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Have we tested enough yet?
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Test-case complexity
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Contributions
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1. Formalized Test-case Complexity

• More right-of-way constraints     more-complex

2. Generate test-cases

• Traffic rules  concrete trajectories

3. Generate certificates

• Complexity

• Solvability



Outline
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• Test-case scenarios

• Predicate-level abstraction of a scenario

• Traffic rules as PASS/FAIL criteria

• Generation algorithm

1. Ordering of events using ASP

2. Concretize timing of events and speed profiles using SMT

3. If collisions, try next ASP solution

• Results



Predicate abstraction of a scenario
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• Regions

• Lanes

• Lane sections

• Events

• Entering

• Exiting

• Velocity reaching a threshold

• Temporal relations

• Earlier

• Same time
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Event: arrival at intersection



Event: entering a lane
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Event: entering a shared section
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Event: exiting a shared section
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Events: exiting a lane
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Relative order of events

Pink arrives first.
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Pink enters first.



Traffic rules and events' order
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• "whoever arrives first, should enter first."

• First-Order-Logic formulation:

violatesRightOfForRule(V1, V2, fcfs) :-
arrivedAtTime(V1, Ta1),
arrivedAtTime(V2, Ta2),
lessThan(Ta1, Ta2),
enteredAtTime(V1, Te1),
enteredAtTime(V2, Te2),
lessThan(Te2, Te1).



Order events using ASP
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ASP solver

Traffic 
rules

Events

Ordering 
of events

arrivedAtTime(v1, t1).

arrivedAtTime(v2, t2).

enteredAtTime(v1, t3).

enteredAtTime(v2, t4).

lessThan(t1, t2).

lessThan(t4, t3).

violatesRightOf(V1, V2) :-
arrivedAtTime(V1, Ta1),
arrivedAtTime(V2, Ta2),
lessThan(Ta1, Ta2),
enteredAtTime(V1, Te1),
enteredAtTime(V2, Te2),
lessThan(Te2, Te1).



Absolute timing of events using SMT
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SMT
solver

Ordering 
of events

Absolute time 
of events

Speed profiles
(Bezier curves)

t1=0.5

t2=1.5

t3=4.2

t4=3.7

time

(seconds)

v2's entrance

v2's arrival

v1's entrance

v1's arrival

travelled distance (meters)



ASP + SMT + collisions
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ASP solving SMT solving Collisions?

Y

N

Complexity 
Certificate

Solvability
Certificate

More-complex test-case



Sequence of increasingly more 
complex test-cases
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More-complex 
test-case 

generation
Complexity 
Certificate

Solvability
Certificate

Harder 
test-case

trivial 
test-case

More-complex 
test-case 

generation

Complexity 
Certificate

Solvability
Certificate

Even 
harder 

test-case

...



Results
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• Generate test-cases

• Test autopilot

• Test autopilot + RSS

• Show certificates
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Autopilot passes 
Test-case 1
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Autopilot fails
Test-case 2 !
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Autopilot+RSS
passes Test-case 2 !
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Autopilot+RSS
fails Test-case 3 !
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Test-case 2 certificates

• Complexity Certificate:

• yields to Test-case 1 non-egos

• violates a Test-case 2 non-ego

• Solvability Certificate:

• yields to Test-case 1&2 non-egos



Future work
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1. Generating reactive scenarios:

• a non-ego behavior is a function of ego

2. Numerical approximation of complexity

• Finitization of trajectory space

e.g. motion primitives and lattices

3. Better collision-checking (or enforcing)
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Extra slides
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Complexity of SMT constraints
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• Linear constraints

• Temporal order of events

• Bounds on instantaneous speed at an event

• Slope between control points

• Quadratic constraints

• Continuity of speed

• left slope = right slope

• Bounds on acceleration
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Autopilot+RSS passes Test-case 1



Scenario Generation algorithm
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• No teleportation!
e1 e2 e3

• Nonholonomic

steering

• Size of vehicles

e1

e2

e3

Enter L2, Exit L1

L1L2

Exit L1, Enter L2



Traffic rules and order of events
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• Whoever arrives first, should enters first.

• If A and B arrive simultaneously and A is on the right of B, then A 

should enter first.

• ...



Automatic test-case generation
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1.Goal:

• Combinatorial coverage of sequence of events,

VS probabilistic coverage (random sampling)

2.Constraints:

• Kinematics (nonholonomic steering, smooth velocities, …)

• Collisions (vehicles cannot pass through each other)



Adding new actors to a scenario
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Specification of 

new actors

Trajectories of 

old actors

scenario generation

Trajectories of 

new actors



Synthesizing solvability certificate
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Specification of a 

solution
Test-case

scenario generation

Solvability

certificate



Synthesizing complexity certificate
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Specification of a 

complexity certificate

Simpler 

test-case

Test-case generation

Complexity 

certificate

Harder

test-case



Event ordering examples
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Test-case complexity
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• Increases probability of failure

• e.g. difficulty levels of video games

• Fair & efficient comparison of AVs

• How many levels each AV passes?

• Interpretability

• Event-level specification

• Trajectory-level certificate (a blocked solution)



Test-case generation: events
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ASP solver
Event-level specification of 
scenario

Lane events and 
their temporal order

arrivedAtTime(v1, t1).

arrivedAtTime(v2, t2).

:- violatedRightOf(v2, v1).

lessThan(t1, t2).

enteredAtTime(v1, t3).

enteredAtTime(v2, t4).

lessThan(t4, t3).



Test-case generation: velocities
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t1

t2

t3

t4

time

v2's entrance distance

v2's arrival distance

v1's entrance distance

v1's arrival distance

time



Scenario-based testing
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• System-level vs. Component-level

• External vs. internal behavior

• traffic rules vs. energy consumption

• Blackbox

• Simulation-based



Forcing increase in complexity

41

ASP solver

Event-level specification of 
scenario 

+

Specification of a 

complexity evidence

Lane events and 
their temporal order

Given an old test-case, generate a more-complex new test-case
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Complexity 
Certificate

Solvability
Certificate

Complexity 
Certificate

Solvability
Certificate
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Enter L2, Exit L1

Exit L1, Enter L2

L1L2
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