
Automatic Generation of Test-cases of
Increasing Complexity for
Autonomous Vehicles at Intersections

Abolfazl Karimi

Parasara Sridhar Duggirala

(ICCPS 2022)

Have we tested enough yet?

2

Test-case complexity

3

Solutions

...
Test-case 1 Test-case 2

⊃

⊃ : proper superset• Shrink the set of solutions incrementally

Solutions

blocked

Test-case 3

⊃
Solutions

Test-case 4

⊃ Solutions

Complexity
Certificate

Solvability
Certificate

Contributions

4

1. Formalized Test-case Complexity

• More right-of-way constraints more-complex

2. Generate test-cases

• Traffic rules concrete trajectories

3. Generate certificates

• Complexity

• Solvability

Outline

5

• Test-case scenarios

• Predicate-level abstraction of a scenario

• Traffic rules as PASS/FAIL criteria

• Generation algorithm

1. Ordering of events using ASP

2. Concretize timing of events and speed profiles using SMT

3. If collisions, try next ASP solution

• Results

Predicate abstraction of a scenario

6

• Regions

• Lanes

• Lane sections

• Events

• Entering

• Exiting

• Velocity reaching a threshold

• Temporal relations

• Earlier

• Same time

7

Event: arrival at intersection

Event: entering a lane

8

Event: entering a shared section

9

Event: exiting a shared section

10

Events: exiting a lane

11

Relative order of events

Pink arrives first.

12

Pink enters first.

Traffic rules and events' order

13

• "whoever arrives first, should enter first."

• First-Order-Logic formulation:

violatesRightOfForRule(V1, V2, fcfs) :-
arrivedAtTime(V1, Ta1),
arrivedAtTime(V2, Ta2),
lessThan(Ta1, Ta2),
enteredAtTime(V1, Te1),
enteredAtTime(V2, Te2),
lessThan(Te2, Te1).

Order events using ASP

14

ASP solver

Traffic
rules

Events

Ordering
of events

arrivedAtTime(v1, t1).

arrivedAtTime(v2, t2).

enteredAtTime(v1, t3).

enteredAtTime(v2, t4).

lessThan(t1, t2).

lessThan(t4, t3).

violatesRightOf(V1, V2) :-
arrivedAtTime(V1, Ta1),
arrivedAtTime(V2, Ta2),
lessThan(Ta1, Ta2),
enteredAtTime(V1, Te1),
enteredAtTime(V2, Te2),
lessThan(Te2, Te1).

Absolute timing of events using SMT

15

SMT
solver

Ordering
of events

Absolute time
of events

Speed profiles
(Bezier curves)

t1=0.5

t2=1.5

t3=4.2

t4=3.7

time

(seconds)

v2's entrance

v2's arrival

v1's entrance

v1's arrival

travelled distance (meters)

ASP + SMT + collisions

16

ASP solving SMT solving Collisions?

Y

N

Complexity
Certificate

Solvability
Certificate

More-complex test-case

Sequence of increasingly more
complex test-cases

17

More-complex
test-case

generation
Complexity
Certificate

Solvability
Certificate

Harder
test-case

trivial
test-case

More-complex
test-case

generation

Complexity
Certificate

Solvability
Certificate

Even
harder

test-case

...

Results

18

• Generate test-cases

• Test autopilot

• Test autopilot + RSS

• Show certificates

19

Autopilot passes
Test-case 1

20

Autopilot fails
Test-case 2 !

21

Autopilot+RSS
passes Test-case 2 !

22

Autopilot+RSS
fails Test-case 3 !

23

Test-case 2 certificates

• Complexity Certificate:

• yields to Test-case 1 non-egos

• violates a Test-case 2 non-ego

• Solvability Certificate:

• yields to Test-case 1&2 non-egos

Future work

24

1. Generating reactive scenarios:

• a non-ego behavior is a function of ego

2. Numerical approximation of complexity

• Finitization of trajectory space

e.g. motion primitives and lattices

3. Better collision-checking (or enforcing)

25

Extra slides

26

Complexity of SMT constraints

27

• Linear constraints

• Temporal order of events

• Bounds on instantaneous speed at an event

• Slope between control points

• Quadratic constraints

• Continuity of speed

• left slope = right slope

• Bounds on acceleration

28
Autopilot+RSS passes Test-case 1

Scenario Generation algorithm

29

30

• No teleportation!
e1 e2 e3

• Nonholonomic

steering

• Size of vehicles

e1

e2

e3

Enter L2, Exit L1

L1L2

Exit L1, Enter L2

Traffic rules and order of events

31

• Whoever arrives first, should enters first.

• If A and B arrive simultaneously and A is on the right of B, then A

should enter first.

• ...

Automatic test-case generation

32

1.Goal:

• Combinatorial coverage of sequence of events,

VS probabilistic coverage (random sampling)

2.Constraints:

• Kinematics (nonholonomic steering, smooth velocities, …)

• Collisions (vehicles cannot pass through each other)

Adding new actors to a scenario

33

Specification of

new actors

Trajectories of

old actors

scenario generation

Trajectories of

new actors

Synthesizing solvability certificate

34

Specification of a

solution
Test-case

scenario generation

Solvability

certificate

Synthesizing complexity certificate

35

Specification of a

complexity certificate

Simpler

test-case

Test-case generation

Complexity

certificate

Harder

test-case

Event ordering examples

36...

Test-case complexity

37

• Increases probability of failure

• e.g. difficulty levels of video games

• Fair & efficient comparison of AVs

• How many levels each AV passes?

• Interpretability

• Event-level specification

• Trajectory-level certificate (a blocked solution)

Test-case generation: events

38

ASP solver
Event-level specification of
scenario

Lane events and
their temporal order

arrivedAtTime(v1, t1).

arrivedAtTime(v2, t2).

:- violatedRightOf(v2, v1).

lessThan(t1, t2).

enteredAtTime(v1, t3).

enteredAtTime(v2, t4).

lessThan(t4, t3).

Test-case generation: velocities

39

t1

t2

t3

t4

time

v2's entrance distance

v2's arrival distance

v1's entrance distance

v1's arrival distance

time

Scenario-based testing

40

• System-level vs. Component-level

• External vs. internal behavior

• traffic rules vs. energy consumption

• Blackbox

• Simulation-based

Forcing increase in complexity

41

ASP solver

Event-level specification of
scenario

+

Specification of a

complexity evidence

Lane events and
their temporal order

Given an old test-case, generate a more-complex new test-case

42

Complexity
Certificate

Solvability
Certificate

Complexity
Certificate

Solvability
Certificate

43

Enter L2, Exit L1

Exit L1, Enter L2

L1L2

	Slide 1: Automatic Generation of Test-cases of Increasing Complexity for Autonomous Vehicles at Intersections
	Slide 2: Have we tested enough yet?
	Slide 3: Test-case complexity
	Slide 4: Contributions
	Slide 5: Outline
	Slide 6: Predicate abstraction of a scenario
	Slide 7: Event: arrival at intersection
	Slide 8: Event: entering a lane
	Slide 9: Event: entering a shared section
	Slide 10: Event: exiting a shared section
	Slide 11: Events: exiting a lane
	Slide 12: Relative order of events
	Slide 13: Traffic rules and events' order
	Slide 14: Order events using ASP
	Slide 15: Absolute timing of events using SMT
	Slide 16: ASP + SMT + collisions
	Slide 17: Sequence of increasingly more complex test-cases
	Slide 18: Results
	Slide 19: Autopilot passes Test-case 1
	Slide 20: Autopilot fails Test-case 2 !
	Slide 21: Autopilot+RSS passes Test-case 2 !
	Slide 22: Autopilot+RSS fails Test-case 3 !
	Slide 23
	Slide 24: Future work
	Slide 25
	Slide 26: Extra slides
	Slide 27: Complexity of SMT constraints
	Slide 28
	Slide 29: Scenario Generation algorithm
	Slide 30
	Slide 31: Traffic rules and order of events
	Slide 32: Automatic test-case generation
	Slide 33: Adding new actors to a scenario
	Slide 34: Synthesizing solvability certificate
	Slide 35: Synthesizing complexity certificate
	Slide 36: Event ordering examples
	Slide 37: Test-case complexity
	Slide 38: Test-case generation: events
	Slide 39: Test-case generation: velocities
	Slide 40: Scenario-based testing
	Slide 41: Forcing increase in complexity
	Slide 42
	Slide 43

