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Abstract

Physical processes are often modelled using nonlinear differential equations. For systems that are
not chaotic, we often expect the behaviors to be robust with respect to perturbation of the initial
configuration. That is, perturbations in the initial configuration would not contribute to wide deviations
in the behavior. In this ongoing work, we intend to learn this robustness called as perturbation function,
which represents the effect of perturbation of initial configuration on the state of trajectory, using neural
networks. We outline the results of training perturbation functions and its applications in state space
exploration and counterexample generation.

1 Introduction
Physical processes are often modelled as differential equations over a state space X ⊆ Rn. The right hand
side of these differential equations is often a nonlinear function of the current state.

ẋ = f(x) (1)

Solutions of initial value problem of the differential equation (such as given in Equation 1) are called
trajectories, denoted as ξ(x0, t), where, x0 is the initial state and t is the time. In general, a closed form
expression for the trajectories of a differential equation, does not exist. Hence, we often rely on numerical
approximations of the trajectories for understanding the behavior of the system starting from an initial
configuration x0.

Safety verification problem of such a system entails answering the following question. Given an initial
set of states Θ ⊂ X (often uncountable), bounded time t > 0, and unsafe set U ⊂ X, does there exist
a trajectory ξ starting from Θ, that visits U within t time. Static analysis techniques such as Flow* [4],
CORA [1], d/dt [2] use a symbolic representation of the initial set and compute an artifact called reachable set
that is an overapproximation of all the states visited by all the trajectories starting from Θ. An alternative
set of techniques called dynamic analysis techniques (used in tools Breach [5], C2E2 [6], HyLAA [3]) generate
a sample set of trajectories and compute the overapproximation from the sample trajectories.

Reachable set computation using C2E2 relies on discrepancy function that describes the divergence of
trajectories as a function of the initial state and time. Given a system, a function (such as in Equation 1)
β : Rn × Rn × R≥0 → R≥0 is a discrepancy function if and only if

∀x1, x2 ∈ Θ, |ξ(x1, t)− ξ(x2, t)| ≤ β(x1, x2, t). (2)

Using this discrepancy function, the sample trajectories of nonlinear systems are bloated to compute an
overapproximation of the reachable set.

For systems that have a contraction metric or have an incremental Lyapunov function, one can construct
a discrepancy function from them. In some cases, one can use matrix measures for computing the discrepancy
functions for complex nonliner dynamics. More recently, for black-box systems, discrepancy functions that
provide statistical guarantees can be inferred using machine learning techniques.
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In this ongoing work, we intend to learn the robustness of trajectories with respect to perturbations of
the initial configuration. We call this function as perturbation function. We believe that this perturbation
function is useful in more directed state space exploration for inferring the safety specification.

2 Perturbation Function: Training and Evaluation
Definition 1 Given a system (such as in Equation 1), perturbation function P : Rn × Rn × R≥0 → Rn is
such that, given x0, v ∈ Rn and t ∈ R≥0,

P (x0, v, t) = ξ(x0 + v, t)− ξ(x0, t) (3)

Intuitively, the perturbation function returns the difference between the trajectories from an initial state
x0 and its perturbation x0 + v at time t. For linear systems, where f(x) is a linear transformation of the
current state, represented as Ax, the closed form solution of the IVP is given as ξ(x0, t) = eAtx0 where

eAt = I + At
1! + (At)2

2! + (At)3

3! + . . . is the matrix exponential. For such systems, the perturbation function
P (x0, v, t) = eAt(x0 +v)−eAtx0 = eAtv is independent of the initial state. That is, the effect of perturbation
on the trajectories is the same, irrespective of the initial configuration. For nonlinear systems, since the
closed form solution might not exist, the perturbation function might not have a closed form representation.

In this ongoing work, we intend to learn the perturbation function from sample trajectories. For this
purpose, we use neural networks (NNs). NNs have been very effective functional approximators in the domain
of image processing, natural language processing, and predicting chaos. In this work, we evaluate how well
the neural networks can approximate the perturbation function.

Training: We select a standard set of benchmarks 1 for training the Neural Networks. Our benchmarks
consists of both linear and nonlinear continuous systems and linear hybrid systems. For each system, we
generate a fixed number of trajectories (20 in this case) for a desired time bound (1000 steps) with time step
0.01. We use 15 trajectories for training and 5 for evaluation of NN. For all pairs of points x1 and x2 in any
two trajectories ξ1 and ξ2, we train the perturbation function as P̂ (x1, x2 − x1, t) = ξ(x2, t)− ξ(x1, t).

We use the Python Multilayer Perception Regressor from sklearn library. The solver function used is
adam which is default and refers to a stochastic gradient-based optimizer. Each layer in a 4-layer network
has 100 neurons; whereas, in a 8-layer network, first 4 layers have 100 neurons each and the rest 4 have
50 neurons each. The NN is trained using Levenberg-Marquardt backpropagation algorithm optimizing the
mean square error loss function, and the Nguyen-Widrow initialization. The activation functions used to
train the network are tanh, sigmoid, and relu respectively. The training and evaluation are performed on
a system running Ubuntu 18.04 with a 2.20GHz Intel Core i7-8750H CPU with 12 cores and 32 GB RAM.
The network with 4 layers takes total ∼10 minutes for its training and testing, and the total time taken by
a network with 8 layers is approximately 20 minutes.

Evaluation: The experimental results are given in Table 1. We evaluate the neural network based on

average relative error ( |P (x,v,t)−P̂ (x,v,t)|
|P̂ (x,v,t)| ). We hope the relative error would be less than 10%, as a rough

indication that the estimates are relatively close to the actual values. Although in some cases the relative
error is higher than the desired value, the performance for some nonlinear benchmarks such as Vanderpol,
Brussellator and Jetengine is less than 5%. These systems are known to be contactring and hence might
be easy to learn. Among activation functions, both sigmoid and tanh outperform relu in most cases.
Additionally, sigmod performs very well in the case of linear dynamics such as Gravity, Smooth Hybrid Linear
Oscillator, and Hybrid Linear Oscillator. It might indicate that a NN with sigmod activation functions might
be more suitable for learning matrix exponentials. The experiments also indicate that more layers does not
necessarily translate into better performance (at least, not with the same data).

These results show promise that learning perturbation function using NNs is a promising direction. In
future, we plan to explore other aspects of training NNs such as using CNNs, overfitting, appropriate number
of hyper-parameters, etc.

3 Applications and Future Work
We believe that using the approximation of perturbation function, and sample simulations, we can compute
a statistical approximation of reachable set for black box systems. Additionally, using the gradients from

1https://ths.rwth-aachen.de/research/projects/hypro/benchmarks-of-continuous-and-hybrid-systems/
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Simulations = 20

Benchmark tanh sigmoid relu

4 8 4 8 4 8

Brussellator 0.18697 0.79865 0.12718 1.3 1.17704 0.11594

Gravity 0.03921 0.03098 0.01184 0.38827 0.03865 0.02092

Lotka 0.13751 0.71537 0.43694 1.23553 0.52826 0.41853

Jetengine 0.20198 0.29759 0.27452 0.40289 0.63742 1.23015

Vanderpol 0.05516 0.05390 0.14771 0.02216 0.04205 0.01663

Lacoperon 0.08206 0.06901 0.02794 0.08680 0.04704 0.03994

Regular Oscillator 0.02696 0.04208 0.05348 2.73357 0.10722 0.15042

Smooth Hybrid LinearOsc. 0.07679 0.23966 0.02873 0.42826 0.09168 0.06982

Roesseler 0.21178 0.63130 0.48688 0.44327 0.29933 0.28454

Buckling 0.82935 0.62144 0.48411 66.891 0.9082 0.54257

Lorentz 2.30147 2.24524 2.94222 3.94334 0.93714 1.01919

Steam 0.27901 0.60035 1.13542 2.09367 0.32180 0.58326

Hybrid LinearOsc 0.21142 0.11011 0.04765 0.61595 0.26715 0.10176

Spring Pendulum 1.14354 1.88636 0.57823 1.31859 0.47352 0.98459

Table 1: Experiments: The metrics used for performance is average relative error.

the neural network, we can perform adaptive state space exploration.
This preliminary work leaves a lot of scope for future results. First, we would like to understand the

most suitable activation functions for learning matrix exponential linear transformations. We would also
like to learn the minimum size of the neural network for achieving a specific performance. We would also
like to investigate whether NNs perform inherently better for contracting dynamics as opposed to chaotic
dynamics. We are also interested in exploring the appropriate NN architecture and loss functions that are
suitable for learning the perturbation function.
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