
Coverage-Guided Fuzz Testing for Cyber-Physical Systems
Sanaz Sheikhi

ssheikhi@cs.stonybrook.edu
Stony Brook University

Stony Brook, New York, USA

Edward Kim
ehkim@cs.unc.edu

University of North Carolina
Chapel Hill, North Carolina, USA

Parasara Sridhar Duggirala
psd@cs.unc.edu

University of North Carolina
Chapel Hill, North Carolina, USA

Stanley Bak
stanley.bak@stonybrook.edu

Stony Brook University
Stony Brook, New York, USA

ABSTRACT
Fuzz testing is an indispensable test-generation tool in software se-
curity. Fuzz testing uses automated directed randomness to explore
a variety of execution paths in software, trying to expose defects
such as buffer overflows. Since cyber-physical systems (CPS) are
often safety-critical, testing models of CPS can also expose faults.
However, while existing coverage-guided fuzz testing methods are
effective for software, results can be disappointing when applied to
CPS, where systems have continuous states and inputs are applied
at different points in time.

In this work, we propose three changes to customize coverage-
guided fuzz testing methods to better leverage characteristics of
CPS. First, we introduce a notion of coverage to be used to eval-
uate a fuzz testing algorithm’s effectiveness for a particular CPS,
analogous to often-used code coverage metrics of a software sys-
tem. Second, this modified coverage metric is used in a customized
power schedule, which selects which previous input sequences
hold the most promise to find failures in new system states. Third,
we modify the input mutation strategy used to reason with the
causal nature of a CPS. Our proposed system, which we call CPS-
Fuzz, is compared with three other fuzz testing frameworks on a
autonomous car racing software and provides a superior coverage
score by generating more crashes at different positions around the
track.

KEYWORDS
cyber-physical systems, fuzz testing, test generation, coverage met-
ric, autonomous vehicle

1 INTRODUCTION
Cyber-physical systems (CPS) are at the heart of transportation,
aerospace, autonomy, healthcare, agriculture, and defense platforms.
Since these systems carry out complex tasks, they have a complex
structure. Many CPS work in safety-critical environments and are
upgraded throughout their lifetimes, where either the software or
physical component is updated in subsequent design iterations.
Design correctness is an essential element of safety-critical CPS.

Although formal verification approaches for CPS continue to
make progress, in practice, due to large scale and high complexity,
testing is the primary means to check if a system will be function-
ing correctly. In software systems, fuzz testing is an indispensable
test-generation technique that uses directed randomness to try to
explore possible paths through software, in order to detect faults.

Fuzz testing approaches have found bugs in compilers [3], flaws
in widely-used image parsers [22], security vulnerabilities in web
browsers [30], and even soundness violations in formal reasoning
tools like SMT solvers [46]. Since the techniques are automated
and testing is easily parallelizable, the approaches can be scaled
up to run on many machines. Fuzz testing algorithms have been
running 24/7 on clusters at large companies like Microsoft and
Google for over the last ten years, finding security vulnerabilities
and saving the companies millions of dollars[21]. This poses the
pertinent question: can fuzz testing also be an effective method for
exposing problems in safety-critical CPS?

Unfortunately, generic fuzz testing approaches can be disap-
pointing when applied to a CPS. CPS have unique characteristics,
continuous states and inputs that change over time, which make
existing coverage metrics insufficient and subsequent search algo-
rithms less effective. In this paper, we seek to remedy this situation
by customizing generic fuzz testing approaches to these unique
aspects of CPS. The main contributions of this paper are as follows:

• A CPS coverage metric. This metric takes into account the
differences in continuous states of two system failures to
determine an overall test coverage score, and applies to black-
box CPS simulators.
• A customized power schedule and mutation strategy, two key
elements of coverage-based fuzz testing, based on the devel-
oped coverage metric, which targets new tests in regions
that can increase the coverage score.
• An evaluation of the proposed CPS fuzz testing framework
on autonomous racing software, using a simulated environ-
ment of the F1TENTH autonomous racing competition.

The rest of this paper is organized as follows. First, we review
related work in Section 2. Next, in Section 3, we discuss the basics
of the Fuzz testing technique. In Section 4, we present our method-
ology as a generic test-generation framework that could be used for
any CPS. In Section 5, we evaluate our framework and compares it
with other fuzz testing methods in an autonomous racing scenario.
The paper finishes with a discussion and a conclusion.

2 RELATEDWORK
Fuzz testing has become an instrumental technique in the domains
of software verification and security analysis. Ever since Miller et
al first proposed the methodology to test the reliability of UNIX
programs, fuzz testing has become an active field of research find-
ing great efficacy in software verification and security analysis

ICCPS’22, April 2022, Milan, Italy

[33], [36], [48]. Several software companies, such as Google and
Microsoft, have developed sophisticated fuzzing tools employing
a variety of techniques stemming from white-box, gray-box, and
black-box testing approaches [18], [21], [23], [28], [45].

Several works address the fuzz testing of CPS software in order
to discover security vulnerabilities [19], [37], [43]. However, there
are fewer works investigating the application of fuzz testing in
generating test cases for the CPS controller. Recently, Zhong et al
developed a fuzz testing technique called AutoFuzz to leverage Neu-
ral Networks to a guide an evolutionary search over autonomous
vehicle API inputs. The network was trained to predict if new seeds
will lead to unique traffic violations with the most promising seeds
mutated to become new adversarial inputs [49]. However, training
Neural Networks could pose a wide range of stability and conver-
gence issues such as the well-known vanishing gradient problem
[41].

Hu et al proposed a set of coverage-driven techniques labeled as
Autonomous Safety Fuzzing (ASF) [26]. These techniques included
new mutation strategies more suitable for testing autonomous vehi-
cles. Some examples include flipping a traffic light color or changing
the vehicle’s starting position. They also developed a coverage met-
ric, called trajectory coverage, which captures the amount of road
area traversed by the autonomous vehicle. To compute the metric,
the fuzz tester initially divides the traffic environment into a grid
of blocks. During a simulation, the number of blocks crossed by the
ego vehicle will be the outputted metric value.

AV-fuzzer [31] is another framework whose main difference is
that fuzzing techniques are restricted to particularly risky traffic
scenarios where safety violations are highly likely. During an ear-
lier stage, a genetic algorithm combines vehicle kinematic models
and safety constraints to find promising scenarios that are likely
to lead to a safety violation. The “local" fuzz tester takes feedback
from the genetic algorithm, as well as the discovered seed encoding
the risky traffic scenario. The fuzz tester explores local perturba-
tions according to a set of mutation strategies under the idea that
traffic scenarios with low safety potential could contain a cluster
of violations.

Finally, another approach considers Metamorphic Fuzz Testing
(MFT) [25]. On a high level, this approach differs from other fuzz
testing methods in that the driving environment changes abruptly
during the simulation phase; the traffic environment is set to delete
and impose newly-generated traffic agents every six seconds during
the simulation. The authors claim that this designed to examine
the vehicle’s behavior when the input is invalid or unexpected.
To distinguish between genuine system failures, such as planning
errors, and false positives, such as unavoidable crashes, the authors
employ a second stage check utilizing metamorphic testing [10],
[11], [50].

In contrast to the approaches mentioned above, our method does
not operate under an application-specific structure and hence is a
generic fuzz testing methodology. So, instead of aiming to generate
unique violations (e.g. based on a set of traffic rules), we attempt to
generate a large number of failures where the failure type can be
defined based on usage of the CPS. Finally, our coverage metric also
differs from that of the aforementioned approaches in the sense
that their metric is discrete (e.g. counting a discrete number of

blocks traversed by the ego vehicle), while our approach considers
continuous states of the CPS.

There are several other avenues proposed to generate test cases
for Cyber-physical systems. To start, data-driven procedures have
found uses in test case generation. In particular, Quindlen et al
consider training an SVM to classify simulation trajectories as lying
the "safe" or "unsafe" set. Furthermore, it actively samples new
trajectories and ranks them to uncover the ones which will most
improve the learning model [42].

Another approach leverages Rapidly-exploring Random Trees
(RRTs) to generate test cases for CPS controllers. Bak et al uses RRTs
to stress-test autonomous racing systems bymodifying the behavior
of other agents besides that of the ego vehicle. The large search
space of these "adversarial agent perturbations" are explored using
an RRT algorithm on a bounded projection of the simulation state
space [8]. An earlier work also devised a modified RRT algorithm
tailored towards generating test cases for motion-planning systems
[29]. The algorithm proceeds under a new distance function and
weighting scheme to account for system dynamics. Furthermore,
the sampling probability distribution adapts to tree growth and
exploration rate.

One of the widely applied techniques to discover bugs in CPS is
Falsification [7][12]. When the safety specification of a CPS is pro-
vided as a formula in Signal Temporal Logic (STL) [13], falsification
tools such as Breach [12] and S-TaLiRo [7][16] [17] employ stochas-
tic optimization tools to generate an input to CPS that would violate
the safety specification. There are two primary differences between
fuzz-testing for CPS to generate failure test cases and falsification.
First, is that falsification tools require the user to provide the specifi-
cation in a formal logic. In comparison, fuzz-testing merely requires
a failure model that specifies when is a run of CPS considered an
error. Naturally, the failure model can include assertions over the
software state as well as the state of the physical plant. Second,
the goal of falsification is to generate an example trajectory that
violates the safety specification. In contrast, the goal of fuzz testing
is to generate a set of diverse inputs to CPS that cause the system
to fail. The metric of success for a fuzz testing algorithm is not just
the number of inputs that cause the system to fail, but also generate
a coverage metric over the behaviors of CPS.

Reachability analysis has found usages in the verification of CPS.
Specifically, reachability analysis can verify the safety of a system
by attempting to compute the total region where a set of initial
states can reach within a certain amount of time [6], [4], [5]. It
has found further utility when combined with other techniques
to perform falsification of hybrid systems and closed-loop control
systems. [9], [24]. However, complex dynamics can make the exact
computation of the reachable set untenable, and current methods
may only output conservative over-approximations of the reachable
set. These factors could decrease the amenability of reachablilty
analysis for verification purposes.

3 BACKGROUND: COVERAGE-GUIDED FUZZ
TESTING

Fuzz testing, also called fuzzing, is an automated testing technique
that attempts to generate a diverse set of corner cases to ensure

Coverage-Guided Fuzz Testing for Cyber-Physical Systems ICCPS’22, April 2022, Milan, Italy

 Power

 Schedule

CPS

Mutator
Population

Seed
Manager

Figure 1: Fuzz testing architecture for CPS systems, where
green boxes are our modifications.

robustness against exploitable vulnerabilities [39]. Targets may in-
clude files, network protocols, and software. The key idea behind
fuzz testing is to stress-test the target program with automatically-
generated test cases in order to trigger pathological behavior from
the program. There exist various methods to produce suitable test
cases and the most prevalent ones are coverage-guided strategies,
genetic algorithms, symbolic execution, taint analysis, etc. These
techniques allow the modern fuzz testing methodology to become
an effective tool for revealing hidden bugs. So, as a unique testing
approach whose success can be quantified in meaningful software-
quality terms, fuzz testing plays an important theoretical and ex-
perimental role [32]. Moreover, fuzz testing has evolved to consider
the static and dynamic information of an application [35]. In this
section, we describe the coverage-guided fuzz testing.

Figure 1 presents an overview of coverage-guided fuzz testing.
The process consists of several components:
• The target program is the system-under-test (SUT), which
takes inputs and produces outputs. It could be either exe-
cutable or source code in different languages such as C++,
Python, etc. As the source code of real-world software usu-
ally can not be accessed easily, so fuzz testing tools often
target binary code. In our case, the system under test is a
CPS simulator.
• Seed: Seeds are initial inputs to be mutated and changed to
a specific degree of randomness to generate new inputs for
SUT.
• Population: The set of all inputs, and the test results, which
are fed as input into the power scheduler. We can think of the
population as a container holding seeds with the seed man-
ager being responsible for updating it. Initially, the inputs
could be user-provided or randomly-selected.
• Seed Manager: The seed manager collects inputs and out-
puts from simulations of the CPS system and organizes the

population. In our fuzz testing framework, it also keeps track
of the frequency of usage of each seed. Then power schedule
utilizes the frequency information as energy of the seeds.
• Power Schedule: Power schedule selects an input seed from
the population for mutation. It is responsible for the fair
distribution of simulation time such that promising seeds are
more likely to be chosen for simulation. In the literature, the
probability that a seed will be picked from the population is
called the seed energy. The power schedule’s task is to assign
energy to seeds based on some predefined criteria, update
seeds’ energy, and finally prioritize seeds with higher energy
for selection [48].
• Mutator: Although the essence of fuzz testing involves ran-
domness, purely random test cases are often syntactically
invalid and SUT throws them away at the early stages of
execution. So, mutation-based fuzzing is utilized to gener-
ate functionally valuable input test cases.Mutation is the
act of applying incremental changes to existing valid input
seeds such that the modified seeds still remain valid but at-
tributes new behavior. Mutation operations are often simple
manipulations of the input seeds such as inserting a random
character, omitting a character, flipping a bit, or shuffling a
byte. The component carrying out mutation operations is
called the mutator [48].

For fuzz testing CPS systems in this paper, we propose modifica-
tions to the power schedule as well as the mutator logic. They will
operate with a new notion of coverage which we propose for CPS.
These are described in more detail in the next section.

3.1 Fuzzing techniques
Broadly speaking, fuzzing techniques fall into one of three cate-
gories: white box, gray box, or black box. Membership depends on
the amount of SUT internal information they require at run-time
[27]. This information is used to guide test case generation and
could include CPU utilization, memory consumption, data flow, or
code coverage, etc.
• Black-box fuzz testers either mutate an input seed randomly
or apply some conditions on a well-formed input seed. The
mutation operations are typically bit flips, byte copies, or
byte removals, etc [27]. The drawback of black-box fuzzing is
generally low code coverage due to an uninformed mutation
operation.
• Starting execution with a set of valid inputs, a white-box fuzz
tester first gathers symbolic constraints at all conditional
statements along the execution path under the inputs. After
one execution, the white-box fuzz tester combines all sym-
bolic constraints together using logic ANDs to form a path
constraint (PC for short). Then, it systematically negates one
of the constraints and solves the new PC. The new test case
leads the program to run a different execution path. Using a
coverage-maximizing heuristic search algorithm, white-box
fuzz tester can find bugs in the target program as fast as
possible [20].
Theoretically, white-box fuzz testers are able to generate test
cases for all execution paths and hence obtain full coverage.
Practically, complex software design and the huge number

ICCPS’22, April 2022, Milan, Italy

Software
Controller

Physics
Simulator

Controller Commands

Sensed State

External Inputs or
Disturbances

Figure 2: Our proposed coverage-guided fuzz tester for CPS
works with black-box software and physics simulators, only
using the sensed state output from the physics simulator.

of execution paths in addition to the imprecision of solving
a symbolic execution constraint hinder the white-box fuzz
testers to reach full code coverage.
• Gray-box fuzzing sits in the middle of white-box and black-
box fuzzing. It works based on partial knowledge of the SUT
commonly obtained through code instrumentation [15] [38].
Gray-box fuzz tester utilizes the code coverage information
to adapt its mutation strategies to generate new test cases
that possibly target more execution paths and trigger more
software bugs.

3.2 CPS Execution Model
CPS systems pose a different set of challenges over generic soft-
ware. An image of the system model we consider is shown in Fig-
ure 2. Rather than having a single input and output like a software
function, systems will take inputs over time, corresponding to the
environmental disturbances or external inputs. At each time step,
the continuous state of the system will change and sensed input
values will be put into a software controller that produces con-
trol commands. We do not assume we have access to the internals
of either the software controller and physics simulator—they are
black-boxes from the perspective of the test-generation mechanism.
Application-specific error conditions are computed by the physics
simulator and provided as part of the sensed state.

More formally, the physics simulator can be modeled as discrete-
time function that advanced the internal simulation state by one
step, 𝑓 : 𝑋 ×𝑈 ×𝑊 → 𝑌 , with state 𝑥 ∈ 𝑋 , controller command
𝑢 ∈ 𝑈 , and external input or disturbance𝑤 ∈𝑊 and sensed output
𝑦 ∈ 𝑌 . The software controller is a second function 𝑔 : 𝑌 → 𝑈 ,
which operates on the observed state and produces a new controller
command. In this work, we focus on the external input generation
problem, so that we assume a fixed testing scenario (the initial state
𝑥0 ∈ 𝑋 is given). The goal of fuzz testing is to find external input se-
quences,𝑤0,𝑤1, . . .𝑤𝑇 , that cause the output𝑦 indicates some error
condition, which we refer to as interesting events or simply events.
For example, in our evaluation we will use an autonomous racing

simulator as a CPS, where the physics simulation output includes a
boolean flag indicating the presence of a collision. Furthermore, we
would like to find external input sequences corresponding to events
that cover the space of a CPS, which requires a custom notion of
coverage for CPS that we define next.

4 FUZZ TESTING FOR CPS
In this section we present our framework for fuzz testing CPS that
we call CPSFuzz.

4.1 Problem Statement
Definition 4.1. We model the Cyber-Physical System under test

(SUT) as tuple 𝑆 = ⟨𝑋,𝑇 , 𝐼 ⟩ where
• 𝑋 is the set of states. This set includes the software states 𝑋𝑠
and the set of continuous states as 𝑋𝑐 .
• 𝐼 is the set of inputs to the system.
• 𝑇 : 𝑋 × 𝐼 → 𝑋 is the transition function that defines the
evolution of the system as a function of the current state and
the input.

Definition 4.2. Given a SUT 𝑆 and a failure specification 𝐹 , the
testing problem for a CPS is to generate a set of tests 𝐸 that meet
the failure specification.

Our goal is to generate test cases that make the system fail. We
are trying to maximize the number of failing tests and increase the
variety of failures.

4.2 CPS Coverage Metric
In order to perform coverage-guided fuzzing for CPS, we must de-
fine a notion of coverage. In software test generation, code coverage
metrics such as branch or line coverage have been successfully used
for this purpose. However, a CPS includes continuous states which
are not captured by these traditional coverage metrics.

We next propose a metric that measures coverage when continu-
ous states are present. Further, we will show how to integrate this
metric score within the fuzz testing process in order to generate
tests that attempt to maximize coverage. We assume the sensed
state include information about interesting events or simply events,
that can, for example, indicate unsafe configurations or system
errors. In this framework we consider safety properties rather than
history of temporal behaviors. The metric can be used to evaluate a
testing strategy by providing a score to compare the amount of cov-
erage for two testing approaches, even when the two approaches
found a different number of interesting events each of which is in
a different sensed state. The sensed state at these events are the
input to the metric computation, which outputs a scalar coverage
score, so that the metric score S takes in a finite set of sensed states
of arbitrary size and outputs real-valued scalar, S : Set[𝑌] → R.
Besides operating on the sensed state of the system, we would like
the metric to obey the following key properties:

(1) Adding more events never decreases the metric;
(2) Identical events do not increase the metric;
(3) Similar events have a lower impact on the metric than dis-

similar events.
In order to achieve these goals, we build upon existing work

in defining coverage for CPS [8]. Rather than considering the full

Coverage-Guided Fuzz Testing for Cyber-Physical Systems ICCPS’22, April 2022, Milan, Italy

0 20 40 60 80 100
0.00

0.05

0.10

Two Events (score: 2.0)

0 20 40 60 80 100
0.00

0.05

0.10

Three Events (score: 2.595)

Figure 3: Our proposed CPS coverage metric increases as
more interesting events are generated, although events close
in the objective space do not increase the score as much as
events that are separated.

sensed state 𝑌 , we focus the search on specific states based on
the application. The user provides anObjective Space Projection
Function: P : 𝑌 → R𝑜 that maps sensed state to a 𝑜-dimensional
Euclidean space called the objective space where we want to achieve
coverage, as well as Objective Space Exploration Limits: B ∈
R2𝑜 that provide box bounds within the objective space.

Our metric is computed by taking each event, mapping it to
the the objective spacing using P, using a kernel function at the
point that measures similarity of states, and then integrating the
maximum of the kernels in the objective space over the box bounds
B. The kernel function is a hyper-parameter that measures the sim-
ilarity of states in the objective space. We will use an 𝑜-dimensional
normal distribution N(`, 𝜎2) for this purpose, where the mean `

is the point in the objective space of each interesting event and the
standard deviation 𝜎 is a fixed hyper-parameter. The CPS coverage
metric score S is computed by:

S(Set[𝑌]) =
∫
𝐵

max
𝑦∈Set[𝑌]

N(P(𝑦), 𝜎2) (𝑏) d𝑏

An example of this score computation is shown in Figure 3. The
objective space here is a single dimension along the 𝑥-axis, with
limits B = (0, 100). At the top, two events (red dotted lines) are
detected at 20 and 60 in the objective space. This is far apart with
respect to the 𝜎 standard deviation hyper-parameter, which results
in a score of close to two. At the bottom, a third event that maps
to 25 in the objective space is added, which increases the score to
about 2.595. Since this event was close to the other event at 20, the
score does not increase to 3, as it would if we simply counted the
number of interesting events. In the figure, the score (CPS coverage
metric) in each case is computed by taking the integral of the blue
curve from 0 to 100.

4.3 CPSFuzz Architecture
Fig. 1 depicts an overview of CPSFuzz architecture. This framework
consists of several components:
• Power schedule is responsible for seed selection. It moni-
tors the distribution of events happening at SUT’s objective
space and computes the CPS coverage score to deliver to the
mutator. Also, it performs seed selection from the population
based on the success rate of the seeds.
• Mutator performs various operations including but not lim-
ited to insertion, deletion, and update on the a valid seed
based on the CPS coverage score.
• SUT is a CPS system for which our fuzz testing methodology
generates inputs to cover its objective space.
• Seed manager is in charge of keeping the population up-
dated by performing accounting operations on the seeds.
• Population is a repository containing valid seeds from suc-
cessful simulation runs. It can be initialized by random or
user provided valid seeds.

In the following, we will describe each component’s mechanism
in detail.

4.4 Power Schedule

input :Seed population: 𝑃 , objective state space: 𝑌
output :valid seed: 𝑛, 𝑥 ⊆ 𝑌 : 𝑋

1 energyList← Energy(𝑃);
2 𝑛 ← maximum{energyList} ;
3 for each 𝑦 in 𝑌 do
4 score[𝑦] ← S(𝑦);
5 end
6 𝑋 ← state space(minimum (𝑠𝑐𝑜𝑟𝑒));
7 return 𝑛,𝑋 ;
Algorithm 1: Power Scheduler for determining the seed to
be mutated and related objective state space.

As shown by Algorithm 1, CPSFuzz’s power schedule proceeds
through two phases: the first phase is seed selection from the pop-
ulation and the second phase is CPS coverage score computation
for determining the mutation target. The energy level of a seed
is inversely proportional to the frequency of the seed selection in
previous test case generation runs. This strategy gives a fair chance
to various valid seeds for selection hoping to capture new behavior
upon mutation.

In software fuzz testing, a seed is directly sent to the mutator
upon selection. However, CPS inputs are a sequence of control
commands given to the plant, hence performing random mutation
on the entire input sequence would not yield meaningful results.
Therefore, to restrict the scope of the mutation, the power schedule
finds a subset of the objective state space with minimum CPS cov-
erage score. Our underlying observation is that the minimum CPS
coverage score implies less interesting events and consequently a
lack of behavior variety in that state space. So, by choosing the
corresponding part of the input seed for mutation, those states
would be the target of fuzz testing and exposed to the CPS system’s
new behavior.

ICCPS’22, April 2022, Milan, Italy

4.5 Mutator

input :Seed: 𝑛, 𝑥 ⊆ 𝑌 : 𝑋
output :mutated seed: 𝑛′

1 start, end← map_states(𝑋);
2 while condition do
3 operator← selectAtRandom(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠) ;
4 𝑛′ ← mutate(𝑛, 𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑, operator);
5 end
6 return 𝑛′;
Algorithm 2: Mutator that performs mutations over the
seed to generate new test inputs.

Based on the Algorithm 2, the mutator takes the valid seed 𝑛

and a subset of objective state space 𝑋 determined by the power
schedule as input and maps 𝑋 to a corresponding interval in the
input sequence. Then, it modifies the interval in the seed using one
of the mutation operators chosen at random, leaving other parts of
the seed unchanged making sure that the possible new behavior
originates from the modified interval.

Software fuzz testing methods leverage bit and byte level manip-
ulation on inputs. However, fine-grained operations are not suitable
for CPS control sequences as the goal is not to obtain code cover-
age but causing state changes.So, CPSFuzz employs coarse-grained
mutation operations for CPS inputs, including:
• Insert one or multiple random control command(s) to the
seed at a random position(s) in the interval [start, end].
• Remove one or multiple random command(s) from the seed
at interval [start, end].
• Update one or multiple random command(s) with random
control inputs in the seed at interval [start, end].

4.6 Seed manager
Seed manager is responsible for adding new valid seeds to the
population or removing seeds. At the beginning, the population is
initialized with some valid random inputs. After each execution, if
SUT does not fail on the mutated seed, the seed manager inserts
the mutated input as a valid seed to the population. Seed manager
periodically eliminates the low energy seeds, as their low energy
reflects their selection history. Also, the seed manager updates the
seeds’ energy whenever they are selected for mutation.

5 EVALUATION
To evaluate our work, we conducted a set of experiments using
CPSFuzz and three other fuzz testing methods on an autonomous
racing project called F1tenth [2]. Complete source code of CPSFuzz
and the experiments’ settings and configurations are available at
[44]. In the following sections, we introduce the F1tenth project,
briefly explain the fuzz testing approaches and present the results.
Our goal is generation of test case inputs which induce the cars to
either collide with each other or the track boundaries.

5.1 F1Tenth
The F1Tenth gym environment is an open-source autonomous rac-
ing simulation platform capable of hosting several vehicle instances

modeled with realistic dynamics. Its deterministic structure gives
the opportunity to reproduce the results. Also, the simulations
decrease the run-time up to 30 times in comparison to real-time
execution [40].

CPSFuzz generates test case inputs for the controller of the cars
by changing the vehicles’ velocity to induce crashes into the track
boundaries and other cars. These collisions are automatically de-
tected by the gym environment, and CPSFuzz considers them as
failures.

5.2 Fuzz Testing Methodologies
For evaluation, we repeated the experiments with the following
three fuzz testing approaches, and compared the quality of their
generated test cases with CPSFuzz’s.
• Atheris: Atheris is an open-source coverage-guided fuzz
testing tool for Python programs [1]. However, as it is based
on libFuzzer, a fuzz testing library for the C/C++ languages,
it can support native extensions written for CPython.
• Hypothesis: Hypothesis performs property-based testing
[34]. It defines a statement that is true based on the code
“properties”, and then generates test inputs (typically ran-
domly generated inputs of an appropriate type), and observes
whether execution with the input violates any of the proper-
ties. Property violation generally means capturing a bug or
error in the code.
• Random Fuzzing method: We developed a pure random
fuzz testing methodology as our baseline. It is a black-box
method that generates inputs purely at random while taking
no metric or property into consideration.

It is worth mentioning AFL (American Fuzzy Lop) [47] which is
a grey-box fuzz testing framework. It leverages code coverage in-
formation to figure out how to target different parts of the program.
AFL uses program instrumentation to extract branch coverage in-
formation of an input. For each input AFL knows the frequency at
which each branch is exercised. If an input contributes to new cov-
erage it will be used for further mutation and new input generation.
[48]. We conducted a set of experiments using AFL and surprisingly
observed that it was not able to produce a reasonable amount of
test cases. The main reason is that it is bound to the source code
instrumentation, while accessibility to source code is the main issue
with the instrumentation based approaches. Specifically, CPS are
generally black-box and AFL fails to instrument them. To assure
this is the main reason, we carried out a set of experiments seeking
to instrument a CPS and perform code coverage-guided fuzz test-
ing. As expected, we obtained the same unsatisfactory result as a
confirmation to AFL functionality.

Table 1 shows the results of test case generation by the four
fuzz testing methodologies during five runs of each taking 1M time
frames, where each 100 frames is equal to 1 second. We used this
logical execution time to eliminate the effect of other factors such
as hardware speed on run-time.

The second column shows the total number of input test cases
generated by each method. Test cases include those that cause the
cars to crash (invalid inputs) and those allowing the cars finish the
lap without any collision (valid inputs). The third column states
the rate of the invalid input generation. The fourth column reflects

Coverage-Guided Fuzz Testing for Cyber-Physical Systems ICCPS’22, April 2022, Milan, Italy

Fuzzer # Test cases # Invalid
Test cases Score

CPSFuzz 361 47.48% 21.06
Atheris 635 44.09% 3.28

Hypothesis 562 89.50% 13.54
Random 499 84.36% 16.34

Table 1: Median scores during five runs of test case gen-
eraion, one million frames at each run

the CPS coverage metric score of each approach for test case gener-
ation. CPS coverage metric does not account the rate of test case
generation but rather the rate of unique invalid test case generation.
In practice, all four approaches generate a huge number of invalid
inputs that cuased the cars crashed, however, most of them are
identical and cause the cars crash around the same area such as
specific turns. Meaning, a large subset of the objective state space is
left untouched. In the F1Tenth project, we considered the objective
state space to be the race track and set our metric to be variety
of crashes covering the track. So, the CPS coverage metric scores
convey the amount of coverage the generated test cases expand. In
other words, the approaches which don’t generate various unique
test case inputs will lose most of the CPS coverage metric score.

As the number of test cases shows, CPSFuzz generates fewer
test cases during a fixed time window than the other three method-
ologies and consequently, its invalid test cases are less than them,
but it achieves the highest CPS coverage metric score among all
the other methods revealing that it spends the fuzz testing time on
generation of unique invalid inputs. In contrast, although the other
methods generate more invalid test cases but they get lower scores
as their generated tests lack variety and are mostly identical.

5.3 Comparison of CPS Coverage Metric
In our proposed metric from Section 4.2, we computed the coverage
score using S, which integrated the maximum of a set of Gaussian
distributions in the objective space. We first compare this metric to
an existing work on test-generation for autonomous systems [8],
where the metric for measuring uniqueness of failures used the spa-
tial clustering DBScan [14] algorithm. This approach distinguishes
the uniqueness of failures by coalescing similar events into clusters,
so that failures near the same location do not contribute to the
number of unique events. Two scenario-specific hyper-parameters
are needed to determine when points are considered to fall in the
same cluster. For comparison, we use the same parameters as the
earlier work. The maximum distance between two samples to be
considered in the same cluster is 2.1 meters, and the number of
samples required to be in the neighborhood to consider it as cluster
is set to 3. The number of clusters plus outliers, which fall outside
of any cluster, represents the score computed as unique failures.

We applied this metric and compared our methodology using
the other three fuzz testing methods. DBScan results reveal that our
method has a higher rate of unique failure generation than the other
three methods where CPSFuzz generated 6 clusters and six outliers,
Random approach produced 4 clusters, Atheris provided one cluster
and Hypothesis ended up in 5 clusters and 3 outliers. Figure 4

is a demonstration of DBScan metric revealing that CPSFuzz is
providing higher coverage in comparison to Random approach.

Although the earlier DBScan metric does judge our fuzz testing
methodology, it is not an ideal metric. Specifically, adding more
points can reduce the score, as different clusters may be merged
together and considered a single unique failure (more events can
lower the score). This is apparent in the figure, where a large number
of crashes on the left side of the track are merged together into a
single large cluster.

Figure 5, in contrast, shows the coverage score computed using
our CPS coverage metric , as more simulation steps are performed.
For our metric, we used a single-dimensional objective space by
converting the car’s𝑥 and𝑦 position output by the physics simulator
into a percent track completed position, with limits at 0 and 100
(this is a normalized version of the 𝑠 value of the car position in
the Front frame). In this set of experiments we chose the standard
deviation to be 1 (𝜎 = 1).

We compare four approaches: Hypothesis, random testing, Atheris,
and CPSFuzz. Hypothesis is a property-based fuzz testing tool. Here,
we defined the property to be the lack of collisions and Hypothesis
aimed to generate test case inputs designed to violate this property.
However, coverage in terms of track position was not taken into
account.

The random approach is a black-box method that generates all its
test case inputs using random external inputs. Atheris is a coverage-
guided tool and performs bit-level mutation operations on input
seeds to generate new test cases hitting various branches and code
segments. CPSFuzz is our proposed method, which mutates the
input seeds with the goal of improving the CPS coverage metric as
described in Section 4.

We carried out several sets of experiments using all four ap-
proaches and, due to randomness, we report the median results in
Figure 5. CPSFuzz did 1.5x better than Hypothesis, 1.3x better than
random approach, 6.4x better than Atheris.

Figure 6 shows the score functionS that is integrated to compute
CPS coveragemetric . The diagram in Figure 6.a shows that CPSFuzz
obtained the maximum score for most of the segments of the race
track. This is indicative of the failure-inducing test cases containing
unique collisions on most parts of the race track. Figure 6.b and 6.d
show that Hypothesis and the random approach generated unique
failure test case inputs for about the first 40% of the track but were
unable to properly extend the coverage beyond, except in a few
cases. Fig 6.c shows that Atheris only finds crashes on the first 15%
of the track. One of the main reasons for this poor performance is
the kind of fine-grained mutation operations that Atheris performs,
such as shuffle bytes or shift bits that do not modify the input
sequences meaningfully in a CPS Scenario where code coverage is
not a metric. CPSFuzz, on the other hand, makes coarse-grained
modification to input seeds, in a higher level abstraction close to
controller’s commands, targeting the uncovered continuous states
in the system.

6 DISCUSSION
One result of our study is the demonstration of generating a large
number of different failure cases using a fuzz testing methodology

ICCPS’22, April 2022, Milan, Italy

0 20 40 60 80 100
Ego Completed Percent

20

15

10

5

0

5

10

15

20

Op
po

ne
nt

 B
eh

in
d

Pe
rc

en
t

80 60 40 20 0 20
Map X

20

0

20

40

60
M

ap
 Y

eps 2.1

min_samples 3.035

map-space
obs-space

(a) CPSFuzz

0 20 40 60 80 100
Ego Completed Percent

20

15

10

5

0

5

10

15

20

Op
po

ne
nt

 B
eh

in
d

Pe
rc

en
t

80 60 40 20 0 20
Map X

20

0

20

40

60

M
ap

 Y

eps 2.1

min_samples 3

map-space
obs-space

(b) Random approach

Figure 4: Although CPSFuzz found more unique crashes using the DBScan metric, crashes along the left side of the track were
combined into a single cluster (green), showing the shortcoming of the earlier metric.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time frames 1e6

0

5

10

15

20

Cy
pe

r-p
hy

sic
al

 m
et

ric
 sc

or
e

Cyber-physical metric score improvement
Random
Atheris
Hypothesis
CPSFUZZ

Figure 5: Comparing CPS coverage metric improvement
through time for the four fuzz testing methodologies

for CPS systems. Classical testing approaches or manually gener-
ating such tests would be infeasible. Moreover, this variety of test
scenarios opens up other types of investigations. For instance, for
the autonomous racing case study, we could analyze the state of the
system at a crash to detect additional information to differentiate
crashes. This could be used to identify who was at fault, whether
the opponent car hit the ego car at the back left, center, or right
and so on, to further create varying test cases.

From the test strategy and configuration perspective, there exist
many parameter tuning and configurations which could affect the
test results. For the CPS coverage metric we tried various standard
deviation (SD) values and observed that it alters the CPS coverage
metric score. However, it affects the absolute score values while
leaving the relative scores of the approaches unchanged.

Another possible venue for exploration would be the integra-
tion of application-specific contextual information to enrich test

scenarios or improve efficiency. As an example, we set the testing
framework to terminate the simulation runs that were not close to
collision generation using the information obtained from the agents
and the environment and drastically decreased the simulation time
as the long runs where cars successfully cross the finish line have
no testing value but increasing the simulation time.

7 CONCLUSION
Cyber-physical systems have plenty of safety-critical applications
and must go under heavy stress tests. In this work, we proposed a
modified fuzz testing methodology, CPSFuzz, for testing CPS sys-
tems. We introduced a new metric for test coverage while dealing
with black-box CPS simulators. Moreover, we utilized this CPS cov-
erage metric in designing customized power schedule and mutator
modules, both of which are major components of coverage-based
fuzz testing, to boost test case diversity and hence improve the
coverage score. We evaluated our approach using the F1Tenth au-
tonomous racing project and compared its functionality to some
other fuzz testing methods known in the field. Results demonstrate
that CPSFuzz functionality was 1.5x better than Hypothesis, 1.3x
better than random approach, 6.4x better than Atheris.

8 ACKNOWLEDGMENTS
This material is based upon work supported by the Air Force Office
of Scientific Research and the Office of Naval Research under award
number FA9550-19-1-0288, FA9550-21-1-0121, FA9550-22-1-0450
and N00014-22-1-2156. Also, we would like to acknowledge the
support of National Science Foundation (NSF) under grant numbers
CNS 2038960, and Amazon Research Award — Automated Reason-
ing. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air Force, the
United States Navy, National Science Foundation, or Amazon.

Coverage-Guided Fuzz Testing for Cyber-Physical Systems ICCPS’22, April 2022, Milan, Italy

0 20 40 60 80 100
Lap percents

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ax

 c
yb

er
-p

hy
sic

al
 m

et
ric

 sc
or

e

(a) CPSFuzz

0 20 40 60 80 100
Lap percents

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ax

 c
yb

er
-p

hy
sic

al
 m

et
ric

 sc
or

e

(b) Hypothesis

0 20 40 60 80 100
Lap percents

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ax

 c
yb

er
-p

hy
sic

al
 m

et
ric

 sc
or

e

(c) Atheris

0 20 40 60 80 100
Lap percents

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ax

 c
yb

er
-p

hy
sic

al
 m

et
ric

 sc
or

e

(d) Random

Figure 6: Maximum CPS coverage score obtained by the four fuzz testing methodologies for autonomous racing, where the x
axis is projection of state space to one-dimentional objective space, percent track completed position.

REFERENCES
[1] Atheris: A coverage-guided, native python fuzzer. https://github.com/google/

atheris.
[2] F1tenth. https://f1tenth.org/.
[3] libfuzzer –– a library for coverage-guided fuzz testing. https://llvm.org/docs/

LibFuzzer.html, 2020.
[4] Matthias Althoff. Reachability analysis and its application to the safety assessment

of autonomous cars. PhD thesis, Technische Universität München, 2010.
[5] Matthias Althoff and John M Dolan. Online verification of automated road

vehicles using reachability analysis. IEEE Transactions on Robotics, 30(4):903–918,
2014.

[6] Matthias Althoff, Olaf Stursberg, and Martin Buss. Verification of uncertain
embedded systems by computing reachable sets based on zonotopes. IFAC
Proceedings Volumes, 41(2):5125–5130, 2008.

[7] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. S-taliro: A tool for temporal logic falsification for hybrid systems. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 254–257. Springer, 2011.

[8] Stanley Bak, Johannes Betz, Abhinav Chawla, Hongrui Zheng, and Rahul Mang-
haram. Stress testing autonomous racing overtake maneuvers with rrt. arXiv
preprint arXiv:2110.01095, 2021.

[9] Sergiy Bogomolov, Goran Frehse, Amit Gurung, Dongxu Li, Georg Martius, and
Rajarshi Ray. Falsification of hybrid systems using symbolic reachability and
trajectory splicing. In Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, pages 1–10, 2019.

[10] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, TH Tse,
and Zhi Quan Zhou. Metamorphic testing: A review of challenges and opportu-
nities. ACM Computing Surveys (CSUR), 51(1):1–27, 2018.

[11] Tsong Yueh Chen, Tsun Him Tse, and Z. Quan Zhou. Fault-based testing without
the need of oracles. Information and Software Technology, 45(1):1–9, 2003.

[12] Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis
of hybrid systems. In International Conference on Computer Aided Verification,
pages 167–170. Springer, 2010.

[13] Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over
real-valued signals. In International Conference on Formal Modeling and Analysis
of Timed Systems, pages 92–106. Springer, 2010.

[14] M. Ester, J. Sander H.-P. Kriegel, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In in Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, page
89–100, 1996.

[15] Luk et al. Pin: Building customized program analysis tools with dynamic instru-
mentation. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, page 190–200, 2005.

[16] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifi-
cations for continuous-time signals. Theoretical Computer Science, 410(42):4262–
4291, 2009.

[17] Georgios E Fainekos and George J Pappas. Robustness of temporal logic specifi-
cations for continuous-time signals. Theoretical Computer Science, 410(42):4262–
4291, 2009.

https://github.com/google/atheris
https://github.com/google/atheris
https://f1tenth.org/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

ICCPS’22, April 2022, Milan, Italy

[18] Seyed K Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar.
{BUZZ}: Testing context-dependent policies in stateful networks. In 13th
{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
16), pages 275–289, 2016.

[19] Daniel S Fowler, Jeremy Bryans, Siraj Ahmed Shaikh, and Paul Wooderson. Fuzz
testing for automotive cyber-security. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), pages 239–
246. IEEE, 2018.

[20] P. Godefroid and D. A. Molnar M. Y. Levin. Automated whitebox fuzz testing. In
in Proc. Netw. Distrib. Syst. Security Symp., volume 14, pages 1–16, 2008.

[21] Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox fuzzing
for security testing. Queue, 10(1):20–27, 2012.

[22] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox
fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[23] Brandon Wen Heng Goh. American fuzzy lop (afl) fuzzing. 2019.
[24] Manish Goyal and Parasara Sridhar Duggirala. Neuralexplorer: state space

exploration of closed loop control systems using neural networks. In International
Symposium on Automated Technology for Verification and Analysis, pages 75–91.
Springer, 2020.

[25] Jia Cheng Han and Zhi Quan Zhou. Metamorphic fuzz testing of autonomous
vehicles. In Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, pages 380–385, 2020.

[26] Zhisheng Hu, Shengjian Guo, Zhenyu Zhong, and Kang Li. Coverage-based scene
fuzzing for virtual autonomous driving testing. arXiv preprint arXiv:2106.00873,
2021.

[27] Esa Jääskelä. Genetic algorithm in code coverage guided fuzz testing. 2016.
[28] Dave Jones, T Rantala, and V Weaver. Trinity: A linux system call fuzz tester,

2016.
[29] Jongwoo Kim, Joel M Esposito, and Vijay Kumar. Sampling-based algorithm for

testing and validating robot controllers. The International Journal of Robotics
Research, 25(12):1257–1272, 2006.

[30] Ralph LaBarge and Thomas McGuire. Cloud penetration testing. arXiv preprint
arXiv:1301.1912, 2013.

[31] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Ku-
mar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer. Av-fuzzer: Finding
safety violations in autonomous driving systems. In 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), pages 25–36. IEEE, 2020.

[32] H. Liang, X. Jia X. Pei, and J. Zhang W. Shen. Fuzzing: State of the art. IEEE
Transactions on Reliability, 67(3):1199–1218, Sep 2018.

[33] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang.
Fuzzing: State of the art. IEEE Transactions on Reliability, 67(3):1199–1218, 2018.

[34] David R. MacIver and Zac Hatfield-Dodds. Hypothesis. https://github.com/
HypothesisWorks/hypothesis.

[35] G. McGraw. Silver bullet talks with bart miller. IEEE Security Privacy, 12(5):6–8,
Sep 2014.

[36] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the
reliability of unix utilities. Communications of the ACM, 33(12):32–44, 1990.

[37] Lama J Moukahal, Mohammad Zulkernine, and Martin Soukup. Vulnerability-
oriented fuzz testing for connected autonomous vehicle systems. IEEE Transac-
tions on Reliability, 2021.

[38] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, page 89–100,
2007.

[39] P. Oehlert. Violating assumptions with fuzzing. In IEEE Security Privacy, volume 3,
pages 58–62, 2005.

[40] M. O’Kelly, D. Karthik H. Zheng, and R. Mangharam. F1tenth: An open-source
evaluation environment for continuous control and reinforcement learning. In
in Proceedings of the NeurIPS 2019 Competition and Demonstration Track, ser.
Proceedings of Machine Learning Research, H. J. Escalante and R. Hadsell, Eds.,
page 77–89, 2020.

[41] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine learning, pages
1310–1318. PMLR, 2013.

[42] John F Quindlen, Ufuk Topcu, Girish Chowdhary, and Jonathan P How. Active
sampling-based binary verification of dynamical systems. In 2018 AIAA Guidance,
Navigation, and Control Conference, page 1107, 2018.

[43] Dimitrios Serpanos and Konstantinos Katsigiannis. Fuzzing: Cyberphysical
system testing for security and dependability. Computer, 54(9):86–89, 2021.

[44] Sanaz Sheikhi. Cpsfuzz project repository. https://github.com/sanazsheikhi/
CPSFuzz/tree/master.

[45] Dmitry Vyukov. Syzkaller—linux kernel fuzzer.
[46] Dominik Winterer, Chengyu Zhang, and Zhendong Su. Validating smt solvers

via semantic fusion. In Proceedings of the 2020 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’20), 2020.

[47] Michal Zalewski. American fuzzy lop. https://lcamtuf.coredump.cx/afl/, 2014.
[48] A Zeller, R Gopinath, M Böhme, G Fraser, and C Holler. The fuzzing book. The

Fuzzing Book. Saarland University, 2019.

[49] Ziyuan Zhong, Gail Kaiser, and Baishakhi Ray. Neural network guided evolution-
ary fuzzing for finding traffic violations of autonomous vehicles. arXiv preprint
arXiv:2109.06126, 2021.

[50] Zhi Quan Zhou and Liqun Sun. Metamorphic testing of driverless cars. Commu-
nications of the ACM, 62(3):61–67, 2019.

https://github.com/HypothesisWorks/hypothesis
https://github.com/HypothesisWorks/hypothesis
https://github.com/sanazsheikhi/CPSFuzz/tree/master
https://github.com/sanazsheikhi/CPSFuzz/tree/master
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Coverage-Guided Fuzz testing
	3.1 Fuzzing techniques
	3.2 CPS Execution Model

	4 Fuzz testing for CPS
	4.1 Problem Statement
	4.2 CPS Coverage Metric
	4.3 CPSFuzz Architecture
	4.4 Power Schedule
	4.5 Mutator
	4.6 Seed manager

	5 Evaluation
	5.1 F1Tenth
	5.2 Fuzz Testing Methodologies
	5.3 Comparison of CPS Coverage Metric

	6 Discussion
	7 Conclusion
	8 Acknowledgments
	References

