

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 3

evaluate if a safety violation occurs if the control task suffers

no more than 3 consecutive deadline misses. In other words,

at most 3 consecutive jobs of this control software fail to

compute the control input in time for the necessary actuation.

This clearly admits many deadline hit/miss patterns over any

reasonable time horizon of interest (e.g., 100 samples of the

plant state). It is computationally infeasible to compute the

system trajectories for all such deadline hit/miss patterns to

check whether or not a safety violation occurs, and how to do

this efficiently for realistic systems is one of the contributions

of this paper. The second contribution of this paper relates

to evaluating how deadline misses are handled—both from

the task scheduling perspective and from the control-theoretic

one. Using our proposed schemes it is possible to identify

the best combination of control and scheduling (or deadline

overrun management) strategies for any given system. From

the vantage point of quantitative safety properties, we are able

to make a fine-grained distinction between these strategies that

was not possible in previous studies that focused on stability

analysis. We discuss these below in more detail.

Relation to prior work: Our work is motivated by a recent

work [5] (and a number of preceding ones on the related

problem [6]–[10]) that studied how deadline misses may be

handled on an implementation platform and what impact it

has on control performance (specifically, stability). Various

strategies to handle deadline misses that were studied in this

paper include combinations of applying either a zero or the

previous control input to the plant in the case of a deadline

miss, and either killing the control task that missed its deadline

or letting it complete its execution beyond the deadline.

Killing or letting a task continue execution impacts the load

on the system and hence potential future deadline misses,

and whether a zero or a previous control input is applied

impacts the state space evolution of the closed-loop system.

The work in [5] only studies stability, and hence classifies

these combinations of strategies into only two classes, viz.,

whether or not the system is stable. We, on the other hand,

show that a much finer and quantitative distinction between

these strategies can be made when we consider the maximum

deviation from a nominal or ideal behavior.

Further, while stability is a necessary property, and the

deviation we compute will likely be unbounded if the system

is not stable, it by no means ensures safe operation in most

realistic systems. For example, stability might ensure that an

autonomous drone or robot eventually reaches its destination,

but would not guarantee that it does not collide with an

obstacle on the way. This may be easily visualized in Figure 1,

where the black line is the ideal trajectory and the blue safety

envelope is specified such that no obstacles lie on the path of

the robot; but they might lie just outside the envelope. Hence,

too much deviation from the ideal trajectory due to imple-

mentation platform timing uncertainties might not guarantee

a collision-free path for the robot. The safety property we

analyze in this paper helps provide such guarantees.

In addition to more work on checking stability, from a

computational perspective it is also easier to do so. This is by

relying on techniques like the existence of a Lyapunov function

and on results from stability analysis of switched systems [11].

Estimating the maximum deviation is computationally more

expensive and hence does not scale because it involves some

form of reachability analysis. To get around this, we propose

a set of safe approximation techniques for computing such

deviations from a nominal behavior in the presence of platform

uncertainties (specified by a bound on deadline misses).

We conclude this section by discussing some broader related

work. The issue of “implementing” a controller has tradition-

ally not been seen as a problem within control theory. But

how to design a controller with sensing-to-actuation delays

has been well-known for a number of years [12], [13] and

the area of networked control systems has studied different

aspects of controller design in the presence of delays [14]–

[17]. Since feedback controllers are inherently tolerant to some

model uncertainties, they can also tolerate delay variations

to a certain degree. However, if the delays become very

large, the controllers are distributed, or multiple control inputs

are missed because of deadline violations, then the problem

of controller design becomes much more complex and such

scenarios are only being looked at more recently [18]–[21].

Modeling the impact of implementation platform (or more

specifically network) uncertainties on control performance in

the form of time-varying or stochastic delays have been studied

in [14], [16], [22]. But again, the focus has been on stability.

Similarly, time-varying delays and the use of different feed-

back gains for different delays is closely related to the study

of switched systems [11], [23]. While these are abstractly

related to our work, both the goals and the techniques used

are different—as already outlined, instead of stability we study

quantitative properties and use approximation techniques for

reachability analysis. Finally, a number of recent papers have

addressed various aspects of the control/architecture co-design

problem [24]–[26]. In contrast to designing a controller to

mitigate the impact of sensor-to-actuator delays, as is done

in networked control systems, the co-design problem attempts

to jointly design controllers and network parameters like

schedules in order to maximize the “compatibility” between a

controller and its implementation platform.

Paper organization: The rest of this paper is organized as

follows. We propose our system model in Section II, and

describe how to encode implementation platform behaviors

(viz., deadline hit/miss patterns) in Section III. Section IV

provides the notations used in the rest of the paper. We

formally define the main problem in Section V and present

our solutions in Section VI. We implemented our algorithms

and evaluated them on standard benchmarks, presented in

Section VII. Finally, we conclude in Section VIII.

II. SYSTEM MODEL

This section outlines the basics of feedback controllers

as studied in this paper. We consider linear, multiple-input

multiple-output (MIMO) discrete-time models of the form

x[t+ 1] = Ax[t] +Bu[t], (1)

y[t] = Cx[t] +Du[t]. (2)

Here, x is the system state, y is the output, and A ∈ R
n×n,

B ∈ R
n×p, C ∈ R

q×n, and D ∈ R
q×p are coefficient

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 4

matrices. The control input u is computed by a periodic real-

time task running on a processor, assumed to be of the form

u[t] = Kx[t− 1], (3)

where K ∈ R
p×n. This follows the logical execution time

(LET) paradigm, in which the new control input is always

applied at the deadline of the control job (assumed to be one

sampling period), regardless of when it actually completes.

This can alternately be represented using an augmented state

space [13] z[t] = [x[t]T ua[t− 1]T]T , giving the model

z[t+ 1] =

[

A B
0 0

]

z[t] +

[

0
I

]

ua[t], (4)

where ua[t] = Kaz[t]. This augmented form permits stan-

dard controller design techniques such as linear-quadratic

regulator (LQR). Note that when augmented in this way, the

feedback gain matrix Ka ∈ R
p×(n+p), allows feedback from

both the plant state x[t] and the previous control input u[t−1].
This can be implemented by saving the previous control input

between jobs of the control task. We denote the two blocks

of Ka that provide feedback from each of these vectors

as Kx ∈ R
p×n and Ku ∈ R

p×p, respectively. Once a

controller has been designed, Eq. (4) can be simplified to

z[t+ 1] =

[

A B
Kx Ku

]

z[t], (5)

allowing the plant and controller to be represented as a single

dynamics matrix. The system output can also be defined as

y[t] = Ez[t], (6)

where E = [C D], giving a more compact representation.

III. MODELING IMPLEMENTATION PLATFORM BEHAVIORS

To model the behavior of the software task computing the

control law—that can potentially hit/meet or miss a deadline

at each sampling period (referred to as a step)—we propose

an automaton-based representation. The initial location of the

automaton represents the initial condition of the control task,

and a finite run of the automaton represents a possible behavior

of the system. This is a sequence of hits and misses from

its initial location. In this work we focus on bounded time

behaviors, viz., deviations from a nominal behavior over a

specified time interval. Hence, any run of this automaton

has finite length. Note that the dynamics matrix, capturing

the control input to be applied, also changes depending on

whether a deadline hit or miss occurs (because it determines

the availability of the control input). Therefore, we associate

a dynamics matrix with each transition of the automaton.

We formally define the transducer automaton that models all

possible behaviors of the system as follows.

Definition 1. A transducer automaton T is defined as a

tuple 〈L,A, T, µ, ℓ0〉, where each element is as follows:

L set of locations {ℓ1, ℓ2, . . . , ℓm};

A set of scheduler actions {hit,miss};

T transition function, where T : L×A → L;

µ dynamics matrix label function for transitions, where

µ : L × A → R
n×n and n is the dimension of the

system under consideration;

ℓ0 ℓ1 ℓ2 ℓ3

hit/AHH

miss/AHM miss/AMM miss/AMM

hit/AMH
hit/AMH

hit/AMH

Fig. 2. Transducer automaton capturing 3 maximum consecutive misses.

ℓ0 initial location of the automaton in L.

As an example, the automaton in Fig. 2 captures all possible

deadline hit/miss patterns with at most three consecutive

misses. The edges are labeled as A/µ, i.e., the first part is the

scheduler action, and the second is the associated dynamics

matrix. Note that in this automaton, each location ℓk represents

the control task having just missed k consecutive deadlines.

A. Behavior under deadline misses

In order to model the system behavior under a sequence of

deadline hits and misses, we use standard techniques, similar

to those in [5], to provide the function µ associating dynamics

matrices with the transitions in the automaton. In this model,

the logical execution time (LET) paradigm is followed, i.e., a

sample of the system state at step t − 1 is used to compute

the control input at time t. A software job is released when

x[t− 1] is read, and has its deadline when x[t] is read. If the

job completes on time, the control input is computed as in

Eq. (3). If the job misses its deadline, several different actions

can be taken, both for how to handle the sequence of released

jobs, as well as what control input should be applied.

Two strategies are defined in [5] for how to compute a

control input when a deadline miss occurs at time t. These

strategies are called Zero and Hold. Our goal is to study

quantitative safety properties (viz., maximum deviation from

a nominal behavior) instead of stability that was studied

in [5]. But for the sake of comparison, we consider the

same strategies in this paper. The Zero strategy says that

the control input u[t] is set to 0. The Hold strategy instead

holds the control input u[t] = u[t − 1]. The study in [5] also

defined strategies for the system-level action on how to handle

deadline overruns. In our work, we consider two of these,

called Kill and Skip-Next. The Kill strategy simply kills the

job that missed its deadline. The Skip-Next strategy instead

allows the job to continue running, and prevents the release of

additional jobs until the job that missed its deadline finishes.

By combining a pair of control input strategy and system-

level action, we obtain a strategy for handling deadline misses.

Several such models were developed in [5]; we reproduce their

models for Zero&Kill and Hold&Kill next, reformulated in our

automata-theoretic setting, and permitting feedback from the

previous control input as in Eq. (4).

Definition 2 (Zero&Kill [5]). Given a discrete-time LTI model

as in Eq. (1), the Zero&Kill strategy is modeled using the aug-

mented state space z[k] = [x[k]T ua[k]
T]T . The automaton

follows the structure in Fig. 3a, with the following matrices:

AH =

[

A B
Kx Ku

]

AM =

[

A B
0 0

]

Every period, this model computes Eq. (1). When a deadline

hit occurs, the next control input is ua[k + 1] = Kaz[k], and

when a miss occurs, the control input is instead ua[k+1] = 0.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 5

ℓ0

hit/AH

miss/AM

(a) Kill

ℓ0 ℓ1

hit/AHH

miss/AHM

hit/AMH

miss/AMM

(b) Skip-Next

Fig. 3. Transducer automata for different system-level actions.

Definition 3 (Hold&Kill [5]). Given a discrete-time LTI model

as in Eq. (1), the Hold&Kill strategy is modeled using the aug-

mented state space z[k] = [x[k]T ua[k]
T]T . The automaton

follows the structure in Fig. 3a, with the following matrices:

AH =

[

A B
Kx Ku

]

AM =

[

A B
0 I

]

Similar to the Zero&Kill model, this model computes Eq. (1)

at every period. When a deadline is met, the next control input

is ua[k+1] = Kaz[k], but now when a miss occurs, the control

input is held constant (ua[k + 1] = ua[k]).
There are models described in [5] for the Zero&Skip-

Next and Hold&Skip-Next strategies, but these are limited by

requiring a maximum number of consecutive deadline misses.

Additionally, their augmented state vectors grow linearly in

the number of misses allowed. This leads to scalability issues

when computing long trajectories, especially if no limit to the

number of consecutive deadline misses is desired. To address

these limitations, we propose the following improved models

that use a constant-size augmented state vector, imposing no

constraints on the allowable sequences of scheduler actions.

Definition 4 (Zero&Skip-Next). Given a discrete-time LTI

model, the Zero&Skip-Next strategy is modeled using the

augmented state space z[k] = [x[k]T x[save]T ua[k]
T]T . The

automaton is that in Fig. 3b, with the following matrices:

AHH =





A 0 B
0 0 0
Kx 0 Ku



 AHM =





A 0 B
I 0 0
0 0 0





AMH =





A 0 B
0 0 0
0 Kx Ku



 AMM =





A 0 B
0 I 0
0 0 0





Definition 5 (Hold&Skip-Next). Given a discrete-time LTI

model, the Hold&Skip-Next strategy is modeled identically to

Definition 4, with AHM and AMM changed as follows:

AHM =





A 0 B
I 0 0
0 0 I



 AMM =





A 0 B
0 I 0
0 0 I





We note that these models differ from one another only in

the control input applied when a deadline is missed, per the

definitions of Zero and Hold above. The models keep track

of the current plant state and control input, and one saved

state. Every period, regardless the matrix used, the system

dynamics are computed as x[t + 1] = Ax[t] + Bu[t], as

required by Eq. (1). In normal operation, the AHH matrix

(identical for both strategies) computes the next control input

as ua[t + 1] = Ka[x[t]
T ua[t]

T]T , following the one-period

delay of the LET paradigm. When a deadline is missed

ℓ0 ℓ1 ℓ2 ℓi ℓN

hit/AHH

miss/AHM miss/AMM miss/AMM miss/AMM

hit/AMH
hit/AMH

hit/AMH

hit/AMH

Fig. 4. Transducer automaton capturing N maximum consecutive misses.

following a hit, Skip-Next semantics let the job continue

running, applying its resulting control input upon completion.

To implement this, the AHM matrices save the system state

in x[save] for later use. The strategies differ in their handling

of the control input applied on deadline miss: Hold&Skip-

Next keeps the input constant, while Zero&Skip-Next sets the

input to zero. On further misses, the AMM matrices retain

the saved state, and either hold or clear the control input as

required. Once the job that overran its deadline completes, the

AMH matrix (again identical) is applied. This computes a new

control input ua[t+1] = Ka[x[save]
T ua[t]

T]T , following the

semantics of Skip-Next. Upon further deadline hits, the system

returns to normal operation.

B. Constraints on Deadline Misses

As described above, in this work, the uncertainty in the

implementation platform’s timing stems from (or results in)

some control jobs occasionally missing their deadlines. To

give constraints on which deadlines can be missed, we con-

sider any control task to be running on a weakly-hard real

time system [27]. These systems provide precise bounds on

the patterns of deadline misses that can occur. Weakly-hard

constraints have been considered in relation to control systems

in prior work [5]–[10], [28], and have been found to be

a useful abstraction for the complex behavior of real-time

task schedulers. In particular, we assume that the scheduler

guarantees a maximum of N consecutive deadline misses, a

constraint often denoted as 〈N〉 in the literature.

Recalling Fig. 2, we can model such a constraint using

transducer automata. In this example, we allow at most three

deadline misses, using each location ℓk in the automaton to

represent having missed k consecutive deadlines. The lack of

a transition on deadline miss from ℓ3 indicates that no further

misses are possible. This construction can be generalized

to handle any number of consecutive deadline misses N
using N + 1 locations, as shown in Fig. 4. With the ma-

trices from Definition 4 or 5, we can use this construction

to model Zero&Skip-Next or Hold&Skip-Next, respectively,

with a weakly-hard constraint. Similarly, by letting AHH =
AMH = AH and AMM = AHM = AM from Definition 2

or 3, we can model the Zero&Kill or Hold&Kill strategies with

a maximum number of consecutive deadline misses.

IV. QUANTITATIVE SAFETY PROPERTIES

In this section, we present the definitions needed to define

our main problem, and our approaches that follow. Let the

output y[t] (for any sampling period or time step t) of

the plant—as defined in Eq. (6)—be subsets of the metric

space (M, dis), where M = R
q and dis : M ×M → R is a

metric on M . Note that we do not impose any assumption on

dis , as long as (M, dis) is a metric space. Note also that this

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 6

metric applies only to the system output, not necessarily the

entire augmented state vector used by a transducer automaton.

Given a transducer automaton T , a possible behavior of

the system is defined as a run, which intuitively represents

a possible trajectory by encoding a sequence of deadline hits

and misses and the corresponding locations in the automaton.

Definition 6 (Run). A run τ is defined as an alternating

sequence of transducer automaton locations and actions,

τ = {ℓ0, a0, ℓ1, . . . , aH−1, ℓH},

where ai ∈ A, and H is the time bound. We denote the set of

all runs of T by τ̄ .

Given a run τ and an initial set z[0], the evolution of the

run encodes the set of states reached by the plant over the

course of the run, and is defined as follows.

Definition 7 (Evolution of a Run). Given an initial set z[0] ⊂
R

n and a run τ = {ℓ0, a0, ℓ1, . . . , aH−1, ℓH}, the evolution

of the run τ in an automaton T is defined as

evol(T , τ, z[0]) =
{

z[i+ 1] = µ(ℓi, ai)z[i]
∣

∣ 0 ≤ i < H
}

.

Here, z[t] is the augmented state of the system reached at

time step t. We refer to evol(T , τ, z[0]) as evol(τ) when T
and z[0] are clear from context. Given an evolution of a run

τ , evol(τ), let the evol(τ)[t] = z[t], where 1 ≤ t ≤ H .

To measure the distance between two sets in the metric

space, we use the standard Hausdorff distance, which intu-

itively gives the longest distance from any point in one set to

the closest point in the other set.

Definition 8 (Hausdorff Distance). The Hausdorff distance

between S,U ⊂ R
n is given by

dH(S,U) = max
{

sup
s∈S

inf
u∈U

dis(s, u), sup
u∈U

inf
s∈S

dis(s, u)
}

.

Given two runs τ1, τ2 ∈ τ̄ , we define the deviation between

them as the maximum Hausdorff distance between their evo-

lutions at any time step.

Definition 9 (Deviation). Given two runs τ1, τ2 ∈ τ̄ , we define

their deviation as

dev(τ1, τ2) = max
1≤t≤H

dH
(

E · evol(τ1)[t], E · evol(τ2)[t]
)

.

Our methods in Section VI make use of a convex hull, which

is a convex set enclosing a given set.

Definition 10 (Convex Hull). The convex hull of the

sets S1, S2, . . . , Sp ⊂ R
n is denoted by hull1≤i≤p{Si}.

V. PROBLEM STATEMENT

In this section, we define the problem formally as follows.

Problem 1 (Maximum Deviation). Given a transducer au-

tomaton T , an initial set z[0] ⊂ R
n, and a nominal run

τnom ∈ τ̄ (corresponding to an ideal behavior of the platform,

e.g., with no deadline misses), find the maximum deviation d

between the nominal run and any other run,

d = max
τ∈τ̄

dev(τ, τnom). (7)

Note that directly computing d, as in Problem 1, is compu-

tationally expensive. To compute an exact value of d for some

time horizon H , we need to explore all possible 2H runs of

the automaton, assuming two possibilities viz., deadline hit or

miss in each step. We must then compute the deviation of each

run from the nominal run τnom. Clearly, such an approach,

though feasible for small H , becomes intractable very quickly.

Instead, we propose to compute a safe bound to d as follows.

Problem 2 (Deviation Bound). Given a transducer automa-

ton T with initial set z[0] ⊂ R
n, and a nominal run τnom ∈ τ̄ ,

find a safe upper bound d̄ to the maximum deviation between

the nominal run and any other run,

d̄ ≥ d = max
τ∈τ̄

dev(τ, τnom). (8)

It is worth pointing out that given an initial state z[0], if

a bound d̄ is known, it may be easily possible to compute

the maximum deviation for any initial state cz[0], where

c is a scalar. In particular, if the metric dis is absolutely

homogeneous, i.e., dis(cx, cy) = |c|dis(x, y) for x, y ∈ M ,

then it follows from the definitions that the maximum deviation

for cx[0] is at most |c|d̄. Thus, there is no need to perform

a computationally expensive procedure to compute several

deviation bounds from initial states that are scalar multiples of

each other, as this could instead be done once, and the result

multiplied by scalars to obtain the other deviations.

In the next section, we propose several solutions to Prob-

lem 2 that perform efficiently in practice.

VI. COMPUTING UPPER-BOUNDS ON THE DEVIATION

In this section, we present three methods to compute a safe

deviation bound d̄ ≥ d, as defined in Problem 2, given a trans-

ducer automaton. The first method uses reachability analysis of

uncertain linear systems (ULSs) to overapproximate any pos-

sible behavior of a given transducer automaton, and computes

an upper bound d̄ by computing the distance of the reachable

set from the nominal trajectory. The second method, given a

transducer automaton capturing at most N consecutive misses,

computes reachable sets using a set of recurrence relations.

Note that this method does not handle arbitrary automata,

but only ones following the 〈N〉 weakly-hard constraint. The

third method, given any transducer automaton, computes all

possible trajectories up to a small, bounded length. It then

computes a convex hull of the obtained trajectories, uses this

hull as the next set of initial states, and iterates until the desired

time bound. The first method is fundamentally different from

the others; the second method, though superficially unrelated

to the third, can in fact be viewed as a special case of it. While

the second suffices for some systems, the third offers flexibility

to produce tighter bounds at the expense of greater execution

time. Recommendations for how to use these methods are

provided following our experimental results in Section VII.

A. Using Reachable Sets of Uncertain Linear Systems

In this section, we compute an upper bound d̄, as in

Problem 2, using reachable sets of uncertain linear systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 7

(ULSs) [29], [30]. Before presenting our solution, we first

introduce ULSs. Consider the following example from [29],

x[t+ 1] =

[

1 α
0 2

]

x[t],

where α represents a parameter, 2 ≤ α ≤ 3. Intuitively, a ULS

of this form models uncertainty in the system by representing

all its possible dynamics matrices.

Definition 11 (Uncertain Linear Systems). An uncertain linear

dynamical system takes the form

x[t+ 1] = Λx[t], (9)

where x[t] ∈ R
n is the system state at time t, and Λ ⊆ R

n×n

is the uncertain dynamics matrix.

Note that the uncertain dynamics matrix is, therefore,

capable of representing a set of linear dynamics matrices.

Leveraging this modeling richness, we provide an efficient

method to compute an upper-bound on d, by modeling the

dynamics matrices associated with the transitions of a trans-

ducer automaton as an uncertain dynamics matrix. We model

all possible sequences of hits/miss of the system (represented

by the dynamics matrices of the transitions, i.e., the function µ
in Definition 1) using uncertain dynamics matrix. Note that

this method is capable of capturing any possible behavior of

the system. Formally, for a given transducer automaton T ,

Λ =
{

µ(ℓ, a)
∣

∣ ℓ ∈ L, a ∈ A
}

. (10)

Intuitively, Λ encodes all possible behaviors of the system

at any time step t. This method simply over-approximates the

behaviors of the transducer automaton by assuming that any

dynamics could occur at each time step.

The reachable set of a ULS, at a time step t, represents the

possible states of the system under any permissible sequence

of actions. In our case, Eq. (10) specifies that the reachable

set corresponds to an over-approximate set of evolutions of

all runs of length t. The Hausdorff distance between such a

set and the nominal run (as in Definition 9) provides an upper

bound on d. Let the one-step reachable set of a ULS, from an

initial set x[0], be given as forward(Λ, x[0]); i.e. x[1] = Λx[0],
where x[1] = forward(Λ, x[0]).

Representing Uncertain Dynamics Matrix: We represent the

uncertain dynamics using an interval matrix [31]. Therefore,

we over-approximate Λ in Eq. (10) as Λ̃ as

Λ̃[i, j] =
[

min{Λ[i, j]},max{Λ[i, j]}
]

, (11)

for all 1 ≤ i, j ≤ n, where n is the dimension of the system.

Clearly, Λ̃ ⊇ Λ. Using this uncertain dynamics matrix, we

propose Algorithm 1 to compute an upper bound d̄ ≥ d.

Algorithm 1 and its Safety Proof (Sketch): The algorithm

first computes the uncertain matrix in Line 2. It then computes

an upper bound d̄ to the possible deviation in the loop on

Lines 4 to 7. In each iteration, we perform the following:

1) Line 5 computes one-step reachability of the ULS. Note

that x[t] therefore contains the evolution of all possible runs

at time step t. 2) In Line 6, we compute the maximum

possible deviation between the nominal behavior and the

reachable set. 3) We then store the maximum deviation so

Algorithm 1: Computing upper-bound on the deviation

as defined in Problem 1.
input : A transducer automaton T , initial set x[0], nominal

run τnom, time bound H
output: An upper bound d̄ ≥ d

1 d̄← −∞;

2 Λ̃← Compute using Eq. (11); // Represent all possible behaviors
(vis-à-vis hits/misses) as an uncertain linear system.

3 xnom ← evol(τnom); // Compute the nominal trajectory.
4 for 1 ≤ t ≤ H do

5 x[t] ← forward(Λ̃, x[t− 1]); // Compute reachable set,
containing all possible behaviors, at time step t.

6 dt ← dH
(

xnom[t], x[t]
)

; // Compute the deviation from the
nominal trajectory at time step t.

7 d̄← max{d̄, dt}; // Keep track of the maximum deviation.

8 return d̄; // Return the maximum deviation.

far on Line 7. Finally, the computed bound d̄ is returned

on Line 8. Correctness can be proven by induction. If the

reachable set x[t] contains the true reachable set at time t, then

the forward(·) function on Line 5 computes a superset of the

union of Ax[t] for any matrix A in the transducer automaton.

Therefore, x[t+1] must also be safe, so the computed deviation

is at least the true maximum deviation.

B. Using Generalized Recurrence Relations

Consider the transducer automaton in Fig. 2 that captures

all possible behaviors with at most three consecutive misses.

Note that in this automaton, execution is in location ℓk if k
consecutive deadlines were missed since the last hit.

Let Ψt
ℓ denote the reachable set of all possible trajectories

corresponding to the location ℓ at time step t. That is, Ψt
ℓk

denotes the reachable set of all possible trajectories where k
consecutive deadlines were missed at time step t. Therefore, to

compute the reachable set Ψt
ℓ, we need to consider all possible

transitions that lead to the location ℓ, starting from (i.e., initial

set) every possible state. Formally, using the policy described

in Definition 5, we get the following recurrence relations:

Ψt
ℓ0

= hull
(

AHH ·Ψt−1
ℓ0

, AMH ·Ψt−1
ℓ1

,

AMH ·Ψt−1
ℓ2

, AMH ·Ψt−1
ℓ3

)

(12)

Ψt
ℓ1

= AHM ·Ψt−1
ℓ0

(13)

Ψt
ℓ2

= AMM ·Ψt−1
ℓ1

(14)

Ψt
ℓ3

= AMM ·Ψt−1
ℓ2

(15)

Where the matrices AHH, AHM, AMH, and AMM are

defined in Definition 5, with the following initial conditions:

Ψ0
ℓ0

= x[0]; Ψ0
ℓp

= ∅, where 1 ≤ p ≤ 3 (16)

Note that although the above recurrence relations are fixed

for a given policy (Hold&Skip-Next in this case), this need not

be the case. We will provide a generalized set of recurrence re-

lations next, covering any strategy with at most N consecutive

misses. Consider the automaton in Fig. 4. Here, the automaton

is in location ℓk if k consecutive misses have just occurred.

As in our motivating example, let Ψt
ℓ denote the reachable set

of all possible trajectories in location ℓ at time t. We construct

the following recurrence relations for time step t ≥ 1:

Ψt
ℓ0

= hull ℓ∈L

(

µ(ℓ, hit) ·Ψt−1
ℓ

)

(17)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 8

Ψt
ℓp

= µ(ℓp−1,miss) ·Ψt−1
ℓp−1

, where 1 ≤ p ≤ N (18)

The initial conditions are as follows:

Ψ0
ℓ0

= x[0]; Ψ0
ℓp

= ∅, where 1 ≤ p ≤ N (19)

Using the above recurrence relations, we propose Algo-

rithm 2 to compute an upper bound d, as in Problem 1.

Algorithm 2: Computing upper-bound on the deviation

as defined in Problem 1.
input : A transducer automaton T encoding maximum number of

allowed consecutive misses N , initial set θ, nominal run
τnom, time bound H

output: An upper bound d̄ ≥ d

/* Each location represents a class of behaviors (vis-à-vis
hits/misses) in this algorithm. */

1 d̄ = dH
(

evol(τnom)[0], θ
)

;

2 Ψ0

ℓ0
= θ ; // Initialize the initial location (a class of behaviors) with

the given initial set.
3 for 1 ≤ k ≤ N do

4 Ψ0

ℓk
= ∅ ; // Initialize the rest of the locations with empty set.

5 for 1 ≤ t ≤ H do

6 Ψt

ℓ0
← Compute using Eq. (17) ; // Compute the reachable set

for the initial location.
7 for 1 ≤ k ≤ N do

8 Ψt

ℓk
← Compute using Eq. (18); // Compute the reachable

set for rest of the locations.

9 dt ← dH
(

evol(τnom)[t], hull0≤l≤N{Ψ
t

ℓl
}
)

; // Compute the

deviation from the nominal trajectory at time step t.
10 d̄← max{d̄, dt}; // Keep track of the maximum deviation.

11 return d̄; // Return the maximum deviation.

Algorithm 2 and its Safety Proof (Sketch): We initialize

the recurrence relations in Lines 2 to 4, using Eq. (19).

From Lines 5 to 10, we compute the deviation bound d̄.

In each iteration of the for loop, we perform the following:

1) In Lines 6 to 8, we compute all possible reachable sets

at time step t, using Eqs. (17) and (18). 2) In Line 9, we

compute the Hausdorff distance between the convex hull of the

reachable sets in all locations, and evolution of the nominal

run at the same time step. 3) Finally, we store the maximum

deviation seen in Line 10. After the loop terminates, the

computed upper bound d̄ is returned on Line 11. Correctness

can again be proven inductively. If the reachable set is safe at

time t, then Lines 6 to 8 compute the one-step evolution for

each automaton location. This is then overapproximated by a

convex hull before computing the Hausdorff distance to the

nominal trajectory, leaving a safe reachable set at time t+ 1,

so the computed deviation must be an upper bound.

C. Using Bounded Runs Method

As described in Section V, in the worst case, using a

naı̈ve approach to compute the maximum deviation d involves

enumerating all 2H runs for H time steps, and computing the

evolution for each such run of the system. Such a brute-force

approach is intractable for large H , so it cannot be directly

used to compute the exact deviation in most cases. However,

for a short run length r ≪ H , this approach can be used quite

effectively. By computing a box hull of the reachable sets at

the end of each run, we can repeat this process to simulate

all H time steps while keeping the execution time low.

Several complexities arise in practice, however, making this

approach less straightforward than it may appear from the

previous description. If we simply used a single hull of the

final state for all runs, we would forget the automaton location

in which each run ended. The next tree would then begin all

runs from the initial location, making spurious transitions that

could potentially cause us to miss some possible evolutions of

the system. To avoid this, we instead group the runs by their

final location, and return one hull for each location in L.

Additionally, if we were to compute the evolution of each

run separately, their shared prefixes would create a large

amount of redundant work. Since a transducer automaton with

A = {hit,miss} has O(2r) runs of length r, this would require

O(r·2r) matrix-vector multiplications. This can be made more

efficient by instead performing a depth-first traversal of the trie

of all runs of length r, keeping partial results in a stack. This

reduces the number of matrix multiplications to O(2r), making

an asymptotic runtime improvement that is very impactful in

practice. The pseudocode for this is shown in Algorithm 3.

Algorithm 3: Computing reachable sets for one itera-

tion of the bounded runs method.
1 Function BoundedRuns(T , z[0], r)

input : Transducer automaton T , set of initial states z[0], run
length r

output: Mapping from locations to lists of reachable sets over
time

2 R← Mapping from locations to lists of reachable sets;
3 S ← Array of r named triples 〈z, ℓ, a〉;
4 i← 1;
5 S[i]← 〈z[0], ℓ0, action 1〉 ; // Insert initial state, automaton

location and scheduler action.
6 while i > 0 do

/* This loop walks the trie of all runs of length r. */
7 if S[i] contains a leaf node then

8 R[S[i].ℓ][:]← Compute the hulls of all states at all
time steps;

9 i← i− 1 ; // Ascend a level
10 else if the last action, S[i].a, has been tried then

11 i← i− 1; // Ascend a level
12 else if no transition T (S[i].ℓ, S[i].a) then

13 S[i].a← S[i].a+ 1;
14 else

15 S[i+ 1]← 〈µ(S[i].ℓ, S[i].a)S[i].z,
T (S[i].ℓ, S[i].a), action 1〉 ; // Compute the next
augmented state as per S[i]

16 S[i].a← S[i].a+ 1 ; // Update current working state.
17 i← i+ 1; // Descend to the next level.

18 return R;

The function uses the array S as a stack of augmented states,

automaton locations, and scheduler actions, with i acting as

the stack pointer. It assumes the actions A can be referenced

by index, and begins by pushing the initial state, location, and

the first action onto S on Line 5. The loop on Line 6 walks the

trie of all runs of length r. Each iteration, one of four actions

is taken. At a leaf node, the hulls are computed on Line 8 and

the iteration ascends a level. If the last action for a location

has been tried, we ascend a level on Line 11. If the next action

to try is missing from the automaton, it is skipped on Line 13.

Otherwise, we compute the next augmented state and descend

to the next level of the trie. Once the loop finally exits, the list

of reachable sets over time for each final location is returned.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 9

We can then run this function iteratively, computing an

overapproximation of the reachable set over time. Using this,

we compute an upper bound d̄ to the maximum deviation d.

Algorithm 4 lists pseudocode that implements this.

Algorithm 4: Bounded runs method for computing

maximum deviation from a nominal trajectory.

input : A transducer automaton T , set of initial states z[0], nominal
run τnom, per-tree run length r, number of iterations J

output: An upper-bound d̄ ≥ d

1 S ← list of rJ + 1 empty reachable sets;
2 R← BoundedRuns(T , z[0], r); // Compute all (bounded) runs

from the initial set z[0].
3 Q← |L| × |L| array of lists of reachable sets over time;
4 S[0 : r]← hullℓ∈L(R[ℓ]);
5 for 2 ≤ i ≤ J do

6 forall locations ℓ in T do

7 T ′ ← T with ℓ0 = ℓ;
8 Q[ℓ, :]← BoundedRuns(T ′, R[ℓ][r], r); // Compute

reachable sets over time starting from each location.

9 forall locations ℓ in T do

10 R[ℓ]← hullℓ∈L(Q[:, ℓ]); // Compute the reachable set for
a given location.

11 S[ir : ir + r]← hullℓ∈L(R[ℓ]); // Store reachable sets for the
next r steps.

12 return max1≤t≤rJ

{

dr
(

evol(τnom)[t], S[t]
)}

;

Algorithm 4 and its Safety Proof (Sketch): This algorithm

begins by computing all runs from the initial set z[0] on Line 2.

This populates R with a mapping from locations to lists of

reachable sets for r time steps. Line 4 then computes a convex

hull over all locations for each time step, storing the resulting

reachable sets in S. The loop on Lines 5 to 11 then repeats

this procedure J − 1 times. First, each row of the matrix Q
is populated with reachable sets over time, starting from each

state, by calling BoundedRuns in the inner loop on Line 6.

Then, the second inner loop on Line 9 takes a hull of the

reachable sets in each column of Q, storing the result in R.

At the end of each iteration, the reachable sets for the next r
time steps are stored in S in Line 11. Finally, the algorithm

computes d̄ on Line 12 and returns. Correctness can be proven

similarly to Algorithm 2. Because the algorithm computes

the exact evolution of the reachable set from the previous

time steps, then takes convex hulls to over-approximate, the

reachable set remains safe. Therefore, the distance computed

on Line 12 is also an over-approximation of the true deviation.

VII. EXPERIMENTAL EVALUATION

With several algorithms for computing upper bounds on

maximum deviation (Problem 2) presented in Section VI, it is

important to give some comparison of these techniques. First,

we demonstrate the power given to control designers by being

able to prove safety properties about control systems under

timing uncertainties, rather than just qualitative properties such

as stability, in Section VII-B. Next, we describe how our

techniques can be used to find the best deadline miss handling

strategy for a given control system in Section VII-C. Third,

we compare our algorithms against each other, and show that

they can be used to solve realistic problems. To this end, we

examine both the scalability and degree of overapproximation

of our approaches in Section VII-D. In the case of Algorithm 4,

these factors are related: tighter approximation can be achieved

at the cost of longer running time. Ultimately, we find that

Algorithm 1 generally has too much overapproximation to be

practical, and Algorithm 4 never produces worse bounds than

Algorithm 2, though the latter can be faster in some cases.

Implementation and Environment: We implemented Algo-

rithms 1 and 2 using Python1, and Algorithm 4 using Julia2.

We use a minimum bounding box to compute hull(·), and the

2-norm for dis(·). We next introduce the plant models and

controllers, then present our experimental results.

A. Plant Models

In this section, we present four state-space models and

controllers that we will consider throughout the experimental

evaluation. Three of these, the RC Network, Electric Steering,

and F1Tenth Car systems, are two-dimensional; the Aircraft

Pitch model is a three-dimensional system.

RC Network: Our first model is an RC network [32],

represented in discrete time with a period of h = 100ms by

x[t+ 1] =

[

0.5495 0.07240
0.01448 0.9332

]

x[t] +

[

0.3781
0.05234

]

u[t].

Using a one-period delay, we use LQR to compute a controller

for this system given by

u[t] =
[

0.09772 0.2504 0.07805
]

[

x[t− 1]
u[t− 1]

]

.

Electric Steering: Our second model is an automotive elec-

tric steering system based on a permanent magnet synchronous

motor [5]. The plant model represented in discrete time, with

a control period of 10 µs, is given by

x[t+ 1] =

[

0.996 0.075
−0.052 0.996

]

x[t] +

[

0.100 0.003
−0.003 0.083

]

u[t].

This system is open-loop stable, having poles inside the

unit circle at 0.9957 ± 0.0626i. A proportional-integral (PI)

controller is designed for this system in [5], but the K matrix

given therein appears to make the system unstable. We thus

use a new controller given by

u[t] =

[

0.9067 0.07384 0 0
0.01041 0.9685 0 0

] [

x[t− 1]
u[t− 1]

]

.

Note that we have designed this controller assuming no

sensing-to-actuation delay, as Ku is a zero matrix. This is done

to stress test our techniques with a non-optimal controller.

Aircraft Pitch: Our third model is an aircraft pitch

model [33], describing the effects of an airplane’s elevator

deflection angle on the pitch angle. This model is given in

discrete time with a period of h = 100ms by

x[t+1] =





0.9654 5.457 0
−0.001338 0.9545 0
−0.003842 5.544 1



x[t]+





0.02842
0.001969
0.005641



u[t].

The system’s output is simply the pitch angle, represented by

the state variable x3. Assuming a sensor-to-actuator delay of h,

we use LQR to compute a controller given by

u[t] =
[

−0.8551 179.2 5.999 0.3238
]

[

x[t− 1]
u[t− 1]

]

.

1https://github.com/bineet-coderep/Jittery-Scheduler
2https://github.com/Ratfink/ControlTimingSafety.jl

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 11

TABLE I
NUMBER OF POINTS WHERE EACH STRATEGY MINIMIZES DEVIATION

Miss Strategy RC Net Steering Aircraft F1Tenth

Hold&Kill 91 95 100 100

Zero&Kill 67 100 0 0
Hold&Skip-Next 0 0 0 0
Zero&Skip-Next 0 0 0 0

certainty. The system is stable in both cases, but this does not

guarantee that its deviation will be acceptable when deadline

misses are possible. In the following sections, we examine the

ability of our methods to solve realistic problems, in terms of

both deviation bounds and scalability.

C. Determining the Best Miss Handling Strategy

In the previous section, we demonstrated the value to control

designers of being able to compute a bound on the maximum

deviation of a control system under deadline misses. Our

techniques for solving Problem 2 allow us to determine these

bounds for a given initial state and deadline miss handling

strategy. Different choices of this strategy will have an impact

on deviation, and may impact the safety of the controller.

Designers may then wish to use the strategy giving the lowest

deviation. Unfortunately, the deviation also depends on the

initial state, making this choice less immediately clear.

As observed in Section V, using an absolutely homogeneous

metric function allows us to determine deviation bounds for a

unit vector initial state x[0] (i.e., ‖x[0]‖2 = 1), then use this

to easily determine bounds for any state ax[0]. We can use

this observation to determine the best strategy for any initial

state as follows. First, we create a set of unit vector initial

states S ⊂ R
n. These vectors may be drawn uniformly, at

random, or in some directions of interest for the control system

under consideration. Next, for each state in S, we compute

deviation bounds for every deadline miss handling strategy

using our algorithms from Section VI. We then compare the

rankings of the miss handling strategies vis-à-vis deviation,

and determine the winner for the plurality of states in S.

We implemented this technique for the bounded runs iter-

ation method (Algorithm 4). With many initial states in the

set S, execution could take several days of computation time,

but since each run of Algorithm 4 is independent, it is easily

parallelized. We ran this implementation for each of our ex-

ample systems, with a maximum of two consecutive deadline

misses, using 100 initial points each. The results are shown in

Table I. Note that in some cases, two methods gave the same

minimum value of deviation, so the total of each column may

be greater than 100. For the RC Network, Aircraft Pitch, and

F1Tenth Car models, the Hold&Kill strategy gave the lowest

deviation bound for the most initial points, whereas Zero&Kill

was the best strategy found for the Electric Steering model.

The Skip-Next strategies never gave the lowest deviation bound

for any of our example systems. These strategies may prove

more useful in systems that are open-loop unstable, unlike our

examples. We must stress that these results are dependent on

the algorithm used to solve Problem 2, as well as the exact set

of initial states. If the exact maximum deviation was known for

each scenario under consideration, the results may be different

from those shown here. Despite this limitation, this approach

is likely still of value to control designers, as it offers new

insight into which deadline miss handling strategy works best

for an application that may experience timing uncertainties.

D. Scalability

To further illustrate the value of our methods, we next show

their scalability by evaluating them in a variety of situations.

We first show how the time taken varies between algorithms,

for each of our plant models and miss strategies. Next, we

address the runtime growth when varying time horizons, and

varying the number of behaviors allowable in the transducer

automaton. Finally, we closely examine the bounded runs

algorithm, considering how the per-tree run length parameter

affects runtime and tightness of the deviation bound.

Scalability to different systems and strategies: We con-

ducted a set of experiments to fairly compare our algorithms

across the plant models in Section VII-A. To evaluate this,

we held the initial state constant across systems as x1 = 10
and x2 = 10, with the remaining state variables set to 0.

In all cases, we considered the 〈3〉 constraint, and a time

horizon H = 150. The results are shown in Table II. Config-

urations where the deviation bound never decreased over the

time horizon, i.e., the analysis diverged, are shown by “——”.

The ULS method (Algorithm 1) only converged on a

useful bound for the RC Network model and the Zero&Kill

strategy. In all other cases, it diverged, though the longest

time taken was only 36.5 s. The generalized recurrence relation

method (Algorithm 2) did better, producing bounds for the

RC Network model with every strategy considered, but still

diverged for the other plant models. The only algorithm that

produced bounds for all models was the bounded runs iteration

method (Algorithm 4). This is thanks to its per-tree run length

parameter r, allowing a tradeoff between analysis precision

and computation time. We will examine this in more detail

later. For several configurations, this algorithm required such

a large r to avoid divergence that it exceeded a time limit

of 1 h. However, for all other cases, we were able to find a

bound, and the r value used is given in parentheses.

Runtime growth when varying time horizon: To show the

effects of the time horizon on the runtime of our algorithms,

we ran all systems with the RC Network model with at most

three consecutive misses for 100, 300, and 1000 time steps.

The results are shown in Table III. Both Algorithms 2 and 4

can be seen to scale linearly in the number of time steps, as

expected. However, the running time of Algorithm 1 appears

to grow exponentially due to the behavior of the forward

function. The algorithm did not complete for 1000 steps

under the Skip-Next strategies due to a floating-point overflow

resulting from divergent deviation bounds. The time required

for the other algorithms is much lower in all cases, making

these more attractive from an execution time perspective.

Number of behaviors allowable: The structure of a trans-

ducer automaton affects the number of behaviors that are

allowable for a scheduler, modeled as the language of input

strings recognized by the automaton. As the number of per-

missible behaviors grows, e.g., by allowing more consecutive

deadline misses, the runtime of Algorithms 2 and 4 is expected

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 12

TABLE II
MAXIMUM DEVIATION BOUNDS, TIME STEP WHERE THEY OCCURRED, AND COMPUTATION TIME FOR THREE CONSECUTIVE MISSES AND 150 STEPS

Algorithm Miss Strategy RC Network Electric Steering Aircraft Pitch F1Tenth Car

Uncertain
Linear Systems
(Algorithm 1)

Hold&Kill ——, 4.07 s ——, 8.89 s ——, 7.00 s ——, 3.96 s
Zero&Kill 1.97, 4, 4.08 s ——, 8.32 s ——, 6.99 s ——, 3.76 s

Hold&Skip-Next ——, 16.8 s ——, 22.3 s ——, 36.5 s ——, 16.6 s
Zero&Skip-Next ——, 16.8 s ——, 28.0 s ——, 36.4 s ——, 16.6 s

Generalized
Recurrence
Relations

(Algorithm 2)

Hold&Kill 1.90, 4, 0.52 s ——, 0.78 s ——, 0.79 s ——, 0.50 s
Zero&Kill 1.90, 4, 0.50 s ——, 0.75 s ——, 0.77 s ——, 0.49 s

Hold&Skip-Next 1.90, 4, 0.95 s ——, 1.28 s ——, 1.61 s ——, 0.92 s
Zero&Skip-Next 1.90, 4, 0.93 s ——, 1.26 s ——, 1.59 s ——, 0.91 s

Bounded Runs
Iteration

(Algorithm 4)

Hold&Kill 1.90, 4, 0.68 s (4) 12.37, 4, 30.8 s (11) 82.37, 6, 528 s (19) 6.01, 27, 1569 s (20)
Zero&Kill 1.90, 4, 0.78 s (4) 13.63, 8, 685 s (16) 161.64, 10, 509 s (19) timed out (> 1 h)

Hold&Skip-Next 1.90, 4, 2.27 s (4) 12.38, 5, 2845 s (16) timed out (> 1 h) timed out (> 1 h)
Zero&Skip-Next 1.90, 4, 2.37 s (4) 13.75, 8, 2864 s (16) timed out (> 1 h) timed out (> 1 h)

TABLE III
RUNNING TIME OVER VARYING TIME HORIZON (100, 300, 1000 STEPS),

AT MOST THREE CONSECUTIVE MISSES

Miss Strategy Algorithm 1 Algorithm 2 Algorithm 4

Hold&Kill 1.9, 15.7, 172 0.36, 1.0, 3.6 0.096, 0.31, 1.1
Zero&Kill 2.0, 16.4, 178 0.35, 1.0, 3.5 0.101, 0.34, 1.1

Hold&Skip-Next 7.8, 72.0, —— 0.66, 1.9, 6.8 0.47, 1.4, 4.3
Zero&Skip-Next 8.1, 74.6, —— 0.65, 1.9, 6.5 0.47, 1.4, 4.6

TABLE IV
RUNNING TIME OVER VARYING MISSES FOR 150 TIME STEPS,

HOLD&SKIP-NEXT

Algorithm 〈2〉 〈4〉 〈8〉 〈16〉

Algorithm 2 0.72 s 1.20 s 2.12 s 3.92 s
Algorithm 4 0.43 s 0.87 s 1.7 s 3.4 s

to increase. Algorithm 1 is immune to this effect, since it

overapproximates the dynamics matrices of the transducer

automaton, ignoring its locations and transitions. To quantify

the effect of the number of behaviors on our algorithms’

runtime, we ran Algorithms 2 and 4 on the RC Network model

using the Hold&Skip-Next strategy for 150 time steps, with the

weakly hard constraints 〈2〉, 〈4〉, 〈8〉, and 〈16〉. As indicated in

Table IV, the two algorithms scale similarly in this parameter.

Varying run length: The bounded runs iteration method

(Algorithm 4) offers a parameter r that controls the number

of time steps between bounding box overapproximations of

reachable sets. Since the subroutine Algorithm 3 is exponential

in this parameter, there is a tradeoff between accuracy of

the deviation bound, and required execution time. It is thus

pertinent to discuss the choice of this parameter’s value.

Because the runtime is exponential in r, it may be best

to simply use the smallest value possible. This approach was

used for the Electric Steering, Aircraft Pitch, and F1Tenth Car

models in Table II. A simple linear search determines this

minimum r value without wasting much computation time.

It can also be noted that there is a limit to the highest value

of r that produces any benefit. Since the goal of Problem 2 is to

find a bound on the maximum deviation, no better bound could

be found by setting r greater than the time step at which the

bound d̄ occurs. This approach was used for the RC Network

in Table II, and can be quite effective for systems where the

maximum deviation occurs early. This observation does not

imply, however, that there is never a reason to use a larger r
than this time step. Take for instance the Electric Steering and

Aircraft Pitch models, reported in Table II. It was necessary

to increase r to the values listed in parentheses to prevent the

reachable set from diverging. However, once this bound was

computed, there is no need to use a larger value of r, as this

would only take longer to give the same d̄.

In some cases however, neither of these strategies may be

satisfactory, and so the control designer must accept some

tradeoff in analysis accuracy and runtime. For example, the

F1Tenth Car in Table II gave a deviation bound of 6.01 at

time 27, greater than r = 20. Thus, using a larger r may

produce a better deviation bound. However, the execution time

is already large, so a designer may decide to accept this result,

especially if it meets the required safety bound.

E. Use of the Algorithms

Having analyzed the scalability of our algorithms, we now

provide some general recommendations based on running time

and tightness of deviation bounds. When using our algorithms

in practice, it is likely best for an engineer to first use

Algorithm 2, which sometimes gave good bounds and never

required more than 2 seconds in our experiments. Engineers

may then switch to Algorithm 4 if Algorithm 2 diverges (i.e.,

the greatest deviation bound occurs at the end of the time

horizon). Due to its poor performance, only finding one bound

in Table II, Algorithm 1 is not generally recommended. We

present it primarily for its simplicity, which makes it seem

like a viable method for solving Problem 2. However, the

high amount of over-approximation resulting from combining

the matrices of a transducer automaton makes it typically

not useful. We note that all our experiments are limited

by not examining how great of an over-approximation our

algorithms produce. This would unfortunately be intractable,

as noted in Section V, but since the bounds produced are

safe, our methods are still valuable to designers. Finally, it

is necessary to discuss the time required for our various

algorithms. While a very large run length parameter r is

sometimes needed for Algorithm 4 (up to 20 in Table II),

leading to long execution times as described in Section VII-D,

this is likely not a limitation in practice. Because the analysis

is performed offline, running times around an hour as seen

in our experiments are likely acceptable, especially since our

techniques may reduce the need for lengthy testing cycles.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, OCTOBER 2022. 13

VIII. CONCLUSIONS AND FUTURE WORK

Unlike most previous studies on modeling the impact of

implementation platform uncertainties on control performance,

which focus on stability, in this paper we considered quantita-

tive safety properties. In particular, we proposed three approxi-

mation techniques to bound the maximum deviation between a

nominal behavior and any possible system trajectory resulting

from platform timing uncertainties. Our evaluation on four

system models shows that we can overcome the computational

challenge typically associated with the reachability analysis

necessary to analyze such quantitative safety properties. This

allows us to choose control and deadline overrun handling

strategies for each system to quantitatively optimize system

safety. To the best of our knowledge, such a characterization

of deadline overrun handling strategies was not studied before.

However, we also see that depending on the system and

scheduling strategy, the error accumulated in our approxi-

mation strategies may grow very large—to the extent that

the estimated deviation becomes unbounded. The focus of

our future work will be to reduce such wrapping error. One

strategy is to create multiple convex (box) hulls, one for

each small cluster of system states, instead of a single one

to approximate all reachable states. This could reduce the

degree of over-approximation, at the cost of an increase in

computational complexity. We also plan to study sampling

techniques to provide probabilistic estimates of deviation while

improving the scalability of the analysis. In particular, we will

explore the use of Jeffreys’s Bayes factor testing [36] to obtain

deviation bounds with probabilistic guarantees.

Acknowledgements: This research has been partially sup-

ported by the NSF grant 2038960, AFOSR grant FA9550-19-

1-0288, and by an Amazon research award.

REFERENCES

[1] S. Chakraborty, M. A. A. Faruque, W. Chang, D. Goswami, M. Wolf, and
Q. Zhu, “Automotive cyber-physical systems: A tutorial introduction,”
IEEE Des. Test, vol. 33, no. 4, pp. 92–108, 2016.

[2] T. Sehnke, D. Schwarzmann, M. Schultalbers, and R. Ernst, “Temporal
properties in automotive control software,” in International Conference

on Real-Time Networks and Systems (RTNS), 2017.
[3] W. Chang and S. Chakraborty, “Resource-aware automotive control

systems design: A cyber-physical systems approach,” Found. Trends

Electron. Des. Autom., vol. 10, no. 4, pp. 249–369, 2016.
[4] R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, and Z. Peng,

“Breaking silos to guarantee control stability with communication over
ethernet TSN,” IEEE Des. Test, vol. 38, no. 5, pp. 48–56, 2021.

[5] M. Maggio, A. Hamann, E. Mayer-John, and D. Ziegenbein, “Control-
System Stability Under Consecutive Deadline Misses Constraints,” in
32nd Euromicro Conference on Real-Time Systems (ECRTS), 2020.

[6] P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin, “DMAC:
deadline-miss-aware control,” in 31st Euromicro Conference on Real-

Time Systems (ECRTS), 2019.
[7] P. Pazzaglia, L. Pannocchi, A. Biondi, and M. D. Natale, “Beyond the

weakly hard model: Measuring the performance cost of deadline misses,”
in 30th Euromicro Conference on Real-Time Systems (ECRTS), 2018.

[8] D. Soudbakhsh, L. T. X. Phan, A. M. Annaswamy, and O. Sokolsky,
“Co-design of arbitrated network control systems with overrun strate-
gies,” IEEE Trans. Control. Netw. Syst., vol. 5, no. 1, pp. 128–141, 2018.

[9] E. P. van Horssen, A. R. B. Behrouzian, D. Goswami, D. Antunes,
T. Basten, and W. P. M. H. Heemels, “Performance analysis and
controller improvement for linear systems with (m, k)-firm data losses,”
in 15th European Control Conference (ECC), 2016.

[10] S. Linsenmayer and F. Allgöwer, “Stabilization of networked control
systems with weakly hard real-time dropout description,” in 56th IEEE

Annual Conference on Decision and Control (CDC), 2017.

[11] D. Liberzon, Switching in systems and control. Springer, 2003.
[12] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked

control systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp.
84–99, 2001.

[13] K. J. Åström and B. Wittenmark, Computer-Controlled Systems (3rd

Ed.). Prentice-Hall, Inc., 1997.
[14] M. C. F. Donkers, W. P. M. H. Heemels, D. Bernardini, A. Bemporad,

and V. Shneer, “Stability analysis of stochastic networked control
systems,” Automatica, vol. 48, no. 5, pp. 917–925, 2012.

[15] K. Okano, M. Wakaiki, G. Yang, and J. P. Hespanha, “Stabilization of
networked control systems under clock offsets and quantization,” IEEE

Trans. Automat. Contr., vol. 63, no. 6, pp. 1618–1633, 2018.
[16] J. P. Hespanha, “Modeling and analysis of networked control systems

using stochastic hybrid systems,” Annual Reviews in Control, vol. 38,
no. 2, pp. 155–170, 2014.

[17] A. Masrur, S. Drössler, T. Pfeuffer, and S. Chakraborty, “VM-based
real-time services for automotive control applications,” in 16th IEEE

International Conference on Embedded and Real-Time Computing Sys-

tems and Applications (RTCSA), 2010.
[18] S. Tseng and J. Anderson, “Deployment architectures for cyber-physical

control systems,” in American Control Conference (ACC), 2020.
[19] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level

synthesis,” Annu. Rev. Control., vol. 47, pp. 364–393, 2019.
[20] Y. Wang, N. Matni, and J. C. Doyle, “A system-level approach to

controller synthesis,” IEEE Trans. Autom. Control., vol. 64, no. 10, pp.
4079–4093, 2019.

[21] D. Goswami, R. Schneider, and S. Chakraborty, “Relaxing signal delay
constraints in distributed embedded controllers,” IEEE Trans. Control.

Syst. Technol., vol. 22, no. 6, pp. 2337–2345, 2014.
[22] M. B. G. Cloosterman, N. van de Wouw, W. P. M. H. Heemels, and

H. Nijmeijer, “Stability of networked control systems with uncertain
time-varying delays,” IEEE Trans. Automat. Contr., vol. 54, no. 7, pp.
1575–1580, 2009.

[23] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched
linear systems: A survey of recent results,” IEEE Trans. Autom. Control.,
vol. 54, no. 2, pp. 308–322, 2009.

[24] S. Chakraborty, J. H. Anderson, M. Becker, H. Graeb, S. Halder,
R. Metta, L. Thiele, S. Tripakis, and A. Yeolekar, “Cross-layer interac-
tions in CPS for performance and certification,” in Design, Automation

& Test in Europe Conference (DATE), 2019.
[25] R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, and Z. Peng,

“Stability-aware integrated routing and scheduling for control applica-
tions in Ethernet networks,” in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2018.
[26] I. Saha, S. K. Baruah, and R. Majumdar, “Dynamic scheduling for

networked control systems,” in International Conference on Hybrid

Systems: Computation and Control (HSCC), 2015.
[27] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,”

IEEE transactions on Computers, vol. 50, no. 4, pp. 308–321, 2001.
[28] R. Blind and F. Allgöwer, “Towards networked control systems with

guaranteed stability: Using weakly hard real-time constraints to model
the loss process,” in 54th IEEE Conference on Decision and Control

(CDC), 2015.
[29] B. Ghosh and P. S. Duggirala, “Robust reachable set: Accounting for

uncertainties in linear dynamical systems,” ACM Trans. Embed. Comput.

Syst., vol. 18, no. 5s, Oct. 2019.
[30] R. Lal and P. Prabhakar, “Bounded error flowpipe computation of

parameterized linear systems,” in Proceedings of the 12th International

Conference on Embedded Software (EMSOFT), 2015.
[31] R. Farhadsefat, J. Rohn, and T. Lotfi, “Norms of interval matrices,”

Institute of Computer Science, Academy of Sciences of the Czech

Republic, Tech. Rep, 2011.
[32] R. A. Gabel and R. A. Roberts, Signals and Linear Systems, 2nd ed.

John Wiley & Sons, 1980.
[33] W. C. Messner and D. M. Tilbury, “Control tutorials for matlab

and simulink: a web-based approach,” 1998. [Online]. Available:
http://ctms.engin.umich.edu/CTMS

[34] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth:
An open-source evaluation environment for continuous control and
reinforcement learning,” Proceedings of Machine Learning Research,
vol. 123, 2020.

[35] K. N. Murphy, “Analysis of robotic vehicle steering and controller
delay,” in Fifth International Symposium on Robotics and Manufacturing

(ISRAM), 1994.
[36] R. Kass and A. Raftery, “Bayes factors,” Journal of the American

Statistical Association, vol. 90, no. 430, pp. 773–795, 1995.

