
Automatic Generation of Test-cases of Increasing Complexity for
Autonomous Vehicles at Intersections

Abolfazl Karimi
University of North Carolina at Chapel Hill

ak@cs.unc.edu

Parasara Sridhar Duggirala
University of North Carolina at Chapel Hill

psd@cs.unc.edu

ABSTRACT
This paper presents a new framework for generating test-case
scenarios for autonomous vehicles. We address two challenges
in automatic test-case generation: first, a formal notion of test-case
complexity, and second, an algorithm to generate more-complex
test-cases. We characterize the complexity of a test-case by its set of
solutions, and compare two complexities by the subset relation. The
novelty of our definition is that it only relies on the pass-fail criteria
of the test-case, rather than indirect or subjective assessments of
what may challenge an ego vehicle to pass a test-case. Given a test-
case, we model the problem of generating a more complex test-case
as a constraint-satisfaction search problem. The search variables are
the changes to the given test-case, and the search constraints define
a solution to the search problem. The constraints include steering
geometry of cars, the geometry of lanes, the shape of cars, traffic
rules, bounds on longitudinal acceleration of cars, etc. To conquer
the computational challenge, we divide the constraints to three cat-
egories and satisfy them with simulation, answer set programming,
and SMT solving. We have implemented our algorithm using the
Scenic libraries and the CARLA simulator and generate test-cases
for several 3-way and 4-way intersections with different topologies.
Our experiments demonstrate that both CARLA’s autopilot and
autopilot-plus-RSS (Responsibility-Sensitive Safety) can fail as the
complexity of test-cases increase.

KEYWORDS
test-case complexity, test-case generation, traffic rules, logic pro-
gramming, Answer Set Programming, Bezier curves, SMT, CARLA,
Scenic

1 INTRODUCTION
There are uncountably many traffic scenarios! This is a challenge
for scenario-based approaches for specifying the requirements and
Operational Design Domain (ODD), development, testing, falsifica-
tion, and certification of Autonomous Vehicles (AVs). A variety of
methods are proposed in the literature to explore different subsets
of the infinite space of test-case scenarios. Riedmaier et al. [22]
survey a category of test-case generation methods that are based
on some notion of complexity. Here, complexity is a property of a
test-case, i.e. determinable before execution, and so independent of
the performance of a particular AV. The idea is that the probability
of a failure increases as the complexity of the test-cases increase.
Complexity is distinguished from criticality, which is an assessment
of the performance of an AV in a scenario, and is determinable only
after test-case execution. Complexity is similar to difficulty in game
design [1], where a more difficult level should be more challenging
with respect to all possible players.

A scenario is a sequence of scenes. A test-case is a scenario in
which the description of ego (i.e. vehicle-under-test) in the scenes
is unspecified, and has some pass-fail criteria that determine what
ego behaviors would pass the test-case [25]. Bagschik et al. [2]
give a five-layer ontology for a scenario: roads, traffic infrastruc-
ture, temporary changes in roads and infrastructure, objects, and
weather. One aspect of complexity concerns the perception task, e.g.
detecting the road boundaries and traffic signs, tracking objects, etc.
For example, faded lane markings, occlusions and rainy weather
can make perception more complex. On the other hand, an AV with
complete information about its environment still has the challenge
of navigating around to pass a test-case, e.g. avoiding collisions,
reaching its goal, and following traffic rules. That is, another aspect
of complexity concerns the planning and control task. In this paper
we address the latter.

First, we propose a formal definition of test-case complexity.
Our definition is objective in the sense that it does not rely on
subjective assessments of what features may challenge an AV to
pass a test-case. Instead, we rely directly and only on the pass-fail
criteria.

Second, we propose an algorithm to generate more-complex
test-case scenarios. Our technique can handle pass-fail criteria
that regard the traffic rules and right-of-way at an intersection,
in addition to goal-reach and collision avoidance. Similar to [13],
we expect the traffic rules to be provided in a logic program (more
precisely an Answer Set Program [18]). Our algorithm takes as input
the geometry of the traffic intersection, traffic rules to be followed
at the intersection, and the routes of the vehicles and generates
several test-case scenarios with increasing order of complexity. Our
algorithm gives full coverage over some subspaces of the possible
test-cases: after the set of lane events of two cars are fixed, there
are only a finite number of relative temporal order of these events
that may result in a more complex test-case, and our algorithm uses
an ASP solver to do an exhaustive search over this subspace.

Third, we generate test-cases for a four-way stop, a T-intersection,
and an uncontrolled Y-intersection. Then we execute these test-
cases to test CARLA’s autopilot and autopilot-plus-RSS in the CARLA
simulator. We incrementally increased the complexity of test-cases
and discovered instances where the CARLA autopilot failed test-
cases by violating a traffic rule or colliding with a non-ego vehicle.
Also we observed that restricting the behavior of CARLA’s autopi-
lot with RSS improved its rate of success, but did not guarantee
passing a test-case.

1.1 Related work
In [10, 27, 28], a complexity index is defined based on some influence
factors and their relative importance. The influence factors are
based on the functionality of the AV that is going to be tested

Milan ’22, May 04–06, 2022, Milan, Italy Karimi and Duggirala

and may include a mixture of perception-related and planning-
and-control-related factors such as weather, rapid changes in light,
lane line clarity, road curvature, road congestion, etc. These factors
are derived from technical specifications, naturalistic traffic data,
etc. The contribution of each factor to the complexity index is
derived with a quantitative and subjective evaluation, the Analytic
Hierarchy Process (AHP). In contrast to subjective assessments,
we rely objectively on the pass-fail criteria alone to automatically
decide if a test-case is more complex than another.We give sufficient
conditions that guarantee that a test-case 𝐵 is at least as complex
as a test-case 𝐴, and a certificate to why 𝐵 is more complex than 𝐴.

Wang et al. [26] give a measure of complexity of scenarios gath-
ered from an AV. They first define a measure of scene complexity,
then calculate its distribution across a scenario as a measure of
its complexity. That is, the spatio-temporal relations between two
consecutive scenes are ignored. Therefore, two scenarios with a
completely different spatio-temporal development but the same dis-
tribution of scene complexity would be treated the same. The scene
complexity is a weighted sum of road semantic complexity and traffic
element complexity. Road semantic descriptors are features that are
subjectively selected to contribute to the complexity measure, and
obtained via manual annotations for a small subset of the data and
generalized with supervised learning. Traffic element complexity is
quantified in terms of non-egos’ distance and orientation relative
to the AV (ego), which makes their definition fall under criticality
rather than complexity in our terminology above (adopted from
[22]).

Qi et al. [21] propose a manual process to characterize a test-
case based on a finite number of failing trajectories of ego. The
causes of failure are analyzed to make a list of Scenario Character
Parameters (SCPs) which could be related to perception, planning or
control aspect of the driving task. In contrast, our characterization
of a test-case is with respect to all (infinitely many) failing ego
behaviors. Furthermore, our algorithm decides the cause of failure
of a behavior automatically from the pass-fail criteria.

Apart from a few papers reviewed above that generate complex
test-case scenarios, most literature on scenario generation/selection
focus on other qualities and quantities of scenarios, such as similar-
ity [12], criticality [15, 29], corner cases [20], etc. These techniques
include a variety of algorithmic paradigms such as knowledge-
based methods [17], data-driven methods [20], optimization-based
search [6, 7, 16], genetic algorithms [4, 15, 29], synthesis from for-
mal specification [16, 23], probabilistic search [9, 24], combinatorial
search [10, 23, 28], etc. Only a few of the proposed techniques han-
dle traffic rules, especially right-of-way, at intersections. In a survey
on performing safety assessment of autonomous vehicles [22], the
authors stress the importance of scenario generation at intersec-
tions. Here, we mention a few examples that are more related to
our work.

Fremont et al. [9] use Scenic as a probabilistic programming
DSL to generate scenarios. In contrast, we use Scenic only as an
interface to CARLA, and generate the scenarios by solving logic
programs. An advantage of logic programming over probabilistic
programming is that a logic solver gives coverage guarantee over
its search space. For example, in Step 2 of our algorithm, the ASP
solver covers all possible order relations between events, where

ASP’s search space is restricted by the order relations that are fixed
in Step 1.

Tuncali et al. [23], also Klischat and Althoff [16] generate test-
cases for intersections from requirements and formal specifications.
However, they do not include right-of-way traffic rules.

Calo et al. [4] use genetic algorithms to find avoidable collision
scenarios. These are scenarios in which a particular AV crashes but
it could have avoided the collision. This is somewhat similar to
our complexity and solvability certificates: a behavior that fails a
test-case and a behavior that passes the same test-case. However,
our goal is different, i.e. finding a test-case that is more complex
than a given test-case. Also, our pass-fail criteria are not limited to
collisions.

In [14] SMT solving is used to generate test-cases. To generate
trajectories, they use a predetermined geometric class, say piece-
wise linear or spline curve. Therefore, the generated trajectory
is not necessarily feasible for the steering geometry of a vehicle,
say with Ackermann steering. In contrast, we satisfy the steering
constraints using simulation and closed-loop control, and use SMT
only for generating the longitudinal speed.

2 TEST-CASE COMPLEXITY
We follow Ulbrich et al. [25] for the definitions of scene, scenario
and test-case. We clarify their definition of a test-case by adding
the terminology of a partial scenario and execution of a test-case.
Then, we propose our definition of test-case complexity. Finally, we
present some of the details of our formal representations.

2.1 Scenario
A scene defines the state of the environment at an instant in time.
The environment includes the scenery, dynamic elements, and ac-
tors. The scenery are the geo-spatially stationary elements and all
the metric, semantic and topological information they entail, such
as a road, its width, an intersection and its intersecting lanes. A
dynamic element is movable (moving or able to move), and an actor
is an element that acts on its own, which are both only cars in our
generated scenarios.

A scenario is a sequence of scenes, starting with an initial scene
and spanning over a certain amount of time. Actions and events
constitute any changes between consecutive scenes. These changes
include movement of a car, change in its speed, activating a turn
signal, entering or exiting a region, the speed reaching a threshold,
etc. A scenario may specify a goal for an actor, and the actor may
use it to select what action(s) to take. For example, reaching the
end of a particular lane may be the goal of a car.

A scenario can be specified partially. Technically, a partial sce-
nario corresponds to a set of scenarios that share the specified
information. For example, the state of an actor in some scenes
may be left unspecified. If the initial scene is fully specified, we
can execute the (partial) scenario by starting with the initial scene,
and applying the actions and events at each scene to get the next
scene, until the specified duration has passed. The outcome of the
execution is a fully specified scenario.

In this paper, we generate partial scenarios for simulation-based
testing. Each generated scene specifies all non-egos completely,
whereas ego is specified in the initial scene only. There is a fixed time

Automatic Generation of Test-cases of Increasing Complexity for Autonomous Vehicles at Intersections Milan ’22, May 04–06, 2022, Milan, Italy

step between each pair of consecutive scenes. The execution of the
scenario only determines the description of the ego in each scene.
In the initial scene, ego is on an incoming lane to an intersection.
The goal of ego is to reach a designated outgoing lane.

2.2 Test-cases and their complexity
A test-case is a partial scenario together with pass-fail criteria. Our
pass-fail criteria consist of ego reaching its goal, avoiding collisions,
and respecting the traffic rules. The pass-fail criteria partitions a
partial scenario (i.e. its corresponding set of fully specified scenar-
ios) into two sets: scenarios that pass and scenarios that fail. This
is equivalent to partitioning the set of ego behaviors into those
that pass and those that fail, since our partial scenarios specify
everything in a scene except the state of ego. A passing behavior of
ego is a solution of the test-case. A test-case is solvable if its solution
set is nonempty.

The complexity is characterized by the set of solutions to a test-
case. This induces a partial order on complexity via the subset
relation. In particular, if the solutions of test-case 𝐵 is a proper sub-
set of the solutions of test-case 𝐴, then 𝐵 is more complex that 𝐴.
The difference of the two solution sets characterizes the increase in
complexity. Note that solution sets and their difference are uncount-
ably infinite sets due to the continuous parameters such as location,
velocity, etc. Therefore, most of these sets cannot be represented
explicitly, and the subset relation cannot be checked directly. Dis-
cretization of continuous variables does not help, for two reasons:
First, complexity would not be unique e.g. under one discretization
the solution sets of two test-cases may be in a subset relation, but
under another discretization the solution sets may be incomparable.
Second, a coarse discritization is unrealistic, while a fine discriti-
zation creates an enormous state space and does not help with
representing the solution sets explicitly or computing the subset
relation between them. Therefore, we take a different approach
to ensure that a generated test-case is more complex than a given
test-case.

We ensure that the complexity of a generated test-case is equal to
or more than (i.e. a subset of) the complexity of a given test-case, by
not changing the behaviors of the old non-egos. That is, keeping the
behaviors of the old non-egos ensures that the old failing behaviors
fail the new test-case as well. That is, all colliding behaviors of
ego remain colliding, and all right-of-way-violating behaviors of
ego remain violating. Therefore, we only add new non-egos. New
non-egos should not collide with the old non-egos since a collision
may alter an old non-ego’s trajectory. Note that a new non-ego does
not relieve ego from any right-of-way obligation that it already
had to existing non-egos. This is because each right-of-way rule
refers only to a pair of vehicles and is indifferent to other vehicles.
In general, traffic rules also include precedence rules where a higher
priority rule makes a lower priority rule inapplicable to the traffic
context. In this situation, addition of a non-ego may not result in a
subset relation between solution sets since it may introduce new
solutions, in addition to possibly removing some solutions. For
example, a new non-ego ambulance may make a no-stopping sign
inapplicable to ego. Precedence rules are a challenge for controlling
test-case complexity and are not addressed in this paper.

(a) Incoming, connect-
ing, and outgoing lanes
(green, red, blue).

(b) A car entering a
lane that intersects
its route (left turn).

(c) A car exiting a
lane that intersects
its route (left turn).

Figure 1: Lane events.

We ensure that the complexity of a generated test-case is more
than (i.e. a proper subset of) the complexity of a given test-case, as
follows. First we do not change the behaviors of old non-egos to
ensure that the new complexity is a subset. Second, we add one or
more non-egos such that at least one solution to the old test-case
fails the new test-case because it violates the right-of-way of one
or more of the new non-egos.

2.3 Formalization
We use Python objects to represent a scenario, and reuse the data
structures in Scenic’s driving domain.1 The traffic rules are modeled
as first-order logic sentences over the elements, attributes, states,
actions, events, etc. in a scenario. These sentences are represented
in a logic program, more specifically an Answer Set Program. In
this section we explain some of the details.

The scenery is modeled as a road network in Scenic’s driving
domain. A road network is a collection of roads and intersections.
An intersection connects two or more roads together. Each road
is a collection of lanes and posted signs. A lane is a polygonal
region of the road together with an associated driving direction.
A lane is either a part of a road or a part of an intersection. The
incoming lanes of an intersection are the road lanes that end at
that intersection. The outgoing lanes of an intersection are the road
lanes that start at that intersection. The connecting lanes of an
intersection are intersection lanes that connect an incoming lane
to an outgoing lane. A route is a triple of (incoming, connecting,
outgoing) lanes at an intersection. See Figure 1 for (a) two routes
from the same incoming lane, and (b) two routes from different
incoming lanes. The connecting lanes are polygonal regions even
though their boundaries appear smooth.

A car has attributes such as shape, wheelbase, maximum steering
angle, etc. Scenic models the shape of a car as a rectangle, which
simplifies computing the lane events (entrance and exit). The loca-
tion of a car is the location of the center of its rectangle. The state
of a car in a scene specifies its pose (location and orientation) and
turn signal. The behavior of a car is the sequence of its states at
each scene. When the shape of a car starts overlapping a lane, it

1https://scenic-lang.readthedocs.io/en/latest/libraries.html#driving-domain

https://scenic-lang.readthedocs.io/en/latest/libraries.html##driving-domain

Milan ’22, May 04–06, 2022, Milan, Italy Karimi and Duggirala

enters the lane, and when it stops overlapping, it exits the lane. See
Figure 1.

The traffic rules describe right-of-way rules and abiding by traffic
signs. We model the traffic rules in an Answer Set Programming
(ASP) language similar to [13]. Before presenting our formulation,
we need a quick introduction to ASP. An ASP program is a collection
of rules of the form:

h :- p_1, ..., p_n, not p_{n+1}, ..., not p_{n+m}.

We call h the head of the rule, and the list after :- is the body of the
rule. The intended meaning of the above rule is

𝑝1 ∧ · · · ∧ 𝑝𝑛 ∧ ¬𝑝𝑛+1 ∧ · · · ∧ ¬𝑝𝑛+𝑚 → ℎ

Here each condition 𝑝𝑖 , as well as ℎ, is an atomic predicate over
constants and variables. An atomic predicate or a rule is ground if it
has no variables. A fact is a ground rule with no conditions. A rule
is used to infer more facts, except if the head is empty. If the head
is empty, we get a constraint which means that the conjunction of
predicates 𝑝1 . . .¬𝑝𝑛+𝑚 should not hold true. A choice rule, which
is a syntactic sugar, is a rule where the head is a list of predicates
to choose from. In particular,

{ h_1, ..., h_k } = N :- p_1, ..., not p_{n+m}.

specifies that exactly N predicates from the list h_1, ..., h_k must
be inferred if the body of the rule is true. The domains of variables
are determined using Herbrand semantics [19], that is from all the
constants mentioned in the program. Given an ASP program, the
ASP solver finds a set of facts (i.e. an answer set) that is closed
under the rules of the program. If no such set exists, the ASP solver
returns that the program is unsatisfiable.

Relations, actions, events, etc. in a scenario are included in an
ASP program as facts. For example, if the incoming lane road8_lane0

has a stop sign, we represent this with a fact hasStopSign(road8_lane0).
The event of car1 arriving at the intersection at time t1 from the
incoming lane road8_lane0 is represented by the fact

arrivedAtForkAtTime(car1, road8_lane0, t1).
Here, fork is an incoming lane together with its connecting lanes.
Traffic rules are added to a program to infer the violations. For
example, to infer the violations of the traffic rule “the driver of any
vehicle approaching a stop sign at the entrance to an intersection shall
stop” we add
violatedRule(V, stopAtSign) :-

arrivedFromIncomingLane(V, L), hasStopSign(L),
not stoppedAtIncomingLane(V, L).

Here, violatedRule(V, stopAtSign) is an atomic predicate that can be
inferred to be true or false based on the grounding of variables V

and L, and the truth of the rule’s conditions. Traffic rule violations
are found simply by checking whether the answer set includes
a corresponding fact. In our formalization, we have two types of
violations: violatedRule(V, r) and violatedRightOfForRule(V1, V2, r).
The first violation involves one vehicle V violating a rule named r,
and the second is a violation where vehicle V1 violated the right-of-
way of vehicle V2 according to the traffic rule named r. For example,
the rule above is named with the term stopAtSign. Note that upper-
case terms are variables and lower-case terms are constants. In the
next section, we will see examples of choice rules used to search
through possible orders between events, and constraints used to
restrict the search space.

steering
constraints

acceleration
bounds

traffic
rulescollisions

goal
reach

speed
of cars

poses
of cars

Figure 2: Test-case CSP problem.

We use the notion of perceptible order to model ordering of events
in traffic rules. The parameter minimum perceptible time difference
is a threshold beyond which events are considered simultaneous
from the perspective of traffic rules. Suppose that 𝑚 represents
this parameter, and let 𝑠, 𝑡 be two moments in time. Then 𝑠, 𝑡 are
perceptibly simultaneous if |𝑠 − 𝑡 | < 𝑚. Otherwise, 𝑠 perceptibly
precedes 𝑡 or vice versa, if 𝑚 ≤ 𝑡 − 𝑠 or 𝑚 ≤ 𝑠 − 𝑡 , respectively.
Perceptible simultaneity is not transitive since |𝑟 − 𝑠 | < 𝑚 and
|𝑠 − 𝑡 | < 𝑚 do not imply |𝑟 − 𝑡 | < 𝑚. Therefore, perceptible order
is not a partial order. In contrast, temporal order, i.e. the standard
real number order of time points, is a partial order. Consequently,
we use separate binary relations to represent perceptible order and
temporal order.

3 TEST-CASE GENERATION
Given a solvable test-case (referred to as the old test-case), the
problem is to find a new solvable test-case that is more complex.
We model this search problem as a constraint-satisfaction problem
(CSP). First we explain this search problem, then we present our
search algorithm.

3.1 Test-case search problem
The search variables are the behaviors of the new non-egos, a com-
plexity certificate, and a solvability certificate. The complexity cer-
tificate is an ego behavior that solves the old test-case, but fails
the new test-case. The solvability certificate is an ego behavior that
solves the new test-case. The set of new non-egos and their routes
through the intersection are given as parameters rather than as
search variables.2 As discussed in the previous section, we do not
change the behaviors of the old non-egos so they are fixed param-
eters. The rest of the parameters, such as the scenery and traffic
rules, are given by the old test-case.

There are three types of constraints imposed by the pass-fail
criteria, to generate a more-complex and solvable test-case. First
is collision avoidance, which regards the shape of each car, and its
location and orientation at each time relative to other cars. The
locations and orientations are themselves constrained by physics,
such as limited forces available to accelerate or brake, and bounded
range for steering angles. Second is goal-reach, which regards over-
lap of a trajectory with a region in the scenery. This in turn is
constrained by physics of car motion, and also the scenery. Third
is traffic rules, which regards the lane events, stop events, etc. This

2The reason we did not extend our algorithm to automatically select values for these
parameters is that it is not clear how to do significantly better than a brute-force
approach. Furthermore, a manual parameter assignment gives more control over the
search.

Automatic Generation of Test-cases of Increasing Complexity for Autonomous Vehicles at Intersections Milan ’22, May 04–06, 2022, Milan, Italy

depends on the logic of traffic rules, geometry of lanes, location
and orientation of the cars at each time, also each car’s shape. The
space of possible complexity and solvability certificates depends
on the choice of new non-ego behaviors. Therefore, the search for
the new non-egos has to be done simultaneously as the search for
the certificates.

Our proposed approach is to decompose the CSP problem into
three subproblems, where each subproblem is suitable to a special-
ized technique. In particular, we use simulation and closed-loop
control to find a sequence of poses that satisfies the steering con-
straints and goal-reach. We use ASP to find possible orderings of
events that satisfy the required traffic rules violations or compli-
ance. Finally, we use SMT to find timing of poses that satisfy the
analytical constraints on the longitudinal motion e.g. smoothness
of speed, bounded longitudinal acceleration, negligible speed at
stop events, etc. Our decomposition of the problem is shown in
Figure 2. The first subproblem finds the poses of cars, while the
second and third subproblems find the speed of cars.

The new non-egos should not collide with the old non-egos since
a collision may alter an old non-ego’s trajectory which violates our
guarantee of comparability of test-case complexities.

The complexity certificate is an ego behavior that passes the old
test-case, but fails the new test-case. The constraints that guarantee
such a behavior are as follows. The behavior should avoid colliding
with the old non-egos, respect traffic signs and the right-of-way of
old non-egos, and reach ego’s goal, to pass the old test-case. The
behavior should avoid colliding with the new non-egos, so that it is
a physically valid behavior in the old test-case where the collision
forces of the new non-egos are absent. Since the behavior respects
traffic signs and does not collide with the new non-egos, the only
way for it to fail the new test-case is to violate the right-of-way of
at least one of the new non-egos.

The solvability certificate is an ego behavior that passes the new
test-case. That is, the behavior does not collide with the old or new
non-egos, respects traffic signs and the right-of-way of both the
old and new non-egos, and reaches ego’s goal.

3.2 Test-case generation algorithm
Our algorithm has three main steps. These steps are highlighted
with red, green and blue in Figure 3.

3.2.1 Step 1: pose generation. The first step is to determine the
poses of each car such that they satisfy the car’s steering constraints.
Two consecutive poses 𝑝1, 𝑝2 at times 𝑡1, 𝑡2 respectively, satisfy the
constraint if and only if there exists a steering input as a function
of time over the interval [𝑡1, 𝑡2] that drives the car from 𝑝1 to 𝑝2.
Note that a pose specifies both the location and the orientation of
the car. The constraint depends on the steering mechanism of each
car e.g. steering axles, maximum steering angles, wheelbase, etc.

The algorithm drives each car using a steering controller in a
physics simulation, so the generated pose-sequence satisfies the
steering constraints. The steering controller tracks the centerline of
the car’s route. A speed controller is used to track a constant speed.
See Figure 4 for a pose sequence. A location is shown by a dot and
the orientation is implied by the tangent to the dot sequence.

old test-case

pose generation

ASP solver
lane
events

poses of
cars

new cars

no test-case
found!

all events &
their order

SMT solver

... more ASP
solutions?

speed of cars

Y N

trajectories

new
test-case

scenery

collision?

N

Y

UNSAT

UNSAT

complexity
certificate

solvability
certificate

Figure 3: The test-case generation algorithm.

Figure 4: Two poses at which lane events happen are shown
with arrows, and the car’s shape with rectangles.

If the two ego trajectories (candidates for complexity and solv-
ability certificates) reach ego’s goal, our algorithm proceeds to Step
2. Note that the new non-egos do not need to reach their goal.

Otherwise, the algorithm stops and returns with failure. If we
have a solvability certificate for the old test-case, we can simply
use its poses and skip the simulations of ego, so Step 1 would not
fail.

3.2.2 Step 2: deciding order of events. This step finds all possible
order of events such that one of the ego behaviors would qualify as
a complexity certificate, and the other as a solvability certificate.
The set of events and their perceptible order affect the traffic rules
violations. Some of this information is already fixed by the behavior
of old non-egos. The lane events of each new car are computed from
its pose sequence from Step 1, the car’s shape, and scenery’s lane
geometry. Furthermore, for each car, the temporal order between
its lane events are implied by the poses at which they happen and
the order between poses in the sequence. Each event is assigned a
symbolic time such that simultaneous lane events are assigned the

Milan ’22, May 04–06, 2022, Milan, Italy Karimi and Duggirala

same time symbol. It remains to determine what stop events should
happen and what is the perceptible order between all events.

Therefore, this step is a CSP where the search variables are the
stop events and the perceptible order between events. The search
space is finite since there are only a finite number of events and
possible order between them. The constraints include the old events
and their temporal and perceptible order, the new lane events and
their temporal order, and the complexity and solvability criteria.
Our algorithm specifies this search problem as an ASP program
and solves it with an ASP solver.

The perceptible order between time symbols is represented by
two binary relations equal() and lessThan(). If we instruct the ASP
solver to make a choice about the perceptible order of every pair of
time symbols, we make the search space unnecessarily big. Instead,
we manually go through the set of traffic rules and add a choice
rule only for each pair of events that their perceptible order matters
to the right-of-way violations. This manual derivation has to be
done only once for each traffic rule, say after modeling the traffic
rules for an intersection. For example, consider the traffic rule

“The driver of a vehicle approaching an intersection
shall yield the right-of-way to any vehicle which has
entered the intersection from a different highway,”

and its ASP encoding
violatesRightOfForRule(V1, V2, yieldToInside):-

enteredForkAtTime(V1, F1, Te1),
enteredForkAtTime(V2, F2, Te2),
onDifferentHighways(F1, F2),
requestedLane(V1, L1), requestedLane(V2, L2),
overlaps(L1, L2),
lessThan(Te2, Te1),
leftLaneAtTime(V2, L1, T1),
enteredLaneAtTime(V1, L2, T2),
lessThan(T2, T1).

For this rule, we only need a choice for lessThan(Te2, Te1):
{equal(Te1,Te2); lessThan(Te1,Te2); lessThan(Te2,Te1)}=1 :-

enteredForkAtTime(V1, F1, Te1),
enteredForkAtTime(V2, F2, Te2),
onDifferentHighways(F1, F2),
requestedLane(V1, L1), requestedLane(V2, L2),
overlaps(L1, L2).

and a choice for lessThan(T2, T1):
{equal(T1, T2); lessThan(T1, T2); lessThan(T2, T1) } = 1 :-

enteredForkAtTime(V1, F1, Te1),
enteredForkAtTime(V2, F2, Te2),
onDifferentHighways(F1, F2),
requestedLane(V1, L1), requestedLane(V2, L2),
overlaps(L1, L2),
lessThan(Te2, Te1),
leftLaneAtTime(V2, L1, T1),
enteredLaneAtTime(V1, L2, T2).

Temporal order is different from perceptible order as discussed
earlier. The temporal order between time symbols is represented
using a binary relation realLTE(). The ‘LTE’ stands for Less-Than-
or-Equal-to and emphasizes that the binary relation is a partial
order (and so transitive). The ‘real’ emphasizes the intended mean-
ing of this relation as the order between real numbers. The order
between real numbers is total but realLTE() is partial, since the

temporal order between lane events of two different cars are not
physically constrained and may not matter to traffic rules violations
either. In particular, time symbols s,t are simultaneous if and only if
realLTE(s,t) and realLTE(t,s), s precedes t if and only if realLTE(s,t)
and not realLTE(t,s), and the order is unknown (and unimportant)
if and only if not realLTE(s,t) and not realLTE(t,s). For each new car,
the temporal order between its lane events are already determined
by Step 1, and are added as facts to the ASP program.

The new lane events, determined from Step 1, are added to
the ASP program as facts. The time symbol of each event is used
as a parameter of the fact. For example, the term t1 in the fact
enteredLaneAtTime(car1, road258_lane0, t1) is its time symbol.

Each old event is also added to the ASP program as a fact. Even
though the real number value of time is known for old events, time
symbols are instantiated so that old events can be represented as
facts in the ASP program. The temporal and perceptible order of
old events are determined from the numerical time of those events.
The temporal and perceptible order between an old event and a
new event is not a known fact and will be determined by the choice
rules.

The occurrence of a stop event (at a stop sign) is a search variable,
so we instruct the ASP solver to make a choice:
{stoppedAtForkAtTime(V, F, @time(V, stop))} = 1 :-

arrivedAtFork(V, F), hasStopSign(F),
not violatedRule(V, stopAtSign).

The term @time(V, stop) is simply the time symbol assigned to the
stop event of car V. If a stop event happens, then it must be percep-
tibly after the car has arrived at the intersection and perceptibly
before it entered the intersection.
lessThan(T1, T) :-

arrivedAtForkAtTime(V, F, T1),
stoppedAtForkAtTime(V, F, T).

lessThan(T, T2) :-
stoppedAtForkAtTime(V, F, T),
enteredForkAtTime(V, F, T2).

The ego behavior that is a candidate for a complexity certificate
must satisfy the following constraints. Let illegal be the name of
the car, v1,...,vN be the list of new non-egos, and old() be true of
the old non-egos. The first constraint says that illegal does not
violate the right-of-way of old non-egos:
:- old(V), violatesRightOf(illegal, V).

The second constraint says that illegal does not violate any other
traffic rules, say stopping at a stop sign:
:- violatesRule(illegal, _).

These two constraints require illegal’s behavior to be a solution
for the old test-case. The third constraint says that illegal violates
the right-of-way of at least one of the new non-egos:
:- not violatesRightOf(illegal, v1), ...,

not violatesRightOf(illegal, vN).

Hence illegal’s behavior fails the new test-case.
The ego behavior that is a candidate for a solvability certificate

must satisfy the following constraints. Let ego be the name of the
car, and nonego() be true of both the old and the new non-egos. The
first constraint says that ego does not violate the right-of-way of
any non-egos:
:- nonego(V), violatedRightOf(ego, V).

Automatic Generation of Test-cases of Increasing Complexity for Autonomous Vehicles at Intersections Milan ’22, May 04–06, 2022, Milan, Italy

Figure 5: A composite cubic Bezier curve.

The second constraint says that ego does not violate any other traffic
rules either:
:- violatedRule(ego, _).

Hence ego’s behavior solves the new test-case.
If there are no ASP solutions, the ASP solver returns ‘unsatisfi-

able’ and our algorithm stops with failure.
If the ASP program is satisfiable, the ASP solver enumerates all

the solutions, which are finitely many. This step passes the ASP
solutions one-by-one to the next step to check if each yields a final
solution. If a final solution is found (in Step 3), the algorithm either
stops and returns the result, or it tries to find more solutions by
continuing through the list of ASP solutions, depending on which
option the user wants.

3.2.3 Step 3: generating the speed of cars. In this step we determine
how fast each car moves along its sequence of poses fixed in Step 1.
The speed profile determines the time at which each lane event or
stop event happens, which must preserve the order relations fixed
in Step 2. This step is again a CSP where the search variables are
numerical values of the new time symbols, and a time-to-distance-
travelled mapping for each car. The speed of a car is the slope of
this mapping. The constraints include occurrence of stop events, the
relations realLTE(), lessThan(), and equal() between time symbols,
numerical values of old time symbols, and bounds on longitudinal
accelerations. Our algorithm specifies this search problem as a
system of polynomial equations and inequalities and solves it with
an SMT solver.

A real-valued variable 𝑇 is assigned for each new time symbol 𝑡
that appears in equal(), lessThan(), or a stop event. These are the only
new time symbols that are potentially consequential to traffic rules,
due to our custom choice rules (in Step 2) for perceptible order.3
The rest of the new time symbols are for lane events (that were not
consequential to the right-of-way violations,) and their numerical
value can be determined from their car’s time-to-distance-travelled
mapping (after it is found) and their distance.

We use piecewise cubic polynomial functions in the form of
composite Bezier curves to represent the distance travelled by a
car as function of time. The coefficients of the polynomials are in
the form of control points. The crucial property for our purposes is
the local control property. That is, changing a control point, affects
the function only locally. For example, if an SMT solver has fixed
the first few control points to control the speed of a car before
entering the intersection, it can change later control points, say
3This restriction reduces the number of search variables and constraints, thus simplifies
the SMT search problem significantly.

(a) Curve bounded between the
heights of endpoints.

(b) Curve created a new lane
event at a vertical dotted line.

Figure 6: No-new-lane-event constraint.

for inside the intersection, without invalidating the speed before
entrance. Cubic Bezier curves have four control points. The first
and the last control points are interpolating points, meaning that
the curve passes through those points. The second and the third
points determine the slope of the curve at the first and the last point,
respectively. See Figure 6 for examples. A composite Bezier curve is a
sequence of Bezier curves where the end of each segment is the start
of the next segment. See Figure 5 for an example. The red diamonds
and green dots indicate the interpolating and intermediate control
points of the segments, respectively. See [5] for more on Bezier
curves.

The representation of a time-to-distance mapping is as follows.
For each pair of time variables 𝑇𝑖 ,𝑇𝑖+1 of a car that are consecutive
(with respect to the realLTE() order between their time symbols),
a cubic Bezier segment is instantiated. The four control points of
the segment are (𝑇𝑖 , 𝑑𝑖), (𝑇𝑖 + 𝑇𝑖+1−𝑇𝑖

3 , 𝑑𝑖,1), (𝑇𝑖 + 2(𝑇𝑖+1−𝑇𝑖)
3 , 𝑑𝑖,2),

and (𝑇𝑖+1, 𝑑𝑖+1). Here 𝑑𝑖,1 and 𝑑𝑖,2 are real-valued variables; 𝑑𝑖 is
the travelled distance for the event corresponding to 𝑇𝑖 which is
a determined number for a lane event, and a real-valued variable
otherwise; and 𝑑𝑖+1 is defined similarly. Furthermore, the first seg-
ment has the control points (0, 0), (𝑇13 , 𝑑0,1), (

2𝑇1
3 , 𝑑0,2), (𝑇1, 𝑑1); and

the last segment has the control points (𝑇𝑛, 𝑑𝑛), (𝑇𝑛 + 𝑇𝑀−𝑇𝑛
3 , 𝑑𝑛,1),

(𝑇𝑛 + 2(𝑇𝑀−𝑇𝑛)
3 , 𝑑𝑛,2), (𝑇𝑀 , 𝑑𝑀), where is 𝑇𝑀 is the duration of the

scenario, and 𝑑𝑀 is the total travelled distance of the car as deter-
mined in Step 1.

The perceptible order constraint is specified as follows. For a
time symbol 𝑡 , let 𝑣 (𝑡) be its numerical value if 𝑡 is for an old
event, otherwise let 𝑣 (𝑡) be its assigned time variable 𝑇 . Now for
any time variable 𝑆 , if equal(s,t) or equal(t,s) then we require |𝑆 −
𝑣 (𝑡) | < 𝑚, if lessThan(s,t) then we require 𝑚 ≤ 𝑣 (𝑡) − 𝑆 , and if
lessThan(t,s) then we require𝑚 ≤ 𝑆−𝑣 (𝑡), where𝑚 is the minimum
perceptible time difference. As for temporal order, if realLTE(s,t) and
not realLTE(t,s) then we require 𝑆 < 𝑣 (𝑡). Similarly if realLTE(t,s)
and not realLTE(s,t) then we require 𝑣 (𝑡) < 𝑆 .

We must ensure that the Bezier interpolation does not create new
lane events consequential to right-of-way. In Figure 6(b), suppose
that the right endpoint of the curve represents entering a lane.
The height of the curve reaches the height of the right endpoint at
the vertical dotted lines which implies that the car enters the lane
sooner than intended. We prevent new lane events by requiring
that the heights of the intermediate control points be between the

Milan ’22, May 04–06, 2022, Milan, Italy Karimi and Duggirala

heights of the endpoints.

𝑑𝑖 ≤ 𝑑𝑖,1 ≤ 𝑑𝑖+1, 𝑑𝑖 ≤ 𝑑𝑖,2 ≤ 𝑑𝑖+1 .

Then the convex hull property implies that the whole interpolated
Bezier segment stays within its endpoint heights, e.g. as in Fig-
ure 6(a).

The longitudinal acceleration constraints are as follows. The
second derivative of a cubic polynomial is linear so its extrema
over a closed interval are achieved at the endpoints. For an interval
[𝑇𝑖 ,𝑇𝑖+1], the second derivatives at endpoints are

𝑎𝑖 =
6(𝑑𝑖 − 2𝑑𝑖,1 + 𝑑𝑖,2)

(𝑇𝑖+1 −𝑇𝑖)2
, 𝑎𝑖+1 =

6(𝑑𝑖,1 − 2𝑑𝑖,2 + 𝑑𝑖+1)
(𝑇𝑖+1 −𝑇𝑖)2

.

Therefore, if 𝑎𝑚 and 𝑎𝑀 are respectively the minimum and maxi-
mum bounds on longitudinal acceleration, we require

𝑎𝑚 ≤ 𝑎𝑖 ≤ 𝑎𝑀 , 𝑎𝑚 ≤ 𝑎𝑖+1 ≤ 𝑎𝑀 .

These inequalities are quadratic since we can remove the fractions
by multiplying the inequalities by (𝑇𝑖+1 −𝑇𝑖)2.

Our scenarios do not include collision events, as discussed in
§3.1, so the speed of a car, i.e. the slope of the time-distance curve,
must be continuous. Each segment of a composite Bezier curve is a
smooth function since it is a polynomial. At interpolating points
between two consecutive segments, we force the slopes on both
sides to be equal with the quadratic equation

𝑑𝑖 − 𝑑𝑖−1,2
𝑇𝑖 −𝑇𝑖−1

=
𝑑𝑖,1 − 𝑑𝑖

𝑇𝑖+1 −𝑇𝑖
.

A stop event implies a constraint on the instantaneous speed
of the car. If 𝑇𝑖 is a time variable for a stop event, we require the
instantaneous speed at 𝑇𝑖 to be within a threshold 𝑣𝑠𝑡𝑜𝑝 ≥ 0:

𝑑𝑖,1 − 𝑑𝑖
1
3 (𝑇𝑖+1 −𝑇𝑖)

≤ 𝑣𝑠𝑡𝑜𝑝

If a car violates a stop sign, we require the instantaneous speed
between arrival at and entrance to the intersection to be at least a
threshold 𝑣𝑟𝑢𝑛 where 𝑣𝑟𝑢𝑛 > 𝑣𝑠𝑡𝑜𝑝 . It is sufficient to force the slope
to not have a local minimum over the interval, and the slopes at
the endpoints to be at least 𝑣𝑟𝑢𝑛 . For the slope of the function to
not have a local minimum over the interval, the second derivative
should not change from negative to positive:

¬(𝑎𝑖 < 0 ∧ 𝑎𝑖+1 > 0)
which is equivalent to the linear inequalities

𝑑𝑖 − 2𝑑𝑖,1 + 𝑑𝑖,2 ≥ 0 ∨ 𝑑𝑖,1 − 2𝑑𝑖,2 + 𝑑𝑖+1 ≤ 0.

The lower bound on endpoint slopes are specified with the linear
inequalities

𝑑𝑖,1 − 𝑑𝑖
1
3 (𝑇𝑖+1 −𝑇𝑖)

≥ 𝑣𝑟𝑢𝑛,
𝑑𝑖+1 − 𝑑𝑖,2
1
3 (𝑇𝑖+1 −𝑇𝑖)

≥ 𝑣𝑟𝑢𝑛 .

If the SMT solver returns ‘unsatisfiable’, Step 3 is repeated with
the next ASP solution, if any. If no ASP solution remains, the algo-
rithm returns with no solutions.

If the SMT solver returns a solution, i.e. coordinates of the control
points, we can sample points on the time-distance curves using the
standard de Casteljau algorithm for Bezier curve computation. This
gives the time-to-distance-travelled mapping. Composing this with
the travelled distance at each pose, we get the pose at each time.

4 EVALUATION
We demonstrate the capabilities of our approach by generating
test-cases for three different situations:

(1) left turn at a multi-lane 4-way stop,
(2) left turn at a T-intersection from the continuing highway to

the terminating highway,
(3) left turn at a 3-way uncontrolled Y-intersection.

For each of these static environments, we generate a sequence of
increasingly complex test-cases. The videos and logs of the test-
cases, also the traffic rules’ encoding in Clingo [11], are available on
the web4. The solvability and complexity certificates are visualized
in the videos with green and red egos, respectively.

CARLA has several built-in autopilot software that have access
to the full simulation state. We subject two specific autopilot agents
to the test suite which are automatically generated by our algorithm.
We observe that autopilot can fail as we increase the complexity of
the test-cases. Finally, we test CARLA’s autopilot when Intel’s Re-
sponsibility Sensitive Safety (RSS) is added to safeguard autopilot’s
actions. We observe fewer failures when RSS is enabled, but still
autopilot-plus-RSS doesn’t pass all the test-cases.

Our straightforward attempt using Scenic’s probabilistic pro-
gramming failed to find solutions to the search problem. The search
space is uncountably infinite so there are too many ways to modify
a failed sample. On the other hand, the solution space is highly
restricted with continuous and discrete constraints and intertwined
dependencies, as explained in the previous section. More specif-
ically, traffic rules depend on only a few discrete events, so they
partition the search space into big equivalence classes. Probabilistic
mutation of trajectories is searching for a target class by walking
within big classes and looking for their boundaries. In contrast, our
ASP approach is identifying all the target classes by looking from
the above, then searching for a sample within each of them.

4.1 Results
We use Scenic [8] as an interface to CARLA to execute a generated
test-case, e.g. to test CARLA’s autopilot (playing the role of ego).

Four-way Stop: The first example demonstrates making incre-
mentally more complex test-cases by adding more non-egos. The
goal of ego is to make a left turn from a four-way stop. Ego starts
from the bottom side of the intersection in Figure 7 and must exit
the intersection from the left side. We generate three test-cases,
each more complex than the previous one. In the first test-case
a non-ego is added that enters the intersection from the left and
passes straight through the intersection. In the second test-case
(visualized in Figure 7), a non-ego is added that approaches from
the top, the opposite side of ego, and passes straight through the
intersection. In the third test-case, a non-ego is added that ap-
proaches also from the left but the other lane of the road, and
passes straight through the intersection. Both CARLA’s autopilot
and autopilot-plus-RSS pass the first test-case. Autopilot fails the
second test-case while autopilot-plus-RSS passes it. Finally, both
autopilot and autopilot-plus-RSS fail the third test-case. See the
videos for even more complex extensions of this test-case.

4https://www.dropbox.com/sh/e6q4hw98ert5yj7/AAAgo7IlYRKg-rYs7Q9GyMx9a?
dl=0

https://www.dropbox.com/sh/e6q4hw98ert5yj7/AAAgo7IlYRKg-rYs7Q9GyMx9a?dl=0
https://www.dropbox.com/sh/e6q4hw98ert5yj7/AAAgo7IlYRKg-rYs7Q9GyMx9a?dl=0

Automatic Generation of Test-cases of Increasing Complexity for Autonomous Vehicles at Intersections Milan ’22, May 04–06, 2022, Milan, Italy

(a) car2 arrives. (b) car2 enters.

(c) illegal enters car2’s route. (d) ego enters car2’s route.

Figure 7: Left turn from a 4way-stop.

(a) car2 approaches (passes the
red line) before illegal enters
car2’s route

(b) illegal does not yield to car2

Figure 8: Unprotected left turn from continuing highway.

T-intersection: The goal of ego is to perform an unprotected
left turn from the continuing highway to the terminating highway
of the T-intersection shown in Figure 8. Ego approaches the inter-
section from the right side and must make a left turn to enter the
road on the bottom. This example demonstrates that we can add
multiple non-egos to a test-case simultaneously. Starting with an
empty test-case, our test-case generator addsmultiple non-egos that
pass straight through the intersection from left to right. CARLA’s
autopilot fails this test-case but autopilot-plus-RSS passes it.

Y-intersection: The third example demonstrates that we can
add a non-ego whose route does not conflict ego’s route, as long as
we add also a non-egowhose route has a conflict so that the test-case
can become more complex. Autopilot fails this test-case. Running
Autopilot-plus-RSS results in a segmentation fault which seems to
be due to a bug in CARLA’s map or integration of RSS. Ego’s goal
is to approach from right and make a left turn to the bottom of the
intersection. The conflicting non-ego, car1, approaches from the
bottom, makes a left turn and exits from the top left corner of the
intersection. The non-conflicting non-ego, car2, also approaches
from the bottom, but makes a right turn and exits from the right
side of the intersection.

(a) car1 enters earlier than ego
and illegal.

(b) illegal already exited from the
bottom but ego waited for car1.

Figure 9: Unprotected left turn from an uncontrolled Y-
intersection.

5 CONCLUSIONS
In this paper we proposed a formal definition of test-case complexity
and an algorithm for generating test-case scenarios that progres-
sively become more complex. In particular, our algorithm can use
traffic rules (modeled in ASP) to generate a more complex test-case.
We use Scenic for executing a test-case in a CARLA simulation.
We demonstrated the applicability of our approach by generating
test-cases for three different types of intersections with different
topologies and vehicle behaviors.

In this work, the order of events leading to a violation was solved
by ASP, using the traffic rules and symbolic constants for event
timings. Then, using an SMT solver, the symbolic times were in-
stantiated with real numbers, and smooth speeds were generated
using Bezier parametrization of their time-distance functions.

ACKNOWLEDGMENT
We thank the anonymous reviewers who provided valuable feed-
back on earlier drafts of this paper. The authors would like to
acknowledge the support of the Air Force Office of Scientific Re-
search under award number FA9550-19-1-0288, National Science
Foundation (NSF) under grant numbers CNS 1935724, 2038960, and
Amazon Research Award. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United
States Air Force, National Science Foundation, or Amazon.

Milan ’22, May 04–06, 2022, Milan, Italy Karimi and Duggirala

REFERENCES
[1] Maria-Virginia Aponte, Guillaume Levieux, and Stephane Natkin. 2011. Measur-

ing the level of difficulty in single player video games. Entertainment Computing
2, 4 (2011), 205–213.

[2] Gerrit Bagschik, Till Menzel, and Markus Maurer. 2018. Ontology based scene
creation for the development of automated vehicles. In 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 1813–1820.

[3] California law. [n. d.]. Rules of the road. http://leginfo.legislature.ca.gov/
faces/codes_displayexpandedbranch.xhtml?tocCode=VEH&division=11.&title=
&part=&chapter=&article=. Accessed: 2021-01-28.

[4] Alessandro Calò, Paolo Arcaini, Shaukat Ali, Florian Hauer, and Fuyuki Ishikawa.
2020. Generating avoidable collision scenarios for testing autonomous driving
systems. In 2020 IEEE 13th International Conference on Software Testing, Validation
and Verification (ICST). IEEE, 375–386.

[5] Gerald E Farin. 2002. Curves and surfaces for CAGD: a practical guide. Morgan
Kaufmann.

[6] Shuo Feng, Yiheng Feng, Haowei Sun, Shan Bao, Yi Zhang, and Henry X Liu. 2020.
Testing scenario library generation for connected and automated vehicles, part
II: Case studies. IEEE Transactions on Intelligent Transportation Systems (2020).

[7] Shuo Feng, Yiheng Feng, Chunhui Yu, Yi Zhang, and Henry X Liu. 2020. Test-
ing scenario library generation for connected and automated vehicles, Part I:
Methodology. IEEE Transactions on Intelligent Transportation Systems 22, 3 (2020),
1573–1582.

[8] Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu
Yue, Alberto L. Sangiovanni-Vincentelli, and Sanjit A. Seshia. 2020. Scenic: A Lan-
guage for Scenario Specification and Data Generation. arXiv:2010.06580 [cs.PL]

[9] Daniel J Fremont, Edward Kim, Yash Vardhan Pant, Sanjit A Seshia, Atul Acharya,
Xantha Bruso, PaulWells, Steve Lemke, Qiang Lu, and Shalin Mehta. 2020. Formal
scenario-based testing of autonomous vehicles: From simulation to the real world.
In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 1–8.

[10] Feng Gao, Jianli Duan, Yingdong He, and Zilong Wang. 2019. A test scenario
automatic generation strategy for intelligent driving systems. Mathematical
Problems in Engineering 2019 (2019).

[11] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Patrick Lühne, Philipp
Obermeier, Max Ostrowski, Javier Romero, Torsten Schaub, Sebastian Schellhorn,
and Philipp Wanko. 2018. The potsdam answer set solving collection 5.0. KI-
Künstliche Intelligenz 32, 2 (2018), 181–182.

[12] Aron Harder, Jaspreet Ranjit, and Madhur Behl. 2021. Scenario2Vector: scenario
description language based embeddings for traffic situations. In Proceedings of
the ACM/IEEE 12th International Conference on Cyber-Physical Systems. 167–176.

[13] Abolfazl Karimi and Parasara Sridhar Duggirala. 2020. Formalizing traffic rules
for uncontrolled intersections. In 2020 ACM/IEEE 11th International Conference
on Cyber-Physical Systems (ICCPS). IEEE, 41–50.

[14] Baekgyu Kim, Takato Masuda, and Shinichi Shiraishi. 2019. Test specification
and generation for connected and autonomous vehicle in virtual environments.
ACM Transactions on Cyber-Physical Systems 4, 1 (2019), 1–26.

[15] Moritz Klischat and Matthias Althoff. 2019. Generating critical test scenarios
for automated vehicles with evolutionary algorithms. In 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2352–2358.

[16] Moritz Klischat and Matthias Althoff. 2020. Synthesizing traffic scenarios from
formal specifications for testing automated vehicles. In 2020 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2065–2072.

[17] Yihao Li, Jianbo Tao, and Franz Wotawa. 2020. Ontology-based test generation
for automated and autonomous driving functions. Information and software
technology 117 (2020), 106200.

[18] Vladimir Lifschitz. 2010. Thirteen definitions of a stable model. In Fields of logic
and computation. Springer, 488–503.

[19] Michael Genesereth and Eric Kao. 2019. Herbrand Semantics. http://logic.
stanford.edu/herbrand/herbrand.html.

[20] Matthew O’Kelly, Aman Sinha, Hongseok Namkoong, John Duchi, and Russ
Tedrake. 2018. Scalable end-to-end autonomous vehicle testing via rare-event
simulation. arXiv preprint arXiv:1811.00145 (2018).

[21] Yunlong Qi, Yugong Luo, Keqiang Li, Wei Kong, and Yongsheng Wang. 2019. A
trajectory-based method for scenario analysis and test effort reduction for highly
automated vehicle. Technical Report. SAE Technical Paper.

[22] Stefan Riedmaier, Thomas Ponn, Dieter Ludwig, Bernhard Schick, and Frank
Diermeyer. 2020. Survey on scenario-based safety assessment of automated
vehicles. IEEE Access 8 (2020), 87456–87477.

[23] Cumhur Erkan Tuncali, Georgios Fainekos, Danil Prokhorov, Hisahiro Ito, and
James Kapinski. 2019. Requirements-driven test generation for autonomous
vehicles with machine learning components. IEEE Transactions on Intelligent
Vehicles 5, 2 (2019), 265–280.

[24] Cumhur Erkan Tuncali, Theodore P Pavlic, and Georgios Fainekos. 2016. Utilizing
S-TaLiRo as an automatic test generation framework for autonomous vehicles.
In 2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 1470–1475.

[25] Simon Ulbrich, Till Menzel, Andreas Reschka, Fabian Schuldt, and Markus Mau-
rer. 2015. Defining and substantiating the terms scene, situation, and scenario
for automated driving. In 2015 IEEE 18th International Conference on Intelligent
Transportation Systems. IEEE, 982–988.

[26] Jiajie Wang, Chi Zhang, Yuehu Liu, and Qilin Zhang. 2018. Traffic sensory data
classification by quantifying scenario complexity. In 2018 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 1543–1548.

[27] Qin Xia, Jianli Duan, Feng Gao, Tao Chen, and Cai Yang. 2017. Automatic
generation method of test scenario for ADAS based on complexity. Technical
Report. SAE Technical Paper.

[28] Qin Xia, Jianli Duan, Feng Gao, Qiuxia Hu, and Yingdong He. 2018. Test sce-
nario design for intelligent driving system ensuring coverage and effectiveness.
International Journal of Automotive Technology 19, 4 (2018), 751–758.

[29] Ziyuan Zhong, Gail Kaiser, and Baishakhi Ray. 2021. Neural Network Guided
Evolutionary Fuzzing for Finding Traffic Violations of Autonomous Vehicles.
arXiv preprint arXiv:2109.06126 (2021).

A TRAFFIC RULES
In this section, we list the traffic rules used in our experiments,
taken from California Law5:

(1) “The driver of a vehicle approaching an intersection shall
yield the right-of-way to any vehicle which has entered the
intersection from a different highway.” [3, section 21800
(a)]

(2) “When two vehicles enter an intersection from different
highways at the same time and the intersection is con-
trolled from all directions by stop signs, the driver of the
vehicle on the left shall yield the right-of-way to the vehi-
cle on his or her immediate right.” [3, section 21800 (c)]

(3) “This section does not apply to any of the following: (1)
Any intersection controlled by an official traffic control
signal or yield right-of-way sign. (2) Any intersection
controlled by stop signs from less than all directions. (3)
When vehicles are approaching each other from opposite
directions and the driver of one of the vehicles intends to
make, or is making, a left turn.” [3, section 21800 (e)]

(4) “The driver of a vehicle intending to turn to the left or to
complete a U-turn upon a highway, or to turn left into
public or private property, or an alley, shall yield the
right-of-way to all vehicles approaching from the opposite
direction which are close enough to constitute a hazard at
any time during the turningmovement, and shall continue
to yield the right-of-way to the approaching vehicles until
the left turn or U-turn can bemade with reasonable safety.”
[3, section 21801 (a)]

(5) “A driver having yielded as prescribed in subdivision (a),
and having given a signal when and as required by this
code, may turn left or complete a U-turn, and the drivers
of vehicles approaching the intersection or the entrance
to the property or alley from the opposite direction shall
yield the right-of-way to the turning vehicle.” [3, section
21801 (b)]

(6) “The driver of any vehicle approaching a stop sign at the
entrance to, or within, an intersection shall stop at a limit
line, if marked, otherwise before entering the crosswalk
on the near side of the intersection.” [3, section 22450 (a)]

(7) “The driver of any vehicle approaching a stop sign at
the entrance to, or within, an intersection shall stop as

5sections 21800-21802 from Vehicle Code (VEH), Division 11 (Rules of the road),
Chapter 4 (Right-of-Way)

http://leginfo.legislature.ca.gov/faces/codes_displayexpandedbranch.xhtml?tocCode=VEH&division=11.&title=&part=&chapter=&article=
http://leginfo.legislature.ca.gov/faces/codes_displayexpandedbranch.xhtml?tocCode=VEH&division=11.&title=&part=&chapter=&article=
http://leginfo.legislature.ca.gov/faces/codes_displayexpandedbranch.xhtml?tocCode=VEH&division=11.&title=&part=&chapter=&article=
https://arxiv.org/abs/2010.06580
http://logic.stanford.edu/herbrand/herbrand.html
http://logic.stanford.edu/herbrand/herbrand.html

Automatic Generation of Test-cases of Increasing Complexity for Autonomous Vehicles at Intersections Milan ’22, May 04–06, 2022, Milan, Italy

required by Section 22450. The driver shall then yield the
right-of-way to any vehicles which have approached from
another highway, or which are approaching so closely as
to constitute an immediate hazard, and shall continue to
yield the right-of-way to those vehicles until he or she can
proceed with reasonable safety.” [3, section 21802 (a)]

(8) “A driver having yielded as prescribed in subdivision (a)
may proceed to enter the intersection, and the drivers of
all other approaching vehicles shall yield the right-of-way
to the vehicle entering or crossing the intersection.” [3,
section 21802 (b)]

(9) “This section does not apply where stop signs are erected
upon all approaches to an intersection.” [3, section 21802
(c)]

	Abstract
	1 Introduction
	1.1 Related work

	2 Test-case complexity
	2.1 Scenario
	2.2 Test-cases and their complexity
	2.3 Formalization

	3 Test-case generation
	3.1 Test-case search problem
	3.2 Test-case generation algorithm

	4 Evaluation
	4.1 Results

	5 Conclusions
	References
	A Traffic Rules

