
Automatic Dynamic Parallelotope Bundles for
Reachability Analysis of Nonlinear Systems

Edward Kim1, Stanley Bak2, and Parasara Sridhar Duggirala1

1 University of North Carolina at Chapel Hill
2 Stony Brook University

Abstract. Reachable set computation is an important technique for the
verification of safety properties of dynamical systems. In this paper, we
investigate parallelotope bundle based reachable set computation for dis-
crete nonlinear systems. The algorithm relies on computing an upper bound
on the supremum of a nonlinear function over a rectangular domain,
traditionally done using Bernstein polynomials. We strive to remove the
manual step of parallelotope template selection to make the method fully
automatic. Further, we show that changing templates dynamically dur-
ing computations can improve accuracy. We investigate two techniques
for generating the template directions. The first technique approximates
the dynamics as a linear transformation and generates templates using
this linear transformation. The second technique uses Principle Compo-
nent Analysis (PCA) of sample trajectories for generating templates. We
have implemented our approach in a Python based tool called Kaa and
improve its performance by two main enhancements. The tool is modular
and use two types of global optimization solvers, the first using Bernstein
polynomials and the second using NASA’s Kodiak nonlinear optimiza-
tion library. Second, we leverage the natural parallelism of the reachabil-
ity algorithm and parallelize the Kaa implementation. We demonstrate
the improved accuracy of our approach on several standard nonlinear
benchmark systems.

1 Introduction

One of the widely used techniques for performing safety analysis of nonlinear
dynamical systems is to perform reachable set computation. Reachable set is
an overapproximation of the set of states visited by all the trajectories of the
system starting from an initial set. Computing the reachable set for nonlinear
systems is very challenging. This is primarily because of two reasons: First, the
tools for performing nonlinear analysis are not very scalable. Second, comput-
ing the reachable set using set representations involves wrapping error. That is,
the overapproximation acquired at a given step would increase the conserva-
tiveness of the reachable set for all future steps.

One of the techniques for computing reachable set for discrete time non-
linear systems is to use Parallelotope bundles. Here, the reachable set is repre-
sented as a parallelotope bundle, an intersection of several parallelotopes. One
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of the advantages of this technique is that it uses a special form of nonlinear op-
timization problem to compute the reachable set. The usage of a specific form
of nonlinear optimization mitigates the drawback involved with the scalability
of nonlinear analysis.

However, wrapping error still remains to be a problem for reachability us-
ing parallelotope bundles. The template directions for specifying these paral-
lelotopes are provided as an input by the user. Often, these template directions
are selected to be either the cardinal axis directions or some directions from oc-
tahedral domains. However, it is not clear that the axis directions and octagonal
directions are optimal for computing reachable sets. Also, even an expert user
of reachable set computation tools might not be able to provide the most suit-
able set of template directions for computing the most accurate reachable set.
Picking an unsuitable template directions would only cause the wrapping error
to increase, thus increasing the conservativeness of the safety analysis.

In this paper, we investigate techniques for generating template directions
automatically and dynamically. That is, instead of providing the template direc-
tions to compute the parallelotope, the user just specifies the number of tem-
plates and the algorithm automatically generates the template directions. We
study two techniques for generating the template directions. First, we compute
a local linear approximation of the nonlinear dynamics and use the linear ap-
proximation to compute the templates. Second, we generate a specific set of
sample trajectories from the set and use principal component analysis (PCA)
over these trajectories. We observe that the accuracy of the reachable set can
be drastically improved by using templates generated using these two tech-
niques. For standard nonlinear benchmark systems, we show that generating
templates in a dynamic fashion improves the accuracy of the reachable set by
two orders of magnitude. We demonstrate that even when the size of the initial
set increases, our template generation technique returns much more accurate
reachable sets than both manually specified and random template directions.

2 Related Work

Reachable set computation of nonlinear systems using template polyhedra and
Bernstein polynomials has been first proposed in [9]. In [9], Bernstein polyno-
mial representation is used to compute an upper bound of a special type of
nonlinear optimization problem [16]. Several improvements to this algorithm
were suggested in [10,?] and [7] extends it for performing parameter synthe-
sis. The representation of parallelotope bundles for reachability was proposed
in [12] and the effectiveness of using bundles for reachability was demonstrated
in [11,13]. However, all of these papers used static template directions for com-
puting the reachable set.

Using template directions for reachable set has been proposed in [25] and
later improved in [8]. Leveraging the principle component analysis of sample
trajectories for computing reachable set has been proposed in [29,5,27]. More
recently, connections between optimal template directions for reachability of
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linear dynamical systems and bilinear programming have been highlighted
in [18]. For static template directions, Octahedral domain directions [6] remain
a popular choice.

3 Preliminaries

The state of a system, denoted as x, lies in a domain D ⊆ Rn. A discrete-time
nonlinear system is denoted as

x+ = f(x) (1)

where f : Rn → Rn is a nonlinear function. The trajectory of a system that
evolves according to Equation 1, denoted as ξ(x0) is a sequence x0, x1, . . .where
xi+1 = f(xi). The kth element in this sequence xk is denoted as ξ(x0, k). Given
an initial set Θ ⊆ Rn, the reachable set at step k, denoted as Θk is defined as

Θk = {ξ(x, k) | x ∈ Θ} (2)

A parallelotope P , denoted as a tuple 〈a,G〉 where a ∈ Rn is called the
anchor and G is a set of vectors {g1, g2, . . . , gn}, ∀1≤i≤n gi ∈ Rn called generators,
represents a set

P = {x | ∃α1, . . . , αn, such that 0 ≤ αi ≤ 1, x = a+

n∑
i=1

αigi}. (3)

We call this representation as the generator representation of the parallelo-
tope. We refer to a generator of a specific parallelotope P using dot notation,
for example P.g1. For readers familiar with zonotopes [17,2], a parallelotope is
a special form of zonotope where the number of generators n equals the di-
mensionality of the set. One can also represent the parallelotope as a conjunc-
tion of half-space constraints. In half-space representation, a parallelotope is
represented as a tuple 〈T , cl, cu〉 where T ∈ Rn×n are called template directions
and cl, cu ∈ Rn such that ∀1≤i≤n cl[i] ≤ cu[i] are called bounds. The half-space
representation defines the set of states

P = { x | cl ≤ T x ≤ cu}.

Intuitively, the ith constraint in the parallelotope corresponds to an upper and
lower bound on the function Tix. That is, cl[i] ≤ Tix ≤ cu[i]. The half-plane
representation of a parallelotope can be converted into the generator represen-
tation by computing n + 1 vertices v1, v2, . . . , vn+1 of the parallelotope in the
following way. The vertex v1 is obtained by solving the linear equation Λx = cl.
The j + 1 vertex is obtained by solving the linear equation Λx = µj where
µj [i] = cl[i] when i 6= j and µj [j] = cu[j]. The anchor a of the parallelotope is
the vertex v1 and the generator gi = vi+1 − v1.
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Example 1. Consider the xy-plane and the parallelotope P given in half-plane
representation as 0 ≤ x− y ≤ 1, 0 ≤ y ≤ 1. This is a parallelotope with vertices
at (0, 0), (1, 0), (2, 1), and (1, 1). In the half-space representation, the template
directions of the parallelotope P are given by the directions [1,−1] and [0, 1].
The half-space representation in matrix form is given as follows:0

0

 ≤
1 −1
0 1

x
y

 ≤
1
1

 . (4)

To compute the generator representation of P , we need to compute the an-
chor and the generators. The anchor is obtained by solving the linear equations
x−y = 0, y = 0. Therefore, the anchor a is the vertex at origin (0, 0) To compute
the two generator of the parallelotope, we compute two vertices of the paral-
lelotope. Vertex v1 is obtained by solving the linear equations x− y = 1, y = 0.
Therefore, vertex v1 is the vertex (1, 0). Similarly, vertex v2 is obtained by solv-
ing the linear equations x − y = 0, y = 1. Therefore, v2 is the vertex (1, 1). The
generator g1 is the vector v1 − a, that is (1, 0) − (0, 0) = (1, 0) The generator g2
is the vector v2 − a, that is (1, 1)− (0, 0) = (1, 1). Therefore, all the points in the
paralellotope can be written as (x, y) = (0, 0)+α1(1, 0)+α2(1, 1), 0 ≤ α1, α2 ≤ 1.

A parallelotope bundle Q is a set of parallelotopes {P1, . . . , Pm}. The set of
states represented by a parallelotope bundle is given as the intersection

Q =

m⋂
i=1

Pi. (5)

Often, the various parallelotopes in a bundle share common template direc-
tions. In such cases, the conjunction of all the parallelotope constraints in a
bundle Q is written as cQl ≤ TQx ≤ cQu . Notice that the number of upper and
lower bound half-space constraints in this bundle are stricly more than n, i.e.,
TQ ∈ Rm×n where m > n. Each parallelotope in such a bundle is represented
as a subset of constraints in cQl ≤ TQx ≤ cQu . These types of bundles are often
considered in the literature.

Alternatively, in this paper, we consider parallelotope bundles where the
consisting parallelotopes do not share template directions. We consider such
bundles because our we generate template directions automatically. We pro-
pose techniques to generate n template directions at each instance.

The basic building block in this work is a conservative overapproximation
to a constrained nonlinear optimization problem with a box domain. Consider
a nonlinear function h : Rn → R and the optimization problem denoted as
optBox(h) as

max h(x) (6)
s.t. x ∈ [0, 1]n.
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For computing the reachable set of a nonlinear system, we need an upper
bound for the optimization problem. Several techniques using interval arith-
metic and Bernstein polynomials have been developed in the recent past [16,21,1,28].

4 Reachability Algorithm

In this work, we develop parallelotope reachability algorithms that are auto-
matic with dynamic parallelotopes. The state of the art, in contrast, is manual,
where the user specifies a set of parallelotope directions at the start of the prob-
lem. Further, the parallelotopes are static, and do not change during the course
of the computation. In our evaluation in the next section, we will demonstrate
the benefits of these change on a series of nonlinear example systems. In this
section, we detail the modifications to the algorithm present correctness argu-
ments.

4.1 Manual Static Algorithm

We first present the original algorithm where the user manually specifies the
number of parallelotopes and a set of directions for each parallelotope that re-
main static throughout the computation.

Recall the system is n-dimensional with dynamics function f : Rn → Rn.
The parallelotope bundle Q is specified as a collection of m template directions
T Q ∈ Rm×n(m > n) and the set of constraints that define each of the consisting
parallelotope. Another input to the algorithm is the initial set, given as a paral-
lelotope P0. When the initial set is a box, P0 consists has axis-aligned template
directions. The output of the algorithm is, for each step k, the set Θk, which is a
conservative overapproximation of the reachable set at step k, Θk ⊆ Θk.

The high-level pseudo-code is written in Algorithm 1. The algorithm simply
calls TransformBundle for each step, producing a new parallelotope bundle
based on the parallelotope bundle from the previous step. To compute the im-
age of Q, the algorithm computes the upper and lower bounds of f(x) with re-
spect to each template direction. Since computing the maximum value of f(x)
along each template direction onQ is computationally very hard, the algorithm
instead computes the maximum value over each of the consisting parallelo-
topes and uses the mimimum of all these maximum values. The TransformBundle
operation works as follows. Consider a parallelotope P in the bundle Q. From
the definition, it follows that Q ⊆ P . Given a template direction Ti, the maxi-
mum value of Tif(x) for all x ∈ Q is less than or equal to the maximum value of
Tif(x) for all x ∈ P . Similar argument holds for the mimum value of Tif(x) for
all x ∈ Q. To compute the upper and lower bounds of each template direction
Tif(x), for all x ∈ P , we perform the following optimization.

max T P
i · f(x) (7)

s.t. x ∈ P.
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Given P is a parallelotope, all the states in P can be expressed as a vector
summation of anchor and scaled generators. Let 〈a,G〉 be the generator rep-
resentation of P . The optimization problem given in Equation 7 would then
transform as follows.

max Ti · f(a+Σn
i=1αigi) (8)

s.t. α ∈ [0, 1]n.

Equation 8 is a form of optBox(Ti · f) over [0, 1]n. For computing an upper-
bound to the constrained nonlinear optimization by invoking one of the Bern-
stein polynomial or interval arithmetic based methods. Similarly, we compute
the lowerbound of Tif(x) for all x ∈ P by computing the upperbound of
−1× Tif(x).

We iterate this process (i.e., computing the upper and lower bound of Tif(x))
for each parallelotope in the bundle Q. Therefore, the tightest upper bound on
Tif(x) overQ is the least of the upper bounds computed from each of the paral-
lelotopes. Similar argument holds for lower bounds of Tif(x) overQ. Therefore,
the image of the bundle Q will be the bundle Q′ where the upper and lower
bounds for templates directions are obtained by solving several constrained
nonlinear optimization problems.

Lemma 1. The parallelotope bundle Q′ computed using TransformBundle (Algo-
rithm 1) is a sound overapproximation of the image of bundle Q w.r.t the dynamics
x+ = f(x).

4.2 Automatic Dynamic Algorithm

The proposed automatic dynamic algorithm does not require the user provide
the set of template direction T ; instead it creates templates automatically at each
step based. We use two techniques to generate such template directions, first:
computing local linear approximations of the dynamics and second, perform
principle component analysis (PCA) over sample trajectories. To do this, we
first sample a set of points in the parallelotope bundle called support points,
and propagate them to the next step using the dynamics function f . Support
points are a subset of the vertices of the parallelotope that either maximize or
minimize the template directions.

Intuitively, linear approximations can provide good approximations when
the dynamics function is a time-discretization of a continuous system. In this
case, for small time steps a nonlinear function can be approximated fairly ac-
curately by a linear function. We use the support points as a data-driven ap-
proach to find the best-fit linear function to use. If the dynamics of a system is
linear, i.e., x+ = Ax, the image of the parallelotope cl ≤ T x ≤ cu, is the set
cl ≤ T · A−1x ≤ cu. Therefore, given the template directions of the initial set
as T0, we compute the local linear approximation of the nonlinear dynamics
(from the support points) and change the template directions by multiplying
it with the inverse of the approximate linear dynamics. The second technique
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Input: Dynamics f , Initial Parallelotope P0, Step Bound S, Template Dirs T ,
indexes for parallelotopes I

Output: Reachable Set Overapproximation Θk for each step k
1 Q0 = {P0}
2 for k ∈ [1, 2, . . . , S] do
3 Qk = TransformBundle (f , Qk−1, T )
4 Θk = Qk

5 end
6 return Θ1 . . . ΘS

7

8 Proc TransformBundle(f , Q, T ):
9 Q′ ← {}; cu ← +∞; cl ← −∞

10 for each parallelotope P in Q do
11 〈a,G〉 ← generatorRepresentation(P )
12 for each template direction Ti in the template directions T do
13 c′u[i]← min{optBox(Ti · f), c′u[i]} (Equation 8)
14 c′l[i]← max{−1× optBox(−1× Ti · f), c′l[i]}
15 end
16 end
17 Construct parallelotopes P ′1, . . . , P ′k from T , c′l, c′u and indexes from I
18 Q′ ← {P ′1, . . . , P ′k}
19 return Q′

Algorithm 1: Reachable set computation using manual and static tem-
plates.

for generating template directions performs principle component analysis over
the images of the support points. Using PCA is a reasonable choice as it pro-
duces orthonormal directions that can construct a rotated box for bounding the
points.

Observe that in general, the dynamics is nonlinear and therefore, the reach-
able set could non-convex. However, a parallelotope bundle is always a convex
set. Therefore, one way to improve accuracy of this representation is to con-
sider more template directions. For this purpose, we use a notion of template
lifespan, where we use the linear approximation and/or PCA template direc-
tions not only from the current step, but also from the previous L steps. We
will demonstrate the effectiveness and tune each of the options (PCA / linear
approximation as well as lifespan option) in our evaluation.

The new approach is given in Algorithm 2. In this algorithm, instead of fix-
ing the set of templates, we compute one set of templates (that is, a collection of
n template directions), using linear approximation of the dynamics and PCA.
The algorithm makes use of helper function hstack, which converts a bunch of
column vectors into a matrix (as shown in Equation 4 provided in Example 1).
The notationM∗,i is used to refer to the ith column of matrixM . The Maximize
function takes in a parallelotope bundle Q and direction vector v (one of the
template directions), and returns the point p ∈ Q that maximizes the dot prod-
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Input: Dynamics f , Initial Parallelotope P0, Step Bound S
Output: Reachable Set Overapproximation Θk at each step k

1 Q0 = {P0}
2 T = hstack(P0.T1, . . . , P0.Tn) // Init Template Directions
3 for k ∈ [1, 2, . . . , S] do
4 Psupp = GetSupportPoints (Qk−1) (support points of Qk−1)
5 Pprop = PropagatePointsOneStep (Psupp, f ) (image of support points)
6 A = ApproxLinearTrans (Psupp, Pprop)
7 T = T ·A−1

8 T lin
k = {{T∗,1, . . . , T∗,n}}

9 T pca
k = {PCA(Pprop)}

10 Tk = T lin
k ∪ T

pca
k

11

12 /* For lifespan L, instead call TransformBundle with
Tk ∪ Tk−1 ∪ . . . ∪ Tk−L */

13 Qk = TransformBundle (f , Qk−1, Tk)
14 Θk ← Qk

15 end
16 return Θ1 . . . ΘS

17

18 Proc GetSupportPoints(Q):
19 Psupp = ∅
20 for P ∈ Q do
21 for i ∈ [1, 2, . . . , n] do
22 Psupp = Psupp ∪ Maximize(Q,P.Ti) ∪ Maximize(Q,−P.Ti)
23 end
24 end
25 return Psupp

Algorithm 2: Automatic, Dynamic Reachability Algorithm

uct v · p (for computing support points). This can be computed efficiently using
linear programming. The ApproxLinearTrans function computes the best
approximation of a linear transformation given a list of points before and after
the one-step transformation f . More specifically, given a matrix X of points be-
fore applying the transformation f , a matrix of points after the transformation
X ′, we perform a least-squares fit for the linear transition matrix A such that
X ′ ≈ AX . This can be computed by A = X ′X†, whereX† is the Moore-Penrose
pseudoinverse ofX . The PCA function returns a set of orthogonal directions us-
ing principal component analysis of a set of points. Finally, TransformBundle
is the same as in Algorithm 1.

Algorithm 2 computes the dynamic templates for each time step k. Line 6
computes the linear approximation of the nonlinear dynamics and this linear
approximation is used to compute the new template directions according to
this linear transformation in Line 8. The PCA directions of the images of sup-
port points is computed in line 9. For the time step k, the linear and PCA tem-
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plates are given as T lin
k and T pca

k , respectively. To improve the accuracy of the
reachable set, we compute the reachable set with respect to not just the template
directions at the current step, but with respect to other template directions for
time steps that are within the lifespan L. This is because, the nonlinear systems
we deal with are often not chaotic in nature. Therefore, the templates at time
step k − 1 are very similar to that of template directions at time step k.

5 Evaluation

We evaluate the efficacy of our dynamic parallelotope bundle strategies with
our tool, Kaa [20]. Kaa is written in Python and relies on the numpy library
for matrix computations, sympy library for all symbolic subsitution, and scipy,
matplotlib for plotting the reachable sets and computing the volume for lower-
dimensional systems. The optimization procedure for finding the direction of-
fets is performed through the Kodiak library. Finally, parallelization of the offset
calculation procedures is implemented through the multiprocessing module. To
estimate volume of reachable sets, we employ two techniques for estimating
volume of individual parallelotope bundles. For systems of dimension fewer
than or equal to three, we utilize scipy.spatial library’s Convex hull routine.
These routines are esstentially Python wrappers around their corresponding
QHull procedures. For higher-dimensional systems, we employ the volume of
the tightest enveloping box around the intersection of the parallelotopes. The
dimensions of this box are easily calculated through linear programming. The
total volume estimate of the reachable set will be the sum of all the computed
bundles’ volume estimates.

Model Dynamics For benchmarking, we select six non-linear models with
polynomial dynamics. Many of these models are also implemented in Sapo
[11], a previous tool exploring reachability analysis with static parallelotope
bundles. In these cases, we directly compare the performance of our dynamic
strategies with the static parallelotopes defined in Sapo. To provide meaning-
ful comparisions, we set the number of dynamic parallelotopes to be equal to
the number of static ones excluding the initial box. Here, diagonal directions
are defined to be the vectors created by adding and subtracting distinct pairs
of all unit axis-aligned vectors from each other. By diagonal parallelotopes, we
refer to parallelotopes which are defined only by axis-aligned and diagonal di-
rections. Similarly, diagonal parallelotope bundles are parallelotope bundles
which solely consists of diagonal parallelotopes. Sapo primarily utilizes static
diagonal parallelotope bundles to perform its reachability computation. Note
that the initial box, which is defined only through the axis-aligned directions, is
contained in every bundle. For our experiments, we are concerned with the ef-
fects of additional static or dynamic parallelotopes added alongside the initial
box. We refer to these parallelotopes as non-axis-aligned parallelotopes.

Example 2. In two dimensions, R2, we have the two unit axis-aligned directions,
[1, 0]T , [0, 1]T . The diagonal directions will then
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[1, 1]T , [1,−1]T

Consequently, the diagonal parallelotopes will be precisely be defined by unique
pairs of these directions, giving us a total

(
4
2

)
= 6 diagonal parallelotopes.

Table 1 summarizes five standard benchmarks used for experimentation. The
last seven-dimensional model COVID supermodel is explained in the subse-
quent subsection below.

Model Dimension Parameters # steps ∆ Initial Box

Vanderpol 2 - 70 steps 0.08 x ∈ [0, 0.1], y ∈ [1.99, 2]

Jet Engine 2 - 100 steps 0.2 x ∈ [0.8, 1.2], y ∈ [0, 8, 1.2]

Neuron
[15]

2 - 200 steps 0.2 x ∈ [0.9, 1.1], y ∈ [2.4, 2.6]

SIR 3 β = 0.05
γ = 0.34

150 steps 0.1 s ∈ [0.79, 0.8], i ∈ [0.19, 0.2], r = 0

Coupled
Vanderpol

4 - 40 steps 0.08 x1 ∈ [1.25, 2.25], y1 ∈ [1.25, 2.25]
x2 ∈ [1.25, 2.25], y2 ∈ [1.25, 2.25]

COVID 7 β = 0.05
γ = 0.0
η = 0.02

200 steps 0.08 Stated Below

Table 1: Benchmark models and relevant information

COVID Supermodel: We further benchmark our dynamic strategies with the
recently introduced COVID supermodel [3], [24]. This model is a modified SIR
model accounting for the possibility of asymptomatic patients. These patients
have the ability to infect susceptible members with a fixed probability. The fol-
lowing dynamics account for this new group and its interactions with the tra-
ditional groups found in the SIR model. The continuous dynamics given in [24]
are discretized through the Euler method.

SA = SA − (βSA(A+ I)) ·∆
SI = SI − (βSI(A+ I)) ·∆
A = A+ (βSI(A+ I)− γI) ·∆
I = I + (βSI(A+ I)− γI) ·∆

RA = RA + (γA) ·∆
RI = RI + (γI) ·∆
D = D + (ηI) ·∆

(9)

where the variables denote the fraction of a population of individuals desig-
nated as Susceptible Transition to Asymptomatic (SA), Susceptible Transition to In-
fected (SI), Asymptomatic (A), Symptomatic (I), Removed from Asymptomatic (RA),
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Removed from Symptomatic (RI), and Deceased (D). We choose the parameters
(β = 0.25, γ = 0.02, η = 0.02) where β is the average probablity of infection,
γ is the average removal rate, and η is the average mortality rate. The param-
eters are set based on figures shown in [3] for the USA. The discretization step
is chosen to be ∆ = 0.1 and the initial box is set to be following dimensions:
SA ∈ [0.69, 0.7], SI ∈ [0.09, 0.1], A ∈ [0.14, 0.15], I ∈ [0.04, 0.05], RA = 0, RI =
0, D = 0.

Accuracy of Dynamic Strategies The results of testing our dynamic strategies
against static ones are summarized in Table 2. For models previously defined
in Sapo, we set the static parallelotopes to be exactly those found in Sapo. If
a model is not implemented in Sapo, we simply use the static parallelotopes
defined in a model of equal dimension. To address the unavailability of a four-
dimensional model implemented in Sapo, we sampled random subsets of five
static non-axis-aligned parallelotopes and chose the flowpipe with smallest vol-
ume. A cursory analysis shows that the number of possible templates with di-
agonal directions grows with O(nn) with the number of dimensions and hence
an exhaustive search on optimal template directions is impossible.

From our experiments, we conclude there is no universal optimal ratio be-
tween the number of dynamic parallelotopes defined by PCA and Linear Ap-
proxiation directions which perform well on all benchmarks. In Figure 1, we
demonstrate two cases where varying the PCA/LinApp ratio imparts differ-
ing effects on the reachable set. Observe that using parallelotopes defined by
Linear Approximation directions is more effective than those defined by PCA
directions in the Vanderpol model whereas the Neuron model shows the oppo-
site trend.

Performance under Increasing Initial Sets A key advantage of our dynamic
strategies is the improved ability to control the wrapping error naturally arising
from larger initial sets. Figure 2 presents charts showcasing the effect of increas-
ing initial sets on the total flowpipe volume. We vary the initial box dimensions
to gradually increase the box’s volume. We then plot the total flowpipe volume
after running the benchmark. The same initial boxes are also fed as input into
computation using only static parallelotopes borrowed from Sapo. The number
of parallelotopes defined by PCA and Linear Approximation directions were
chosen based on best performance as seen in Table 2. We remark that our dy-
namic strategies perform better than static ones in controlling the total flowpipe
volume as the initial set becomes larger. On the other hand, the performance of
static parallelotopes tends to degrade rapidly as we increase the volume of the
initial box.

Performance against Random Static Templates We additionally benchmark
our dynamic strategies against static random parallelotope bundles. We sam-
ple such parallelotopes in n dimensions by first sampling a set of n directions
uniformly on the surface of the unit (n− 1)-sphere, then defining our parallelo-
tope using these sampled directions. We sample twenty of these parallelotopes
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(a) 5 Lin (b) 1 PCA 5 Lin

(c) 5 PCA (d) 5 PCA 1 Lin

(e) Sapo (f) Sapo

Fig. 1: Effect of varying ratio between the number of PCA and Linear Approximation
parallelotopes. The Vanderpol (left) and the FitzHugh-Nagumo Neuron (right) phase
plots are shown to illustrate differing effects of varying the PCA/LinApp ratio. The
initial set for the Vanderpol model is set to x ∈ [0, 0.05], y ∈ [1.95, 2]

for each trial and average the total flowpipe volumes. As shown in Figure 3,
our best-performing dynamic strategies consistently outperform static random
strategies for all tested benchmarks.

6 Conclusions

In this paper we investigated two techniques for generating templates dynami-
cally, first using linear approximation of the dynamics, and second using PCA.
We demonstrated that these techniques improve the accuracy of reachable set
by an order of magnitude when compared to static or random template di-
rections. We also observed that both these techniques improve the accuracy of
the reachable sets for different benchamrks. In future, we intend to investigate
Koopman linearization techniques for computing the template directions [4].
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Strategy Total Volume

5 LinApp 0.227911

1 PCA, 4 LinApp 0.225917

2 PCA, 3 LinApp 0.195573

3 PCA, 2 LinApp 0.188873

4 PCA, 1 LinApp 1.227753

5 PCA 1.509897

5 Static Diagonal(Sapo) 2.863307

(a) Vanderpol

Strategy Total Volume

5 LinApp 58199.62

1 PCA, 4 LinApp 31486.16

2 PCA, 3 LinApp 5204.09

3 PCA, 2 LinApp 6681.76

4 PCA, 1 LinApp 50505.10

5 PCA 84191.15

5 Static Diagonal (Sapo) 66182.18

(b) Jet Engine

Strategy Total Volume

5 LinApp 154.078

1 PCA, 4 LinApp 136.089

2 PCA, 3 LinApp 73.420

3 PCA , 2 LinApp 73.126

4 PCA, 1 LinApp 76.33

5 PCA 83.896

5 Static Diagonal (Sapo) 202.406

(c) FitzHugh-Nagumo

Strategy Total Volume

2 LinApp 0.001423

1 PCA, 1 LinApp 0.106546

2 PCA 0.117347

2 Static Diagonal (Sapo) 0.020894

(d) SIR

Strategy Total Volume

5 LinApp 5.5171

1 PCA, 4 LinApp 5.2536

2 PCA, 3 LinApp 5.6670

3 PCA, 2 LinApp 5.5824

4 PCA, 1 LinApp 312.2108

5 PCA 388.0513

5 Static Diagonal (Best) 3023.4463

(e) Coupled Vanderpol

Strategy Total Volume

3 LinApp 2.95582227 ∗ 10−10

1 PCA, 2 LinApp 2.33007583 ∗ 10−10

2 PCA, 1 LinApp 4.02751770 ∗ 10−9

3 PCA 4.02749571 ∗ 10−9

3 Static Diagonal (Sapo) 4.02749571 ∗ 10−9

(f) COVID

Table 2: Tables presenting total reachable set volume by strategy. The static directions
are retrieved and/or inspired from Sapo models of equal dimension for benchmarking.
The best performing strategy is highlighted in bold.



14

(a) Vanderpol (b) Jet Engine

(c) Neuron (d) SIR

(e) Coupled Vanderpol (f) COVID

Fig. 2: Comparison between the performance of diagonal static parallelotope bundles
and that of the best performing dynamic parallelotope bundles as the volume of the
initial set grows.
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(a) Vanderpol (b) Jet Engine

(c) Neuron (d) SIR

(e) Coupled Vanderpol (f) COVID

Fig. 3: Comparision between random static strategies and the best performing dynamic
strategies as the volume of the initial set grows. The total reachable set volumes for
random static strategies are averaged over ten trials for each system.
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