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Abstract—Marine gliders are autonomous underwater vehicles
used for data collection by ocean and climate scientists. To
conserve energy on months-long trips these gliders use a propul-
sion system driven mostly by gravity. This variable buoyancy
propulsion system, however, is particularly susceptible to error
introduced by strong or chaotic ocean currents. For this reason,
most navigation systems rely on prediction of local water velocity
to plan their paths. Current physics-based simulation models
are limited by on-board computation resources. Consequently,
we introduce several variations of recurrent neural network
based prediction algorithms and compare their performance to
a commonly used statistical forecasting method.

I. INTRODUCTION

Marine gliders are low-energy underwater vehicles propelled
by a variable buoyancy system, through which the vehicle
inflates a bladder to float, and then deflates the bladder to
sink while using steerable wings to direct the glider’s motion.
However, the low-energy propulsion mechanism leaves gliders
vulnerable to significant drift due to ambient water velocity,
which makes data acquisition less precise, and has led to the
loss of at least one glider, a loss of nearly half a million dollars.

Navigation systems for these gliders currently use predictions
of the average ambient water velocity, computed en route, along
a glider’s next path segment to correctly steer the glider. By
default, the gliders we encountered used a constant prediction,
simply that the water velocity along the next trip interval is
predicted to equal the water velocity measured during the
previous trip interval. However, where ocean currents are
chaotic, like at the edge of the Gulf Stream off the Southeastern
US coast, this prediction is insufficient. Chang et al. [2] address
this by forecasting with a physics-based fluid model in a series
of glider missions off the Southeastern US coastline in 2011
and 2012. At each timestep, they fit the model to water velocity
measurements made previously along the glider path, however,
this process is computationally intense. The amount of energy
consumed by fitting a physics-based fluid model makes it
impossible to do on-board the glider, thus prediction can only
occur when the glider surfaces to communicate with a separate
server via satellite.

To improve upon the constant prediction while using less
energy than a physics based simulation, we test a classic
statistical regression timeseries prediction model as well as
several recurrent network based models, and compare them
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Fig. 1: The path taken by a glider during one deployment.
Vectors drawn at each point represent the water velocity
reported at each location. Vectors’ lengths give relative scale.
The series is subsampled every three measurements for ease
of visualization.

across several metrics. The selection of models is informed by
related work presenting solutions to prediction tasks.

II. DATA

The data used to train and test our models comes from
two sources. We drew from an open database hosted by the
Southeast Coastal Ocean Observing Regional Association [7]]
(SECOORA), as well as from data collected in [2] for a total
of twelve missions made by seven different gliders off of the
Carolina and Georgia coastline. Each of the missions lasted
several weeks, during which each glider recorded a series of
measurements including depth, water velocity, temperature,
CO, saturation, and others. The location and water velocity
measurements of an example deployment are shown in Figure ]

The data was cleaned to remove duplicate data, invalid
numbers, and glider component malfunctions. After cleaning,
the missions contained between 44-450 measurements. Time
between measurements varied, both between gliders and within
individual missions, but was typically on the order of one hour.

Of these twelve deployments, four were used for preliminary
model selection, and the other eight were used for training,
validation, and testing. Details of model cross-validation and
training are described in the Results section.

III. MODEL SELECTION

To compare a variety of predictive models for this task,
we began with a broad literature review of time series



prediction models and dynamical systems. Our survey found
that Recurrent Neural Networks (RNNs) often outperform
statistical methods like Vector Autoregression (VAR), Au-
toregressive Integrated Moving Average, (ARIMA) and Error
Trend Seasonality (ETS) analysis. However, empirical evidence
suggests the best architecture is determined by the dataset [3]].
Hence, we present results from a classical linear VAR model for
time series prediction and compare this with several variations
of deep network based models.

A. Classic vector autoregression

Autoregressive models are widely used for time series in
many different contexts. In a nutshell, autoregressive models
predict by conditioning on previous values. To do that, the
signal needs to be stationary, meaning that the mean, variance
and autocorrelation are uniform across the signal [1]]. A linear
autoregressive model of order p, is shown below:

Vi=Bo+b1Vici+...

where 8 = (8o, ... [3,) are parameters and ¢; is residual error.
To estimate the parameters, 5, we use LASSO regression,
equivalent to least squares regression with an regularization
term penalizing the /; norm of [.

Additionally, we apply several network based models.
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B. Recurrent neural network based autoregression

Like DeepAR [5]] we approximate the distribution of the next
velocity measurement using an RNN framework. Our general
framework can be formalized as follows:

Let V = {vi7:}f\i1 be a set of ii.d. sequences. Let v;
represent the ¢ velocity measurement of the i*” sequence.

N T
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where f is the probability density of the predicted velocity
conditioned on h, the recurrent model trained to predict
parameters of distribution f. T is the total length of each
sequence, and NV is total number of sequences. We can choose
distribution f as well as the architecture of model h in order
to tailor the model to our data.

In this work we show results for two selections of distribution
f: a multivariate Gaussian distribution, and a mixture of
Gaussians with four components. These distributions were
parameterized by two different selections of h conditioned
on previous velocity measurements: the standard recurrent
unit h(v;) = Muv, + W6, + b, where 6, = h(v<y) is the
parameter estimate at the previous time-step, and a long short
term memory (LSTM) gate as proposed by Hochreiter et al
[4]. The distributions were then sampled to produce velocity
predictions vy.

We additionally report results using the same RNN and
LSTM architectures to directly predict velocity vector v; rather
than parameters for its probability distribution.
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(a) Standard RNN frame-
work.

(b) Unfolded framework showing temporal relationships.

Fig. 2: The standard RNN framework. ¢/ is the measured ground
truth velocity, and 0 is the predicted parameters of the velocity
density. We use two different recurrent unit functions, h, trained
to fit the data.

IV. MODEL EVALUATION

In the context of predicting water velocity for navigation
purposes, the ideal error metric is not clear, as ambient water
velocity orthogonal to the intended direction of motion of the
glider is more likely to push the glider off path than current
roughly parallel to the direction of motion [6]. However, water
velocity direction estimation is not enough to perform path
correction. With this in mind, we report three metrics. Mean
cosine similarity (MCS) is used to measure error in the direction
of the predicted velocity.
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MCS(y,9) =

where y; is the true measured velocity and g; is our predicted
velocity at time-step ¢. N is the number of forecasts. We also
report a relative error metric, mean absolute percentage error
(MAPE) to

3il|

MAPE(y
[yl

1002 i —

where N is the number of forecasts. MAPE gives the length of
the vector difference between the forcasted and true velocities
as a percernt of the length of the true velocity vector. Finally, we
report the well-known mean squared error (MSE) in (m/s)2.
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V. RESULTS
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The models were trained and tested using four-fold cross-
validation. For each phase of the cross validation, we withheld



one entire mission, split the other missions into windows of 20
timesteps each, shuffled them, then split them 90% for training
and 10% for validation. Selection of model hyper-parameters,
like number of hidden units, window size, optimizer, and loss
function, was done by brute force search.

Each model was trained on this data, then evaluated on the
withheld mission. This process was repeated four times with
four different missions and the metrics reported below are
averaged over the four test missions. In this paper, all results
reported are from models with predictions conditioned only on
previous water velocity measurements. Additional covariates
measured by the gliders are omitted during model development
for simplicity.

A. Vector Autoregression using LASSO

Vector autoregression achieved the lowest MSE across the
test suite, however qualitative analysis suggests that it is doing
little more than predicting constant current (i.e. predicting
vi+1 = v). This can be seen in figure @ The velocity
predictions in orange appear to approximately lag behind the
true values in blue by one timestep.

franklin20190910T0000: Prediction via Autoregression
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Fig. 3: Vector Auto-regression prediction performed on data
collected by Franklin glider in September 2019. This figure
shows traces of the eastward and northward velocity compo-
nents separately. The upper plot is eastward velocity and the
lower is northward. The blue trace represents the ground truth
measure velocity values and the orange are model forecasts.

B. RNN Models

To maintain comparability, we keep the network based model
architectures as similar as possible. All RNN/LSTM models
use a hidden unit size of 8. The ADAM optimizer was used
to minimize the Mean Absolute Error (MAE). For models
involving distributions, the loss was derived by sampling from
the output distribution.

From table [, we can see that a Gaussian Mixture Model
with parameters predicted by an RNN outperforms other
models in MAPE and MCS, but is outperformed by VAR
in MSE. However, all of the recurrent network based models
are very sensitive to hyper parameter selection as well as weight
initialization. It is also important to note here, that none of the
models perform particularly well in general. It seems that the
RNN + GMM architecture outperforms the others overall by
conservatively predicting velocities near 0 in series exhibiting

Model MAPE MCS MSE

VAR 627.8945 -0.3465  0.04525
RNN + Gaussian 658.78125 -0.05325  0.16275
LSTM + Gaussian 803.52225 -0.11375 0.1265
RNN + GMM 250.52325  -0.00325 0.11625
LSTM + GMM 1514.53675  -0.17175  2.36725
RNN 623.3465 0.0615 0.776

LSTM 368.7065 -0.19125  0.09225

TABLE I: Metrics for all models averaged over all cross-
validation phases

calm water, but is unable to predict unusual events as shown in
figure [] Interestingly, some architectures were able to predict
the onset of out-of-distribution events, but were very bad at
predicting velocity behavior during said event. This behavior
can be seen in figure [3

franklin20190910T0000: Prediction via RNN+GMM
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Fig. 4: RNN + GMM prediction performed on the same data
collected by Franklin glider in September 2019

bass20180808T0000: Prediction via RNN
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Fig. 5: RNN direct velocity prediction performed on data
collected by Bass glider in August 2018.
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Fig. 6: RNN parameterized predictions of multivariate Gaussian
distribution of v, y;|v; for three subsequent time steps. Red
"X" marks the true value.

VI. CONCLUSION AND FUTURE PLANS

The exploration done in this paper has led to a few important
conclusions for future work on this project. First, it’s clear
that velocity data alone is not sufficient to make the desired



predictions, at least with the methods tested thus far. Second,
because of the sensitivity of the recurrent network based
algorithms to initialization and parameter tuning, it’s not
possible to declare that any one model outperformed the others
to a significant degree, however all of the recurrent network
based architectures showed non-linear behavior and had some
regions of good fit. For this reason, we believe it is likely
that these models can be improved with more training data
and by including as additional covariates glider measurements
including GPS location at last surfacing or dead-reckoning
location, water temperature, and pressure. These improvements
are currently under investigation.

Additionally, the ideal loss function to both train and
evaluate these models is not clear. Additional testing in glider
simulations and with gliders in controlled environments is
necessary to validate any models before deployment.
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