Automatic Generation of Test-cases of
Increasing Complexity for
Autonomous Vehicles at Intersections

(ICCPS 2022)

Abolfazl Karimi ﬁ’ﬁ TTTTTTTTTTTTT
Parasara Sridhar Duggirala dill | wcnarer n

=

Have we tested enough yet?

Waymo's autonomous vehicles have clocked 20
million miles on public roads

’ S
Waymo S drlverless cars were Autonomous vehicles would have to be driven hundreds

iﬂVOlved in 18 aCCidentS (A< @24 VIl of millions of miles and sometimes hundreds of billions
months of miles to demonstrate their reliability in terms of fatali-

ties and injuries.

Tesla cars register one crash for every 4.31 million miles
driven with Autopilot

Test-case complexity

e Shrink the set of solutions incrementally

Test-case 1 Test-case 2 Test-case 3

O blocked |\

e
ey

D : proper superset

Test-case 4

=

Contributions

1. Formalized Test-case Complexity

* More right-of-way constraints) more-complex
2. Generate test-cases

» Traffic rules W) concrete trajectories
3. Generate certificates

* Complexity

* Solvability

=

Outline

» Test-case scenarios
* Predicate-level abstraction of a scenario
» Traffic rules as PASS/FAIL criteria
* Generation algorithm
1. Ordering of events using ASP
2. Concretize timing of events and speed profiles using SMT
3. If collisions, try next ASP solution
* Results

=

=

Predicate abstraction of a scenario

* Regions

* Lanes

* Lane sections
* Kvents

* Entering

e Exiting

* Velocity reaching a threshold
 Temporal relations

« Earlier

« Same time

Event: arrival at intersection

z,
iy,

=

Event: entering a lane

. ' - : *'f--i

3
'i
2

=

Event: entering a shared section

=

Event: exiting a shared section

=

10

Events: exiting a lane

|
2

(ale

=

11

Relative order of events

Pink arrives first. Pink enters first.

Tratfic rules and events' order

* "whoever , should enter first."”

o First-Order-Logic formulation-

violatesRightOfForRule(V1l, V2, fcfs) :-
arrivedAtTime(V1,)
arrivedAtTime(V2,)

enteredAtTime(V1l, Tel),
enteredAtTime(V2, Te2),
lessThan(Te2, Tel).

=

13

Order events using ASP

2
ASP solver

4

violatesRightOf(Vv1, V2) :-

arrivedAtTime(V1,), arrivedAtTime(v1,
arrivedAtTime(V2,) s arrivedAtTime(v2,
enteredAtTime(v1,

enteredAtTime(V1, Tel),
enteredAtTime(V2, Te2), enteredAtTime(v2,
lessThan(Te2, Tel).

4

lessThan(tl, t2).
lessThan(t4, t3).

=

t1).

t2).
t3).
t4).

14

Absolute timing of events using SMT

4

SMT

solver

' 3

travelled distance (meters)

v1's entrance

v1l's arrival

v2's entrance

v2's arrival

A

=

time

A

t1=0.5

> (seconds)
t3=4.2

t2=1.5

t4=3.7
15

ASP + SMT + collisions

=

ASP solving

{

SMT solving

Certificate

| Y

o I
Complexity -

16

Sequence of increasingly more
complex test-cases

- More-complex - More-complex
test-case test-case

generation generation
Complexity
Certificate

Complexity
Certificate

=

17

Results

* Generate test-cases
» Test autopilot
» Test autopilot + RSS

« Show certificates

=

18

Autopilot fa1ls
Test-case 2!

Autopilot+RSS
passes Test-case 2!

Autopilot+RSS
fa1ls Test-case 3!

Test-case 2 certificates

Complexity Certificate:
 yileldsto Test-case 1 non-egos
 violatesa Test-case 2 non-ego

Solvability Certificate:
 yieldstoTest-case 1&2 non-egos

1 IIIIIIII—I———————=

Future work

1. Generating reactive scenarios:
* a non-ego behavior is a function of ego
2. Numerical approximation of complexity
* Finitization of trajectory space
e.g. motion primitives and lattices

3. Better collision-checking (or enforcing)

=

24

=

25

Extra slides

=

Complexity of SMT constraints

* Linear constraints
 Temporal order of events
 Bounds on instantaneous speed at an event
» Slope between control points
* Quadratic constraints
* Continuity of speed
o left slope = right slope
 Bounds on acceleration

=

27

Autopilot+RSS passes Test-case 1

28

Scenario Generation algorithm

|specification|

.

pose generation

Tane UNSAT
j1ane ASP solver

[events|

|all events & (.| Y _.__._...--""r""r"u::lrE AS P M

%. “.solutions?,”

SMT solver

speed of cars|

UNSAT

.:::j:c ollision? :j::: '

| scenario | I'no scenario found!

=

* No teleportation!

Nonholonomic
steering

Size of vehicles

el e2 ed
- - m)

el W
\62
e3 -

=) Enter L2, Exit L1

E—) Exit L1, Enter L2

L2 L1

=

30

Traftic rules and order of events

Whoever arrives first, should enters first.

If A and B arrive simultaneously and A i1s on the right of B, then A

should enter first.

=

31

Automatic test-case generation

1. Goal:

 (Combinatorial coverage of sequence of events,
VS probabilistic coverage (random sampling)
2. Constraints:

« Kinematics (nonholonomic steering, smooth velocities, ...)

« Collisions (vehicles cannot pass through each other)

=

32

Adding new actors to a scenario

=

33

Synthesizing solvability certificate
\ 4 \ 4

 scenariogeneration
1]

=

34

Synthesizing complexity certificate

=

30

Event ordering examples

=

36

Test-case complexity

* Increases probability of failure

« e.g. difficulty levels of video games
» Fair & efficient comparison of AVs

 How many levels each AV passes?
* Interpretability

« Event-level specification

 Trajectory-level certificate (a blocked solution)

=

37

=

Test-case generation: events

Event-level specification of Lane events and

: ASP solver :
scenario their temporal order
arrivedAtTime(vl, t1). lessThan(tl, t2).
arrivedAtTime(v2, t2). enteredAtTime(vl, t3).
:- violatedRightOf(v2, vl1). enteredAtTime(v2, t4).

lessThan(t4, t3).

38

Test-case generation: velocities

v1l's entrance distance

v1l's arrival distance

v2's entrance distance

v2's arrival distance

A

A

tl

t3

>» time

t2

t4

> time

=

39

Scenario-based testing

System-level vs. Component-level
External vs. internal behavior
 traffic rules vs. energy consumption

Blackbox

Simulation-based

=

40

=

Forcing increase in complexity

Given an old test-case, generate a more-complex new test-case

Event-level specification of

scenario
Lane events and
+ ASP solver

Specification of a their temporal order
complexity evidence

41

Complexity Solvability
Certificate Certificate

aQ)
Complexity Solvability
Certificate Certificate

=

Enter L2, Exit L1

Exit L1, Enter L2

=

43

	Slide 1: Automatic Generation of Test-cases of Increasing Complexity for Autonomous Vehicles at Intersections
	Slide 2: Have we tested enough yet?
	Slide 3: Test-case complexity
	Slide 4: Contributions
	Slide 5: Outline
	Slide 6: Predicate abstraction of a scenario
	Slide 7: Event: arrival at intersection
	Slide 8: Event: entering a lane
	Slide 9: Event: entering a shared section
	Slide 10: Event: exiting a shared section
	Slide 11: Events: exiting a lane
	Slide 12: Relative order of events
	Slide 13: Traffic rules and events' order
	Slide 14: Order events using ASP
	Slide 15: Absolute timing of events using SMT
	Slide 16: ASP + SMT + collisions
	Slide 17: Sequence of increasingly more complex test-cases
	Slide 18: Results
	Slide 19: Autopilot passes Test-case 1
	Slide 20: Autopilot fails Test-case 2 !
	Slide 21: Autopilot+RSS passes Test-case 2 !
	Slide 22: Autopilot+RSS fails Test-case 3 !
	Slide 23
	Slide 24: Future work
	Slide 25
	Slide 26: Extra slides
	Slide 27: Complexity of SMT constraints
	Slide 28
	Slide 29: Scenario Generation algorithm
	Slide 30
	Slide 31: Traffic rules and order of events
	Slide 32: Automatic test-case generation
	Slide 33: Adding new actors to a scenario
	Slide 34: Synthesizing solvability certificate
	Slide 35: Synthesizing complexity certificate
	Slide 36: Event ordering examples
	Slide 37: Test-case complexity
	Slide 38: Test-case generation: events
	Slide 39: Test-case generation: velocities
	Slide 40: Scenario-based testing
	Slide 41: Forcing increase in complexity
	Slide 42
	Slide 43

