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1 Introduction

Machine learning techniques, particularly deep neural networks (NN) are being used more frequently in
safety-critical applications, like autonomous vehicles. However, researchers have raised questions as to the
robustness and predictability of these techniques. In fact, it has been demonstrated that small perturbations
to network input can lead to significant changes in output. For example, many NNs that perform classification
tasks are susceptible to adversarial attacks, which often take the form of introducing small perturbations to
properly classified inputs, leading to misclassifications[8| [9]. Certain network architectures can be trained to
be robust to many common types of attacks [7, 4], but to employ them in safety-critical applications, it is
necessary to prove their robustness to attacks.

Exhaustive search based and Abstract Interpretation based methods were two initial approaches proposed
for verification of this robustness property. Currently, there is no evaluation of the (dis)advantages and
performance of these two approaches on a standard benchmark since these two techniques were developed
almost concurrently by different groups. In this ongoing work, we compare the performance of benchmarks
on a NN for MNIST data set and present the results. We discover a cause for potential unsoundness in
the implementation of the search based verification technique and encounter a corresponding verification
instance.

2 Background

We define neural networks as functions f: R® — R! which are compositions of a series of affine functions,
of the form g(x) = W - x 4+ b where W is a real-valued matrix of weights and b is a real-valued vector of
biases, followed by nonlinear activation functions called Rectified Linear Units (ReLU), defined as follows.
Let o: R — R be defined as o(z) = max(z,0). Then ReLU: R™ — R™ is defined as

ReLU(x) = (o(x1),...,0(xm))7.

NN are often used for classification tasks. For a classifier network, an output y € R! is a vector of I scores.
A class assigned to the image is found by taking the argmax of these scores.

3 Input Space Search Approach

The range of each output dimension of a NN on a given input range can be estimated by finding the minimum
and maximum of the possible outputs. Finding optima of NN output on hyperrectangular input spaces can
be encoded exactly as a Mixed integer linear program (MILP), an optimization problem on real and integer
variables with linear constraints, but since solving MILPs is known to be NP-hard, employing MILP solvers
to directly compute the range of possible outputs is not feasible for even small NNs. Dutta et al. present
a method in which they use gradient descent to find local optima of each output function to constrain the
MILP search space, then use a MILP heuristic solver to prove that a more optimal solution does not exist
or provide an input that produces a more optimal solution. This process is repeated, using the new near-
optimal solution as a starting point for local search, until the optima are found. Their method, as claimed
in the paper, produces a sound overapproximation of the range of each output that is J-tight.

Their encoding is as follows. We assume that a range of inputs X given is a hyperrectangle in R™. Let
x € X be the network input, y1, ..., yn be the output of each hidden layer with each y; € R™i and let z € R
be the output of the network. Introduce additional tq,...,t, with each t; € (Z /Qz)m. These are used to



encode the following constraints. Let Cj ensure that z € X. This is a linear constraint of the form Ax < b.
Hidden layer ¢ + 1 computes yj+1 = ReLU(W; - y; + b;). For 0 <4 < h, hidden layer ¢ + 1 computation is
encoded by

Yit1 = Wi z; + by,

YVitr < Wi -z + by + mtiiq,

Vit1 = 0,

Vitr < m(1 — tiy1)

Ciy1=

Where m € R is larger than any possible output of any node. The output is constrained by C}41 of the form
z = W}, - 2n + bn. Then the range of the output over input range X is described by the maximum/minimum
MILP

max,/min z
subject to Coy oy Chy
x€R", z€R, y; e R™, t; € (Z/o7)™" Vi<i<h

While the theory presented in [5] is sound, we believe that implementation might not preserve soundness
for all verification instances; here is why. In the paper, they use a function SolveMILPUptoThreshold
which takes an MILP encoding and a local maximum u produced by the local search described above, and
returns feasible if there exists an input x in the query range that such that f(z) > w or not feasible
if such and z does not exist. This function is implemented using a widely used commercial heuristic MILP
solver Gurobi [I]. Since it uses heuristic solution methods, sometimes it cannot prove that u is the maximum,
but also cannot find a input producing a larger output. In this case, u is not guaranteed to be a sound upper
bound on the output range, however it appears that the implementation provided by Dutta et al. treats
this case the same as if Gurobi verified that u is sound upper bound. This might potentially violate the
soundness of the implementation.

4 Abstract interpretation approach

Abstract interpretation is a framework that allows for sound overapproximations of the behavior of pro-
grams. We assume readers have knowledge of the basics of abstract interpretation: lattice structures, Galois
connections, concrete and abstract transformers etc. For a review of these topics, see [3].

Let f: S — L be a function between two sets, we denote the concrete transformer of f as Ty: P(S) —
P(L). Suppose Ag is an abstraction of P(S) and Ay, is an abstraction of P(L), then we denote an abstract
transformer of f as Tf : Ag — Ap. If vg and ~p are the respective concretization functions, then recall

Va € Ag, T¢(vs(a)) C i (Tf(a)). This is useful for showing that a robustness property (X, C) holds, that

is that the output of a network on some set of inputs X lies in some set C, since 'y(T}#(X)) C C implies
that T (X) = f(X) C C.

In [6], Gehr et al. present an abstract-interpretation-based approach to verify robustness properties of
the form (X,Cr) of NNs, where X is a bounded range of inputs and C;, = {y € R' | argmaxy; = L}.
Additionally, in [I0] (from the same group), they present a sound abstraction of P(R™) by the lattice of
zonotopes tailored for use with NNs and define the concrete and abstract transformers of ReLU and other
common activation functions, called DeepZ. We provide a simplified overview here.

A zonotope is a convex closed center-symmetric polytope Z C R™. It can be represented as an affine
function

z: [ag,b1] X [az,b2] X ... X [am, by] — R”

of the form z(e) = M - ¢ + b where ¢; € [a;,b;]. M captures the boundary of the zonotope, and b represents
the center of the shape. Zonotopes can be given a lattice structure, where the partial order is the standard
subset when the zonotopes are considered as polytopes in R™. The least upper bound of two zonotopes is the
smallest zonotope containing both, and the greatest lower bound of two zonotopes is the largest zonotope
contained in the intersection of them. The lattice of zonotopes in R™, denoted A", is an abstraction of
P(R™) with abstraction function « sending an element of P(R™) to the smallest zonotope containing it,
when both are considered subsets of R™, and concretization function =y, the natural embedding of the lattice



of zonotopes in P(R™). Let f: R" — R™ be an affine function. If Z is a zonotope then f(Z) is also a
zonotope. A natural abstract transformer of f is then T ;f A" — A™ where VZ € A", T}‘7E (Z2)=f(2).

In [I0], Singh et al. define ReLU;: R™ — R™ which applies o to only the

i** dimension of the input, then note ReLU = ReLU, o ... o ReLU;. They

define an abstract transformer of each ReLU; as follows. We will use the

/ notation ;s to denote the identity matrix except that I;; = s and 0;s to

g

y denote zero vector except that 0; = s. Let Z be a zonotope in A™ input to

. . 5 ReLU; with affine form 2. Let [l;, u;] be the range of the i*" dimension of Z.

le V| Uz If [; < 0 and u; > 0, then we must define an overapproximation of ReLU;
between I; and u;. We do this by defining an affine transformation that
represents the smallest-area parallelogram bounding ReLU; in the desired

Figure 1: Parallelogram L o T Denote the sl £ the I mati
I range, as shown in Figure enote the slope of the linear approximation,
over approxmation o e dashed line in the fgure, A — % . and lot i — - ok Then th
ReLU:. Figure taken and ¢ dashed Ane m the figure, A = -7, and et f = —gq,—gy- -oen the
altered from [10]. affine overapproximation of Y = ReLU;(Z) is
Z, ifl; >0
=19 lico ifu; <0

10 1+4¢ + Lz otherwise
where € € [—1,1]

5 Comparison of Search and Abstract Interpretation Based Methods

We compare the performance of each method on a network trained to classify handwritten digits. The
network takes a 28 x 28 grey-scale image with intensity between 0 and 1 of a handwritten digits and assigns
it one of 10 labels, 0-9. It has three hidden layers, each with 20 nodes. It is trained on the MNIST data set
[2]. We use each method to test that each of four image classifications is robust to adding uniform random
noise between 0 and € to each pixel, where e takes values in {0.02,0.03,0.04,0.05}.

The runtime of Dutta et al.’s method for each input range was on the order of 8000 seconds, whereas
the runtime of Gehr et al.’s method was less that a second for each input range. For each €, we report
if the method was able to verify robustness of each image under such perturbations below. We can see
that the abstract interpretation approach outperforms the space search approach both in time and accuracy.
However, unlike search based methods, abstract interpretation techniques do not provide a counterexample
for the robustness property.

Space search approach Abstract interpretation approach

e = 0.02 verified e =0.02 verified
Tmage 0 e =0.03 verified Tmage 0 e =0.03 verified

e = 0.04 | not verified e =0.04 verified

e = 0.05 | not verified e = 0.05 | not verified

e = 0.02 verified e = 0.02 verified
Tmage 1 e =0.03 veriﬁ(.ed Tmage 1 e =0.03 veriﬁ{ad

e = 0.04 | not verified e = 0.04 | not verified

e = 0.05 | not verified e = 0.05 | not verified

e = 0.02 verified e = 0.02 verified
Tmage 2 e =0.03 veriﬁed Image 2 e =0.03 ver%ﬁed

e =0.04 verified e =0.04 verified

e =0.05 verified e =0.05 verified

e = 0.02 verified e =0.02 verified
Image 3 e = 0.03 | not verified Tmage 3 e =0.03 verified

e = 0.04 | not verified e = 0.04 | not verified

e = 0.05 | not verified e = 0.05 | not verified

We encountered the potential unsoundness of search based method in two instances. First, Image 0,
€ = 0.02 and second, Image 2, ¢ = 0.02. In these two instances, Gurobi was neither able to prove that the
u provided was the upper bound, nor find a feasible solution. In these two instances, the provided u was
treated as upper bound by the search methods. Comparison with abstract interpretation techniques shows
that the verification result of search based methods was not incorrect.

This potential unsoundness highlights an important need to systematically compare the results on various
benchmarks. In future we intend to perform a systematic comparison of different verification techniques on
various benchmarks.
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