), using the Biological model. In Figure 2, for
i ∈ [1, 4] we observe the computation time is close to zero
and we are 1000 times faster than when we use Direct
Encoding to verify the system. We gain such a boost due
to avoiding calls to dReal altogether, by only employing
backpropagation. Put another way, the overapproximation
is sufficient to verify the system as safe when the reachable
states are far from the unsafe set. When i ≥ 5 we can
observe that the computational time for our approach in-
creases due to dReal calls. However, since we still eliminate
many unnecessary calls to dReal, our algorithm still verifies
the system 4 − 8 times faster. The runtime of the direct
encoding method is much less sensitive to the i parameter.

Comparison with Other Methods We next summarize
the verification time for each of the models using Zono-
tope Domain Splitting, Direct Encoding, the Flow* Chen
et al. (2013) nonlinear reachability tool and the dReach
tool Kong et al. (2015), which uses dReal to directly
verify the original nonlinear systems. The result are shown
in Table 2. The Flow* tool parameters were taken from
the HyPro benchmark repository Schupp et al. (2017)—
developed by the same group as Flow*—ensuring the mea-
sured performance is not due to a poor choice of param-
eters. The Zonotope Domain Splitting algorithm is up to
1000 times faster than both Flow* and Direct Encoding on
many instances. However, there are instances (e.g. Steam
model with i = 0) where Flow* performs better. Such
cases outline directions for future research directions, for
example trying to find ways to guide the search for the
counterexample when splitting the zonotope domain, as
opposed to always using the largest variable range. The

Table 2. Computational time (seconds) com-
paring Flow*, Direct Encoding and the Zono-
tope Domain Splitting. The dReach tool timed

out on all models.

i Flow* Direct Zono

Coupled VP
1 251.11 788.45 0.57
8 497.61 680.61 53.91

16 1665.16 557.24 18.52

Biological
1 260.69 470.59 0.59
5 250.26 426.37 49.41

10 238.56 427.00 179.25

Steam
0 61.06 197.08 182.62
5 285.20 59.53 37.27

10 77.68 29.21 18.52

Roessler
0 55.28 181.06 9.53

10 78.33 177.92 5.01
20 55.29 174.63 3.50

dReach tool timed out on all of the models, meaning that
a verification result was not produced within two hours.
We confirmed the tool was being run correctly by severely
reducing the analysis time bound until an output was
produced.

6. RELATED WORK

Domain contraction, the practice of narrowing the do-
main of possible solutions, has been used in solving con-
straint satisfaction over non-linear real arithmetic Ben-
hamou and Granvilliers (2006); Fränzle et al. (2006); Gao
et al. (2010); Granvilliers and Benhamou (2006). The same
technique has been used in hybrid systems safety verifica-
tion Ratschan and She (2007) and checking for intersection
of flow-pipes with guard sets for discrete transitions Al-
thoff and Krogh (2012); Chen et al. (2012). While in these
works, the domain contraction is performed in a branch-
and-bound manner, we propagate constraints and use a
zonotope intersection method for computing the reduced
domain.

Transforming a non-linear ODE into a linear ODE by
performing change of variables has also been previously
investigated Sankaranarayanan (2012). The main goal is to
a) search for the change of variables transformation such
that non-linear dynamical and hybrid systems become
linear dynamical and hybrid systems and b) synthesize
invariants for the linear system to prove safety. The current
work differs in two ways. First, our method is purely data-
driven and hence can also be applied to black-box systems.
Second, instead of synthesizing invariants, we prove safety
by computing the flow-pipe of the high dimensional linear
system.

The process of approximating a nonlinear dynamical sys-
tem as a piecewise linear system with uncertain inputs
is called hybridization Asarin et al. (2003, 2007); Dang
et al. (2010); Han and Krogh (2006). The inputs over-
approximate the divergence between the linear and non-
linear dynamics in a subspace defined by the invariant
of each mode in the hybrid system. The first challenge
in performing safety verification using hybridization is
that it requires computing intersections of flow-pipes with
the guards for discrete transitions, which might become
expensive Girard and Le Guernic (2008). Some methods



to avoid computing this intersections have been investi-
gated Althoff and Krogh (2012); Bak et al. (2016). Sec-
ondly, for accurate hybridization, the number of modes
in the hybrid system might be prohibitively large. This
paper investigates techniques for approximating a non-
linear system as a high dimensional linear system for safety
verification use observable variables, rather than linear
approximations of the original nonlinear dynamics. While
high dimensional linearization using Koopman operator
has been used to analyze controllability in Goswami and
Paley (2017) and propagating the probability distribution
of initial set in Matavalam et al. (2020), these works do not
explicitly construct flow-pipes for proving safety of non-
linear systems.

Finally, flow-pipe computation techniques for computing
reachable set using Taylor Models Chen et al. (2013),
polynomial Zonotopes Althoff (2015), sample trajecto-
ries Duggirala et al. (2015), and SMT solvers Kong et al.
(2015) have all been investigated as potential techniques
for nonlinear systems verification. These methods work di-
rectly on the nonlinear differential equations, which create
scalability challenges, whereas we use Koopman Operator
linearization prior to analysis which can leverage scalable
methods to compute reachable states for linear systems.

7. CONCLUSION

Accurate reachability and verification of nonlinear dynam-
ical systems is a grand challenge. Many methods have been
proposed for this problem, and this paper has provided a
new avenue to verification based on Koopman operator
linearization. This process outputs a system of linear dy-
namics with nonlinear constraints on the initial state set.
As far as we are aware, this class of systems has not been
considered before for formal set-based reachability analy-
sis. We have proposed and evaluated the first algorithm to
solve such reachability problems, along with several opti-
mizations that use overapproximation to reduce analysis
time. We have demonstrated that on some systems our
method can outperform existing mature reachability tools,
and we expect with further research both performance and
accuracy can be improved. Unique to our method, we can
compute reachable states for black-box systems, as the
Koopman linearization process uses data to create linear
approximations in the space of observable functions. In the
future we plan to further optimize the method, as well as
to create a user-friendly tool in order to participate in the
annual nonlinear reachability competition Geretti et al.
(2020).
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