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Have we tested enough yet?

Waymo's autonomous vehicles have clocked 20
million miles on public roads

’ S
Waymo S drlverless cars were Autonomous vehicles would have to be driven hundreds

iﬂVOlved in 18 aCCidentS (A< @24 VIl of millions of miles and sometimes hundreds of billions
months of miles to demonstrate their reliability in terms of fatali-

ties and injuries.

Tesla cars register one crash for every 4.31 million miles
driven with Autopilot



Test-case complexity

e Shrink the set of solutions incrementally
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Contributions

1. Formalized Test-case Complexity

* More right-of-way constraints ) more-complex
2. Generate test-cases

» Traffic rules W) concrete trajectories
3. Generate certificates

* Complexity

* Solvability
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Outline

» Test-case scenarios
* Predicate-level abstraction of a scenario
» Traffic rules as PASS/FAIL criteria
* Generation algorithm
1. Ordering of events using ASP
2. Concretize timing of events and speed profiles using SMT
3. If collisions, try next ASP solution
* Results
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Predicate abstraction of a scenario

* Regions

* Lanes

* Lane sections
* Kvents

* Entering

e Exiting

* Velocity reaching a threshold
 Temporal relations

« Earlier

« Same time




Event: arrival at intersection
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Event: entering a lane
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Event: entering a shared section
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Event: exiting a shared section
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Events: exiting a lane
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Relative order of events

Pink arrives first. Pink enters first.




Tratfic rules and events' order

* "whoever , should enter first."”

o First-Order-Logic formulation-

violatesRightOfForRule(V1l, V2, fcfs) :-
arrivedAtTime(V1, )
arrivedAtTime(V2, )

enteredAtTime(V1l, Tel),
enteredAtTime(V2, Te2),
lessThan(Te2, Tel).

=
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Order events using ASP

2
ASP solver

4

violatesRightOf(Vv1, V2) :-

arrivedAtTime(V1, ), arrivedAtTime(v1,
arrivedAtTime(V2, ) s arrivedAtTime(v2,
enteredAtTime(v1,

enteredAtTime(V1, Tel),
enteredAtTime(V2, Te2), enteredAtTime(v2,
lessThan(Te2, Tel).

4

lessThan(tl, t2).
lessThan(t4, t3).

=

t1).

t2).
t3).
t4).
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Absolute timing of events using SMT

4

SMT

solver
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travelled distance (meters)

v1's entrance

v1l's arrival

v2's entrance

v2's arrival

A
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time
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t1=0.5

> (seconds)
t3=4.2

t2=1.5

t4=3.7
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ASP + SMT + collisions
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ASP solving

{

SMT solving

Certificate
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Complexity -
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Sequence of increasingly more
complex test-cases

- More-complex - More-complex
test-case test-case

generation generation
Complexity
Certificate

Complexity
Certificate

=
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Results

* Generate test-cases
» Test autopilot
» Test autopilot + RSS

« Show certificates

=
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Autopilot fa1ls
Test-case 2!




Autopilot+RSS
passes Test-case 2!




Autopilot+RSS
fa1ls Test-case 3!




Test-case 2 certificates

Complexity Certificate:
 yileldsto Test-case 1 non-egos
 violatesa Test-case 2 non-ego

Solvability Certificate:
 yieldstoTest-case 1&2 non-egos
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Future work

1. Generating reactive scenarios:
* a non-ego behavior is a function of ego
2. Numerical approximation of complexity
* Finitization of trajectory space
e.g. motion primitives and lattices

3. Better collision-checking (or enforcing)

=
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Extra slides
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Complexity of SMT constraints

* Linear constraints
 Temporal order of events
 Bounds on instantaneous speed at an event
» Slope between control points
* Quadratic constraints
* Continuity of speed
o left slope = right slope
 Bounds on acceleration

=

27



Autopilot+RSS passes Test-case 1
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Scenario Generation algorithm

|specification|

.

pose generation

Tane UNSAT
j1ane ASP solver

[events|

|all events & (.| Y _.__._...--""r""r"u::lrE AS P M

%. “.solutions?,”

SMT solver

speed of cars|

UNSAT

.:::j:c ollision? :j::: '

| scenario | I'no scenario found!
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* No teleportation!

Nonholonomic
steering

Size of vehicles

el e2 ed
- - m)

el W
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=) Enter L2, Exit L1

E—) Exit L1, Enter L2

L2 L1

=
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Traftic rules and order of events

Whoever arrives first, should enters first.

If A and B arrive simultaneously and A i1s on the right of B, then A

should enter first.

=
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Automatic test-case generation

1. Goal:

 (Combinatorial coverage of sequence of events,
VS probabilistic coverage (random sampling)
2. Constraints:

«  Kinematics (nonholonomic steering, smooth velocities, ...)

« Collisions (vehicles cannot pass through each other)

=
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Adding new actors to a scenario

=
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Synthesizing solvability certificate
\ 4 \ 4

 scenariogeneration
1]

=
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Synthesizing complexity certificate

=
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Event ordering examples

=
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Test-case complexity

* Increases probability of failure

« e.g. difficulty levels of video games
» Fair & efficient comparison of AVs

 How many levels each AV passes?
* Interpretability

« Event-level specification

 Trajectory-level certificate (a blocked solution)

=
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Test-case generation: events

Event-level specification of Lane events and

: ASP solver :
scenario their temporal order
arrivedAtTime(vl, t1). lessThan(tl, t2).
arrivedAtTime(v2, t2). enteredAtTime(vl, t3).
:- violatedRightOf(v2, vl1). enteredAtTime(v2, t4).

lessThan(t4, t3).
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Test-case generation: velocities

v1l's entrance distance

v1l's arrival distance

v2's entrance distance

v2's arrival distance

A

A

tl

t3

>» time

t2

t4

>  time

=
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Scenario-based testing

System-level vs. Component-level
External vs. internal behavior
 traffic rules vs. energy consumption

Blackbox

Simulation-based

=
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Forcing increase in complexity

Given an old test-case, generate a more-complex new test-case

Event-level specification of

scenario
Lane events and
+ ASP solver

Specification of a their temporal order
complexity evidence
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Complexity Solvability
Certificate Certificate

aQ )
Complexity Solvability
Certificate Certificate
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Enter L2, Exit L1

Exit L1, Enter L2

=
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