Automatic Generation of Test-cases of Increasing Complexity for Autonomous Vehicles at Intersections

(ICCPS 2022)

Abolfazl Karimi
Parasara Sridhar Duggirala
Have we tested enough yet?

Waymo’s autonomous vehicles have clocked 20 million miles on public roads

Waymo’s driverless cars were involved in 18 accidents over 20 months

Tesla cars register one crash for every 4.31 million miles driven with Autopilot

Autonomous vehicles would have to be driven hundreds of millions of miles and sometimes hundreds of billions of miles to demonstrate their reliability in terms of fatalities and injuries.
Test-case complexity

- Shrink the set of solutions incrementally

\(\supset\): proper superset

Test-case 1 \(\supset\) Test-case 2 \(\supset\) Test-case 3 \(\supset\) Test-case 4

- Solutions
- Solutions
- Solutions
- Solutions

- Complexity Certificate
- Solvability Certificate
Contributions

1. Formalized Test-case Complexity
 - More right-of-way constraints → more-complex
2. Generate test-cases
 - Traffic rules → concrete trajectories
3. Generate certificates
 - Complexity
 - Solvability
Outline

• Test-case scenarios
 • Predicate-level abstraction of a scenario
 • Traffic rules as PASS/FAIL criteria

• Generation algorithm
 1. Ordering of events using ASP
 2. Concretize timing of events and speed profiles using SMT
 3. If collisions, try next ASP solution

• Results
Predicate abstraction of a scenario

- **Regions**
 - Lanes
 - Lane sections
- **Events**
 - Entering
 - Exiting
 - Velocity reaching a threshold
- **Temporal relations**
 - Earlier
 - Same time
Event: arrival at intersection
Event: entering a lane
Event: entering a shared section
Event: exiting a shared section
Events: exiting a lane
Relative order of events

Pink arrives first.

Pink enters first.
Traffic rules and events' order

• "whoever arrives first, should enter first."

• First-Order-Logic formulation:

 violatesRightOfForRule(V1, V2, fcfs) :-
 arrivedAtTime(V1, Ta1),
 arrivedAtTime(V2, Ta2),
 lessThan(Ta1, Ta2),
 enteredAtTime(V1, Te1),
 enteredAtTime(V2, Te2),
 lessThan(Te2, Te1).
Order events using ASP

Traffic rules

Events

ASP solver

Ordering of events

violatesRightOf(V1, V2) :- arrivedAtTime(V1, Ta1), arrivedAtTime(V2, Ta2), lessThan(Ta1, Ta2), enteredAtTime(V1, Te1), enteredAtTime(V2, Te2), lessThan(Te2, Te1).

arrivedAtTime(v1, t1).
arrivedAtTime(v2, t2).
enteredAtTime(v1, t3).
enteredAtTime(v2, t4).

lessThan(t1, t2).
lessThan(t4, t3).
Absolute timing of events using SMT

Ordering of events

SMT solver

Absolute time of events

Speed profiles (Bezier curves)

travelled distance (meters)

v1's entrance

v1's arrival

v2's entrance

v2's arrival

t1=0.5

t2=1.5

t3=4.2

t4=3.7

time (seconds)
ASP + SMT + collisions

ASP solving → SMT solving → Collisions? Y → Complexity Certificate

More-complex test-case

SMT solving → Collisions? N → Solvability Certificate
Sequence of increasingly more complex test-cases
Results

• Generate test-cases
• Test autopilot
• Test autopilot + RSS
• Show certificates
Autopilot passes Test-case 1
Autopilot fails
Test-case 2!
Autopilot+RSS passes Test-case 2!
Autopilot+RSS fails Test-case 3!
Test-case 2 certificates

- **Complexity Certificate**:
 - yields to Test-case 1 non-egos
 - violates a Test-case 2 non-ego
- **Solvability Certificate**:
 - yields to Test-case 1&2 non-egos
Future work

1. Generating reactive scenarios:
 • a non-ego behavior is a function of ego
2. Numerical approximation of complexity
 • Finitization of trajectory space
 e.g. motion primitives and lattices
3. Better collision-checking (or enforcing)
Extra slides
Complexity of SMT constraints

- Linear constraints
 - Temporal order of events
 - Bounds on instantaneous speed at an event
 - Slope between control points
- Quadratic constraints
 - Continuity of speed
 - left slope = right slope
 - Bounds on acceleration
Autopilot+RSS passes Test-case 1
Scenario Generation algorithm

- Specification → Pose Generation → Lane Events → ASP Solver
 - Unsatisfiable (UNSAT)
 - More ASP Solutions? (Y/N)
 - All Events & Their Order → SMT Solver
 - Unsatisfiable (UNSAT)
 - Speed of Cars
- Collision? (Y/N)
- Scenario / No Scenario Found!
• No teleportation!

• Nonholonomic steering

• Size of vehicles
Traffic rules and order of events

• Whoever arrives first, should enters first.
• If A and B arrive simultaneously and A is on the right of B, then A should enter first.
• ...
Automatic test-case generation

1. Goal:
 • Combinatorial coverage of sequence of events,
 VS probabilistic coverage (random sampling)

2. Constraints:
 • Kinematics (nonholonomic steering, smooth velocities, ...)
 • Collisions (vehicles cannot pass through each other)
Adding **new actors** to a scenario

- Specification of new actors
- Trajectories of old actors

\[\text{scenario generation} \]

- Trajectories of new actors
Synthesizing solvability certificate

Specification of a solution

Test-case

scenario generation

Solvability certificate
Synthesizing **complexity certificate**

- Specification of a complexity certificate
- Simpler test-case
- Harder test-case

Test-case generation

Complexity certificate
Event ordering examples
Test-case complexity

- Increases probability of failure
 - e.g. difficulty levels of video games
- Fair & efficient comparison of AVs
 - How many levels each AV passes?
- Interpretability
 - Event-level specification
 - Trajectory-level certificate (a blocked solution)
Test-case generation: events

Event-level specification of scenario → ASP solver → Lane events and their temporal order

arrivedAtTime(v1, t1).
arrivedAtTime(v2, t2).
:- violatedRightOf(v2, v1).

lessThan(t1, t2).
enteredAtTime(v1, t3).
enteredAtTime(v2, t4).
lessThan(t4, t3).
Test-case generation: velocities

- v1's entrance distance
- v1's arrival distance
- v2's entrance distance
- v2's arrival distance
Scenario-based testing

- System-level vs. Component-level
- External vs. internal behavior
 - traffic rules vs. energy consumption
- Blackbox
- Simulation-based
Forcing increase in complexity

Given an old test-case, generate a more-complex new test-case

Event-level specification of scenario
+ Specification of a complexity evidence

ASP solver

Lane events and their temporal order
Enter L2, Exit L1
Exit L1, Enter L2