
DESIGN AND VERIFICATION OF AUTONOMOUS SYSTEMS IN THE PRESENCE OF
UNCERTAINTIES

Bineet Ghosh

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science.

Chapel Hill
2023

Approved by:

Ron Alterovitz

James H. Anderson

Étienne André

Samarjit Chakraborty

Sandeep Chinchali

Parasara Sridhar Duggirala

Sriram Sankaranarayanan

©2023
Bineet Ghosh

ALL RIGHTS RESERVED

ii

ABSTRACT

Bineet Ghosh: Design and Verification of Autonomous Systems in the Presence of Uncertainties
(Under the direction of Parasara Sridhar Duggirala)

Autonomous Systems offer hope towards moving away from mechanized, unsafe, manual, often inef-

ficient practices. The last decade has seen several small, but important, steps towards making this dream

into reality. These advancements have helped us to achieve limited autonomy in several places, such as,

driving, factory floors, surgeries, wearables, and home assistants, etc. Nevertheless, autonomous systems

are required to operate in a wide range of environments with uncertainties (viz., sensor errors, timing errors,

dynamic nature of the environment, etc.). Such environmental uncertainties, even when present in small

amounts, can have drastic impact on the safety of the system—thus hampering the goal of achieving higher

degree of autonomy, especially in safety critical domains. To this end, the dissertation shall discuss formal

techniques that are able to verify and design autonomous systems for safety, even under the presence of such

uncertainties, allowing for their trustworthy deployment in the real world.

Specifically, the dissertation shall discuss monitoring techniques for autonomous systems from available

(noisy) logs, and safety-verification techniques of autonomous system controllers under timing uncertainties.

Secondly, using heterogeneous learning-based cloud computing models that can balance uncertainty in output

and computation cost, the dissertation will present techniques for designing safe and performance-optimal

autonomous systems.

iii

Dedicated to ma (Mother), babaI (Father), ididvaI (Sister), eqaeTaipismin (Auntie), eqaTka (Uncle), and my

family · · ·

চিত্ত যেথা ভয়শূন্য, উচ্চ যেথা চশর,
জ্ঞান্ যেথা মুক্ত, . . .
যেথা বাক্য হৃদযয়র উৎসমুখ হযে
উচ্ছ্বচসয়া উযে, যেথা চন্ববাচরে যরাযে
যদযশ যদযশ চদযশ চদযশ ক্মবধারা ধায়
অজর সহরচবধ িচরোথবোয়,
যেথা েুচ্ছ আিাযরর মরুবালুরাচশ
চবিাযরর যরােঃপথ যেযল ন্াই গ্রাচস . .
.

Where the mind is without fear and

the head is held high;

Where knowledge is free; . . .

Where words come out from the depth

of truth;

Where tireless striving stretches its

arms towards perfection;

Where the clear stream of reason has

not lost its way into the dreary desert

sand of dead habit; . . .

iv

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to the following individuals who have played a significant

role in the completion of this thesis:

I extend my deepest appreciation to my advisor, Sridhar. His introduction to the field of Cyber-physical

systems and unwavering support throughout my PhD journey have been invaluable. Not only did he guide

me in my research endeavors, but our non-academic discussions have also been enlightening and enriching. I

am truly grateful for his mentorship and the overall impact he has had on my academic and personal growth.

I would like to extend a profound thank you to Samarjit for his constant support, both professionally

and personally. Samarjit’s guidance went beyond research, as he mentored me in developing the essential

skills required to be a successful scientist. I am indebted to him for providing me with the knowledge and

wisdom that I would not have acquired otherwise. Both Sridhar and Samarjit have been instrumental in

shaping not only my research acumen but also my overall understanding of the craft. Their mentorship has

been invaluable to me.

I am immensely grateful to Étienne for the remarkable learning experience and joyful collaboration we

shared. He introduced me to the field of monitoring, and I thoroughly enjoyed working with him. Throughout

our collaboration, I learned a great deal from his expertise, and I appreciate the knowledge and insights he

shared with me.

I would like to express my sincere appreciation to Sandeep for introducing me to the world of robotics.

His guidance and expertise have greatly influenced the direction of my research in the latter part of this thesis.

I am grateful for the learning opportunities he provided and the impact he had on my academic journey.

Although I did not have the opportunity to work directly with Ron, Jim, and Sriram, I am indebted to

them for the valuable insights and research discussions we had. Their contributions and expertise have been

instrumental in shaping my future research agenda. I am grateful for the knowledge and perspectives they

shared with me.

I would like to extend special thanks to all those who have been my support system during this journey,

tolerating my occasional tantrums and providing calm and solace during challenging moments. Your

v

unwavering support and understanding have been vital, and I cannot thank you enough for being there for me.

Your presence has helped me maintain my sanity and navigate through the ups and downs of this academic

pursuit.

Lastly, but certainly not least, I would like to express my deepest gratitude to sumn da (Suman Da) for

sparking my interest in “Computers” and being the best teacher I have ever had. Your impact on my young

mind will forever be forgotten, and I am forever grateful for your guidance and inspiration.

To all the individuals mentioned above, and to everyone else who has supported me in various ways

throughout this journey, thank you from the bottom of my heart. This thesis would not have been possible

without your invaluable contributions, guidance, and unwavering support.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xii

Chapter 1: Introduction . 1

1.1 Role of Uncertainties: Understanding Their Impact and Implications . 3

1.2 Verification of Autonomous Systems . 5

1.3 Designing of Autonomous Systems . 9

1.4 Thesis . 11

1.5 Contributions . 12

1.5.1 Reachable set computation techniques that can account for uncertainties. 12

1.5.2 Scalable techniques to perform safety verification of systems under uncertainties. 13

1.5.3 Designing autonomous systems that can leverage heterogeneous compute
resources optimally. 13

Chapter 2: How Robust Is Safety? . 14

2.1 Preliminaries . 16

2.2 All Uncertainties Are Not Equal: Classifying Uncertainties Based on Their Impact
on Safety . 20

2.2.1 Sufficient Conditions for Representing Reachable Set of Uncertain Linear
Systems using Bi-linear Inequalities . 24

2.2.1.1 Generalizing Sufficient Conditions for Closure of LME products 28

2.2.1.2 Sufficient Conditions for Time-Varying Perturbations . 29

2.2.1.3 Comparing with Interval Arithmetic . 30

2.2.2 Robust Reachable Set: Introducing Perturbations in the Linear Dynamics 31

2.2.2.1 Illustration . 35

2.2.3 Ordering Uncertainties Based on their Impact on Safety . 37

2.2.3.1 Relationship between Reachable Sets and Singular Values 37

vii

2.2.3.2 Ordering the cells of the matrix based on its sensitivity to perturbation. 39

2.2.3.3 Computing Robustness Threshold . 40

2.3 Safety Verification of Autonomous Systems in the Presence of Uncertainties 41

2.3.1 Deterministic Approaches . 41

2.3.1.1 Reachability Using Perturbation Analysis . 42

2.3.1.2 Reachability Using Set Representations . 45

2.3.1.3 Case Studies. 49

2.3.2 Verifying Complex Autonomous Systems: Statistical Approaches 56

2.3.2.1 Reachable Sets With Probabilistic Guarantees using Hypothesis Testing . . . 57

2.3.2.2 Statistical Verification of Candidate Reachable Sets . 60

2.3.2.3 Main Algorithm . 62

2.3.2.4 Reachable Sets Using Model Learning . 63

2.3.2.5 Evaluation. 65

2.4 Detailed Analysis . 68

2.4.1 Computational Benefits of Using Frobenius Norm Over 2-Norm . 68

2.4.2 Zonotope Based Reduction . 68

2.4.3 Bloating the Reachable Set of Mean Dynamics . 69

2.4.4 Structure Guided Reachable Set Computation . 69

2.4.4.1 Structure Guided Reachable Set Computation . 70

2.4.5 Singular Values based Reachable Set Computation . 72

2.4.6 Model Learning Based Reachable Set Compution . 72

2.4.6.1 Scenario Optimization Details . 72

2.4.6.2 Learning the Model . 74

Chapter 3: Monitoring Autonomous Systems—Analyzing Logs to Detect a Crash . 75

3.1 Preliminaries . 77

3.2 Offline Monitoring: Analyzing Noisy Logs with Missing Samples . 79

3.2.1 What If Timestamps Are Noisy, Too? . 81

viii

3.3 Online Monitoring: Gather Samples Only When Necessary . 82

3.4 MoULDyS: A Monitoring Tool for Autonomous Systems . 83

3.4.1 Software Architecture . 83

3.4.2 Implementation. 85

3.4.3 Software Functionalities . 86

3.5 Case Studies . 87

3.5.0.1 First benchmark: Anesthesia . 89

3.5.0.2 Second benchmark: Adaptive Cruise Control . 92

3.5.0.3 Third benchmark: Aircraft Orbiting . 95

Chapter 4: Scheduling in Autonomous Systems—Handling Workloads Safely . 98

4.1 Effect of Timing Uncertainties on Autonomous System Controllers . 98

4.1.1 System Modeling . 101

4.2 The Problem Statement and a Deterministic Approach . 105

4.3 Quantitative Safety Analysis of Autonomous System Controllers in the Presence
of Timing Uncertainties: A Statistical Approach . 108

4.3.0.1 Hypothesizer: Guessing an upper-bound on deviation 109

4.3.0.2 Verifier and Refiner: Validating and refining the bound on deviation . . 109

4.4 Statistical Hypothesis Testing with Sets of Initial States . 111

4.4.1 Representing Sets using Zonotopes . 112

4.5 Handling Environmental Disturbances . 114

4.6 Illustration of the Proposed Approach And Advantages of Jeffreys’s Bayes Factor 115

4.6.1 Reason for Choosing Jeffreys’s Bayes Factor . 118

4.7 Experimental Evaluation. 118

4.7.1 Benchmarks . 123

4.7.1.1 RC network . 123

4.7.1.2 Electric steering . 123

4.7.1.3 Unstable second-order system . 124

4.7.1.4 F1Tenth . 124

ix

4.7.2 Results . 124

4.7.2.1 RC network . 125

4.7.2.2 Electric steering . 126

4.7.2.3 Unstable second-order system . 126

4.7.2.4 F1Tenth . 127

4.7.3 General Observations . 127

4.8 Synthesizing Schedulers in the Presence of Timing Uncertainties . 130

Chapter 5: Designing Autonomous Systems—Unlocking Performance Perfection by Smart
Resource Utilization . 132

5.1 Choosing Between Two Compute Models . 132

5.1.1 The Compute Model Selection Problem with Two Compute Models: A
Formal Definition . 134

5.1.1.1 Formal Problem Definition . 135

5.1.1.2 Discussion on the Problem Definition . 136

5.1.2 An Algorithmic Approach To Model Selection . 136

5.1.2.1 Analytical Results for Linear Regression . 138

5.1.2.2 Analytical Results for Deep Neural Networks (DNNs) . 140

5.1.3 Application Scenarios. 142

5.1.3.1 Linear Regression . 142

5.1.3.2 Compute Efficient Robotic Perception . 142

5.1.3.3 Reachable Set Computation . 143

5.1.3.4 Benchmark Algorithm . 145

5.1.4 Evaluation . 146

5.1.4.1 Linear Regression Results . 147

5.1.4.2 Deep Neural Networks (DNN) . 147

5.1.4.3 Reachable Set Computation . 148

5.2 Decision Making in Perception-Based Robots: Selecting from a Variety of Percep-
tion Models . 149

5.2.1 Problem Statment . 152

x

5.2.1.1 Perception Model . 153

5.2.1.2 Perception Cost and Control Cost . 155

5.2.1.3 Model Selection Problem . 156

5.2.2 Model Selection Problem When All the Perception Outputs are Known 158

5.2.3 An expectation based approach to the Model Selection Problem . 160

5.2.4 A Special Subcase: Model Selection in Polynomial Time Complexity 163

5.2.5 Experiments . 165

5.2.5.1 Drone Landing Simulation . 166

5.2.5.2 Photo-realistic Drone Landing Simulation in AirSim . 169

5.2.6 Detailed Analysis . 171

5.2.6.1 Proof of Equivalence . 171

5.2.6.2 Encoding with Binary Variables . 173

5.2.6.3 Expectation and Variance of the Difference Vector . 173

5.2.6.4 Minimizing Expectation . 174

5.2.6.5 Polynomial Time Proof . 176

5.2.6.6 Transformation of Choice Variables . 179

5.2.6.7 Canonical Form . 180

5.2.6.8 The Quadratic Matrix is a Positive Semidefinite . 181

5.2.6.9 Casting to a Semidefinite Program . 182

xi

LIST OF FIGURES

2.1 A robot, in a factory floor, trying to avoid collision with the wall (in red). The
set of states reached by the robot on a clean factory floor is marked in light blue.
The set of states reached by the robot when there is an oil spill on the floor is
marked in dark blue (including the region in light blue). 14

2.2 An example an uncertain linear system, where parameter c1 is computed empirically
using sensor 1, and c2 is computed empirically using sensor 2. The main idea to
prioritize one sensor over another based on the impact on safety its corresponding
parameter has. 15

2.3 Pictorial representation of a Block Boolean Matrix block((r1,c1),(r2,c2)). Light
Blue represents 0, and Dark Blue represents 1 . 23

2.4 Pictorial representation of a block matrix N and its corresponding UN . Light Blue
represents 0, and Dark Blue represents 1. 32

2.5 Reachable sets and singular values. 38

2.6 Illustration of Theorem 12 and Theorem 13. 46

2.7 Recurrence relation to compute an overapproximate reachable set of a uncertain
linear system, using Set Representation method. 48

2.8 (Anaesthesia: Concentration level of c1 and c2 with perturbation in k21 and k31) The
x and the y axis represents the concentration levels c1 and c2 respectively. Green:
Phase plots of the reachable sets of the unperturbed system. Blue: Reachable sets
of the perturbed system. Red: Lines demarcating the safe region. That is, c1 is
considered safe if it is between 0 to 10. The safety of c2 is interpreted similarly. 52

2.9 (Reachable Sets of Anaesthesia Delivery Model) Red: Lines demarcating the safe
region. For example, in Fig. 2.9a, cp is considered safe if it is between 1 to 6. 53

2.10 (Mars Rover Reachable Sets) Red Dots: Unsafe points in the Martian Terrain
representing high raised obstacle or unsuitable temperature. 56

2.11 Workflow for computing probably approximately correct reachable set for uncertain linear systems. 58

2.12 Over-approximate reachable sets of Flight Collision model. Dirty Blue: Computed
using bloatMean; Black: Computed using boxBloat; Cyan: Random reachable
set; Navy Blue: Computed using modelLearn; Red: Computed using Flow*. 67

2.13 Left: Over-approximate reachable sets of 5 Vehicle Platoon model. Dirty Blue:
Computed using bloatMean; Black: Computed using boxBloat; Cyan: Random
reachable set; Navy Blue: Computed using modelLearn; Red: Computed using
Flow*. Right: Over-approximate reachable sets of Spacecraft Rendezvous model.
Dirty Blue: Computed using maxSV; Black: Computed using boxBloat; Cyan:
Random reachable set; Navy Blue: Computed using modelLearn; Red: Computed
using Flow*. 67

xii

3.1 Monitoring at discrete time steps . 75

3.2 (3.2a): Offline Monitoring. Black: Two consecutive samples, k and k+ 1, at
time steps t and t + 5 respectively. Blue: The over-approximate reachable set
computed from sample k using overReach(.). (3.2b): Online Monitoring. Blue:
Over-approximate reachable set computed, at each step, using overReach(.). 79

3.3 MoULDyS Architecture. Each block identifies a core part of the tool, and the arrows
indicate the flow of data. 84

3.4 Dataflow diagram of the offline monitoring functionality of MoULDyS. 84

3.5 Dataflow diagram of the online monitoring functionality of MoULDyS. 85

3.6 Offline monitoring: We plot the change in concentration level of cp with time. The
volume of the samples increase from left to right, and the probability of logging
increases from bottom to top. The blue regions are the reachable sets showing the
over-approximate reachable sets as computed by the offline monitoring, the black
regions are the samples from the log given to the offline monitoring algorithm,
and the red dotted line represents safe distance level. Note that although the top-
row plots and the bottom left plots’ reachable sets seem to intersect with the red
line (unsafe set), the refinement module infers them to be unreachable, therefore
concluding the system behavior as safe—unlike the bottom-right plot. 89

3.7 Online monitoring: We plot the change in concentration level of cp with time. The
blue regions are the reachable sets showing the over-approximate reachable sets as
computed by the online monitoring, the black regions are the samples generated
when the logging system was triggered by the online monitoring algorithm, and
the red dotted line represents safe concentration levels. Left: We apply our online
monitoring to the anesthesia model. Right: We compare our online and offline
algorithms. The green regions are the reachable sets showing the over-approximate
reachable sets between two consecutive samples from the offline logs, the magenta
regions are the offline logs, given as an input to the offline monitoring algorithm,
generated by the logging system, and the red dotted line represents safe concentra-
tion levels. The blue regions are the reachable sets showing the over-approximate
reachable sets as computed by the online monitoring, the black regions are the
samples generated when the logging system was triggered by the online monitoring
algorithm, and the red dotted line represents safe concentration levels. 90

3.8 Offline monitoring (ACC): We plot the change in distance h between the vehicles
with time. The volume of the samples increase from left to right, and the probability
of logging increases from bottom to top. The color coding is same as Fig. 3.6. 93

3.9 Online monitoring (ACC): We plot the change in distance between two vehicle
h with time. The color coding is same as Fig. 3.7. Left: We apply our online
monitoring to the ACC model. Right: We compare our online and offline algorithms. 94

xiii

3.10 Planned Behavior of the Aircraft: The axis of the plot denotes the position of
the aircraft in (x,y) plane (with a fixed altitude). The ideal (planned) path of the
aircraft, orbiting the object (black), is shown in green. The red dashed lines indicate
the safety constraint of the aircraft—these lines must not be crossed at any time step. 95

3.11 Offline monitoring (Aircraft Orbiting): We plot the position of the aircraft, along x
axis, with time. The timing delay of the samples increases from left to right, and
the probability of logging increases from bottom to top. The color coding is same as Fig. 3.6. 96

4.1 Deviation in the path of an F1Tenth car due to timing uncertainty. 100

4.2 Proposed statistical hypothesis testing approach. 100

4.3 Transducer automaton capturing 3 maximum consecutive misses. 103

4.4 Evolution of states through time from an initial set of states. The figure depicts
all the possible set of states that are reachable when the system starts from a given
initial set of states. The set of initial states is given in green, blue represents the set
of intermediate states, and purple represents the set of states reached at time t. 107

4.5 Reachability with zonotopes. 112

4.6 Reachability with V-Polytopes. 113

4.7 The steps performed by Algorithm 9 to compute a deviation bound with a de-
sired confidence. The nominal trajectory is shown in green, randomly generated
trajectories are shown in black, and dub is shown in light blue. 116

4.8 Violin and box plots of computed dub values over varying probabilistic guarantee c
on the computed bound. All boxes in Fig. 4.8a are single values. 120

4.9 System behavior with a single initial state [1]. Safety envelopes at a distance
of dub from the nominal trajectory, with random trajectories with one extra consec-
utive deadline miss. 121

4.10 System behavior with random trajectories (green) that are within dub distance from
the nominal trajectory (black), and one violating trajectory (red) with one extra
consecutive deadline miss—this trajectory deviates more than dub from the nominal
trajectory. 122

4.11 Outline of the proposed scheme. 131

5.1 The Compute Model Selection Problem: A robot must balance task accuracy and
compute cost, such as energy or latency, when choosing between heterogeneous
compute resources. Our interpretable model selection policy π leverages the
statistical correlation between fast and slow compute models ffast and fslow to
dynamically decide which model to invoke. 133

xiv

5.2 Rewards. (Left: Linear Regression, Center: DNN, Right: Mars Rover Reach-
able Set). We illustrate the cumulative rewards (Eq. 5.1) gathered by various
policies on the Linear Regression, DNN perception (TaxiNet), and Mars Reachable
Set scenarios, respectively. Clearly, our policy (Our Selector) achieves the max-
imum reward compared to other realizable benchmarks and is close to the oracle in
all cases. 146

5.3 DNN Cost vs. Accuracy. (Left: Linear Regression, Center: DNN, Right: Mars
Rover Reachable Set). Cost vs. Loss trade-off achieved by various model selection
policies on all scenarios. In all cases, we observe that the Fast policy has low
cost but low accuracy, Slow has high accuracy but high cost, and Random lies
sub-optimally in the middle (with a high variance). Only the selection policy
proposed in this paper (Our Selector) achieves a delicate balance by exploiting
the statistical relationship between models to intelligently consult the slow model. 146

5.4 Left: (Safe Navigation of a Mars Rover). We consider navigation of a simulated
rover on real Mars HiRise terrain data [2], where the red point clouds are obstacles
indicating regions of high elevation, as processed in [3]. First two images: We
show the reachable sets of two different possible routes taken by the Mars Rover.
The reachable set in green is computed by the slow model, whereas the one in blue
comes from the fast model. Path safety is determined by assessing if the reachable
set (accounting for uncertainties), intersects red obstacles. Clearly, our model
selection policy uses the slow model only when the rover makes tricky maneuvers.
Otherwise, when the rover is far from obstacles, the fast model is sufficient to
determine safety, allowing us to maintain high safety with a lower compute time.
Third image: We show the relationship beween reachable sets computed by the
fast model (in blue) and the slow model (in black). Crucially, our policy uses the
over-approximated reachable set of the slow model as computed by the fast model
(in cyan), that is, B 1

1−ε

(yt
fast). Clearly, our model selection policy only consults

the slow model when it suspects a possible collision when the set represented in
cyan intersects with a red obstacle. Our policy always led to safe, collision-free,
efficient navigation by exploiting the relationship between fast and slow models.
Right: (Aircraft TaxiNet DNN Output). The output of the fast and slow DNN
models for a ResNet-18 TaxiNet model. Given an image, the final output shown is
the rudder control. 147

5.5 Model Selection Problem: In a setting where a robot has access to a plethora
of models (namely M0 to MK)—with varying cost and accuracy—the goal of the
robot is to perform a control task such that it strikes an optimal balance between
compute cost and control cost. 149

5.6 Model Selection Encoding and DNN Training . 159

5.7 Results evaluating our proposed model selection strategy (Optimal) on a numerical
aircraft landing simulation. 167

xv

5.8 Pareto (Numerical Simulation). This plot shows how the behavior of our optimal
policy changes with varying values of α and β . Recall, higher values of α implies
the model selection sequence should prioritize control cost over perception and
model cost. Whereas higher values of β implies the model selection sequence
should prioritize perception model cost over control cost. 167

5.9 Landing Trajectories (Numerical Simulation). Plot showing the change altitude
happening, for landing the aircraft, with time for various policies. 167

5.10 Results evaluating our proposed model selection strategy (Optimal) on an aircraft
landing simulation in AirSim. 170

5.11 Landing Trajectories (AirSim Simulation). Plot showing the change altitude
happening, for landing the aircraft, with time for various policies. 170

5.12 AirSim environment and data gathering. 172

5.13 Left. EfficientNet suite accuracy trend. Right. Data Gathering using AirSim 173

xvi

CHAPTER 1: INTRODUCTION

These advancements have helped us to achieve limited autonomy in several places, such as: Advanced

Driver Assistance Systems (ADAS), ensuring safety and efficiency in factory floors, assisting doctors in

surgeries, wearables and home assistants, etc. [4, 5, 6]. Autonomous systems, however, face the challenge of

operating in diverse environments characterized by various uncertainties, including modeling errors, sensor

errors, timing errors, implementation uncertainties, and the dynamic nature of the surroundings. Even if these

uncertainties are present in small amounts, they can have a profound impact on the safety of the system,

thereby hindering the pursuit of achieving a higher degree of autonomy, particularly in safety-critical domains.

As a result, in order to instill trust and confidence in the deployment of autonomous systems, particularly

in safety-critical domains, it is crucial to verify their provable safety in the presence of uncertainties. This

verification process ensures that the system’s behavior remains within acceptable bounds, even when faced

with environmental uncertainties.

An equally significant aspect of verification involves the design of autonomous systems with provable

performance and safety guarantees. Let us consider an autonomous system that runs computationally intensive

perception models alongside multiple other processes on a scheduler. In the design of such systems, it is

essential to carefully determine the order in which computations are performed to ensure optimal performance

in terms of computational cost, scheduling delay, and perception accuracy [7]. This entails organizing the

computational tasks in a manner that maximizes efficiency while maintaining the desired level of accuracy.

Moreover, the design process should explicitly take scheduling choices into account, as these choices can

have a significant impact on the overall stability of the system [8]. By carefully considering the scheduling

approach, potential instabilities and conflicts can be mitigated, enhancing the reliability and robustness of the

autonomous system.

In addition to the existing design challenges, modern robotic systems face the complexity of utilizing

a wide array of perception models with varying computational costs and accuracies in order to achieve a

desired task while minimizing control expenses. The main challenge in such a scenario is to select and

utilize the appropriate models at the right moments to accomplish the task with the lowest control cost and

1

Sridhar Duggirala
Which advancements?

Sridhar Duggirala
Too long a sentence. What is it that you want to do? Again, you have space to explain things, take your time and set up the problem appropriately.

Sridhar Duggirala
This sort of casual hopping from statement to statement is not appropriate. You are failing to set the context for importance of your work. This is not 2010, you have a lot of examples of ML systems doing non-ideal things. Infact, the first Tesla fatality is because of perception error. You should not just give boilerplate statements, but give the meat behind the justification.

Sridhar Duggirala
This is incorrect. Verification is all about checking whether the system satisfies the spec. Everything else is commentary.

You can leverage verification for automatic synthesis.

Sridhar Duggirala
Giving example of mars rover and number of tasks while landing would be a good motivation.

Sridhar Duggirala
you have not even highlighted a single design challenge in this chapter.

Sridhar Duggirala
The introduction reads like a laundry list. I wrote paper A, therefore this para, paper B, another para, paper C, another para. I think it is a pretty poor way of synthesizing the chapter.

You should highlight all the important aspects of autonomous systems and highlight each challenge.

Sridhar Duggirala
this sentence is so bad that it should be cancelled. Please rewrite. There is no context to any of the words you have used. what are perception modiles, what do you mean by computational cost, what is accuracy. what is a control expense. You need to explain all of these informally.

in the shortest possible compute time. As a result, this thesis investigates techniques for designing and

verifying autonomous systems that are inherently heterogeneous in nature, encompassing factors such as

scheduling choices, computation order, perception accuracy and cost, among others. These systems operate

in uncertain environments, and this thesis aims to explore methods to ensure their provable performance and

safety guarantees. By addressing the complexities arising from the heterogeneity of autonomous systems and

the uncertainties in their operating environments, the research aims to contribute to the development of robust

and reliable autonomous systems that can effectively handle various challenges while maintaining desired

performance and safety standards.

The algorithmic core of most autonomous systems, be it in automotive or robotics, is a feedback

control loop. Hence, in this thesis, the primary focus will be on exploring the closed-loop control aspect

of autonomous systems and developing methodologies for their design and verification. The initial part of

the thesis will involve creating artifacts to investigate and understand the characteristics and modeling of

uncertainties. Building upon these artifacts, this thesis proposes algorithms that can be used to design and

verify autonomous systems. These algorithms will take into account the availability of heterogeneous compute

resources, the challenges posed by uncertain environments, and the objective of ensuring provable safety

and performance guarantees. By delving into the closed-loop control aspect and addressing the uncertainties

inherent in autonomous systems, this thesis seeks to contribute valuable insights and practical solutions for

designing and verifying autonomous systems that can operate effectively and reliably in real-world scenarios.

Formal verification of dynamical systems, such as autonomous vehicles, drones, spacecrafts, medical

devices etc., often assumes that the system model is perfectly known, i.e., the model is free from uncertainties.

But in reality, this is seldom the case—a dynamical system model is dependent on several parameters. For

instance, consider the model of an adaptive cruise controller (ACC), the model is dependent on parameters

like the mass of the car, acceleration of the lead vehicle etc. [9]. These parameters are measured by

sensors, whose accuracy is not perfect, but measures a value with some error. Such examples are plenty in

medical devices—an anesthesia delivery model is dependent on various parameters that are often measured

empirically [10]. Therefore, verification assuming a perfectly known model might not be very useful in an

uncertain environment. Towards this, the first part of the thesis will propose several reachable set computation

methods (symbolic and numerical) that can take into account uncertainties [11]. Further, this will be helpful

in the second part of the thesis, which proposes algorithms, with provable safety and performance guarantees,

to verify and design autonomous systems that can handle uncertainties. This thesis also develops tools to

2

Sridhar Duggirala
wrong. We do not do that.

Sridhar Duggirala

Sridhar Duggirala
This is a very big change in flow. Also, the following para does not make sense.

Sridhar Duggirala
such a sudden change.

Sridhar Duggirala
This is a poor way of introducing your work, Bineet.

This seems like a copy-paste of the introductions from various papers with some glue. That is not how a thesis introduction should read. It should read as a coherent advancement in science (which it is).

Sridhar Duggirala
I don't know why you keep mentioning heterogenous compute resources that often. We did not deal with that.

Sridhar Duggirala
This para seems to be suffering from a lot of confusion.

Writing tip: write only about one thing in a para. Don't confuse 2-3 things in one para.

Sridhar Duggirala
Again, going too deep into the technical stuff without putting all the other works in context, not very advisable.

Sridhar Duggirala
there is nothing called as a perfect sensor. You have to be careful about using colloquial works in written form. All sensor readings are subject to uncertainty.

Sridhar Duggirala
Very vague statement. Almost a throw away. Can you please elaborate? How would a reader who is not familiar with your work, understand this?

Sridhar Duggirala

compute reachable sets, using the proposed methods, that can take into account uncertainties. All such code

is be made open source through public repositories. This shall constitute the first of my thesis. In the second

part of thesis, we leverage some of the artifacts developed in the first part, to propose algorithms to design and

verify autonomous systems with provable safety and performance guarantees that can operate in uncertain

environments. In particular, to verify systems for safety, we investigate quantitative safety verification where

traditional qualitative safety verification (viz., stability) might fail, and also monitoring based techniques as a

lightweight yet useful method for verification [12].

1.1 Role of Uncertainties: Understanding Their Impact and Implications

In today’s rapidly advancing technological landscape, autonomous systems have emerged as powerful

tools that play significant roles across various domains. These systems, encompassing drones, vehicles,

robots, medical devices, and more, possess the ability to operate without direct human intervention. However,

their effectiveness and reliability are often challenged by the presence of uncertainties inherent in their

operational environments. Uncertainties in autonomous systems can arise from diverse sources, including

modeling errors, dynamic environments, timing uncertainties, and perception errors of neural networks,

among others. The accurate modeling of drones and vehicles, for instance, necessitates precise measurements

of mass and acceleration, as any errors in these parameters can lead to inaccurate predictions and potentially

compromise the system’s performance. Similarly, in dynamic environments where humans and robots

collaborate, uncertainties can arise due to the unpredictable nature of human behavior and interactions. Timing

uncertainties also pose a significant challenge for autonomous systems. These uncertainties stem from factors

such as delays in communication, sensor response times, or the synchronization of different components

within the system. Timely decision-making is crucial for autonomous systems, and any uncertainty in

timing can result in sub-optimal actions or even system failures. Furthermore, perception errors of neural

networks, which serve as the backbone of many autonomous systems, can introduce uncertainties. Neural

networks rely on training data to make sense of their surroundings, and any inconsistencies or limitations

in the training data can lead to perceptual errors. These errors can impact the system’s ability to accurately

interpret its environment and make informed decisions. Addressing uncertainties in autonomous systems is

a crucial research area, as it directly impacts their safety, efficiency, and overall performance. Robustness

and adaptability become key attributes that need to be incorporated into the design and operation of these

3

Sridhar Duggirala
what is a reachable set? You just assumed that people know this term?

Sridhar Duggirala
?? something is wrong with this statement.

Sridhar Duggirala
The classic case of confused para.

ONE PARA ONE THING.

You went into the contributions of the second work immediately in the second para.

Sridhar Duggirala
Why am I reading this for the third time?

Sridhar Duggirala
why? Is this just the dump that you created by copying and pasting from other introductions? There is absolutely no coherence.

Sridhar Duggirala
explain, give examples, paint a vision of what you want the next generation systems to achieve.

Sridhar Duggirala
what? there is no flow in this! Why did you switch from timing to perception? What is this?

Sridhar Duggirala
These sentences feel like the most boilerplate stuff that can be written by ChatGPT!

systems to mitigate the effects of uncertainties. In this context, this thesis explores the challenges posed

by uncertainties in autonomous systems and investigates various strategies, techniques, and approaches

employed to handle and mitigate these uncertainties. By understanding and addressing these uncertainties,

we can pave the way for the continued advancement and successful deployment of autonomous systems in

diverse real-world applications.

Let us consider the example of anesthesia, which is a crucial safety-critical event preceding nearly all

surgical procedures. To ensure its safety, it is necessary to comprehend the drug’s metabolic processes

within the body and its impact on the depth of hypnosis. A prevalent method to determine anesthesia safety

involves acquiring a dynamical model of the system, which captures the rate of change of the system’s state

variables. These state variables correspond to diverse concentration levels that provide insights into the drug’s

metabolism and the depth of hypnosis. It is imperative for these concentration levels to consistently remain

within predetermined limits, as higher levels can prolong unconsciousness, while lower levels may result in

the patient being conscious during surgery, which can be traumatic. Consequently, having a dynamical model

that accurately represents the rate of change of these state variables is crucial for analysis. Intuitively, the

rate of change of state variables is influenced by an interaction between their previous values and the input,

namely the anesthesia drug administered to the patient. This interaction is governed by several empirically

determined parameters, such as lung capacity, weight, alveolar volumes, and others. Once we possess a

dynamical model of the system, it becomes possible to compute the potential concentration levels after

a specified time t given a particular anesthesia drug dosage. Subsequently, we can verify whether these

concentration levels indeed fall within the safe limits. These concentration levels, represented as a set, are

referred to as reachable sets. Computing reachable sets for such models is relatively straightforward in the

absence of modeling uncertainty. However, in the presence of uncertainties, determining reachable sets can

be exceedingly challenging. Nevertheless, it is still feasible to compute over-approximations of reachable

sets that account for uncertainties. In the context of the anesthesia example, the rate of change of state

variables is influenced by various parameters specific to individual patients, including weight, lung capacity,

alveolar volumes, among others. Since these parameters are empirically determined, their associated values

may exhibit some degree of error range. Furthermore, due to their patient-specific nature, employing a

fixed set of values for all patients may not accurately capture the system’s dynamics. Consequently, for a

safety-critical event like anesthesia, explicit consideration of uncertainties in the computation of reachable

sets is necessary to ensure the soundness of the safety analysis. To address this requirement, this thesis

4

Sridhar Duggirala
The examples should come before all the assertions.

Sridhar Duggirala
A couple of things missing in this para.

First, you should highlight that the amount of anesthesia ingested into a patient is determined based on a model.

This mathematical model describes ...

Then talk about uncertainties.

proposes several symbolic and numerical approaches for computing reachable sets that can account for

uncertainties, as detailed in Chapter 2. While computing reachable sets that account for uncertainties remains

highly challenging, this thesis demonstrates that there are specific classes of uncertainties for which exact

reachable sets can be computed, even with the inclusion of uncertainties (see Section 2.2).

Reachable sets play a vital role in the verification and design of autonomous systems, providing valuable

insights into the cumulative impact of uncertainty on system behavior and safety. However, while reachable

sets offer an understanding of the overall system’s response to uncertainty, they do not provide detailed

insight into the individual parameters’ impact on system safety. Yet, certain parameters may have a more

significant influence on safety than others. Therefore, gaining an understanding of parameter rankings based

on their impact on safety can be highly beneficial in designing cost-effective systems that maintain safety

standards. The ability to rank parameters based on their impact on safety allows for strategic decision-

making in system design. By identifying parameters that are highly sensitive to uncertainty, designers can

allocate resources to deploy highly accurate sensors or implement robust techniques in those specific areas.

Conversely, parameters that demonstrate robustness to uncertainty can be approached with a more balanced

trade-off between accuracy and cost. This ranking approach provides a systematic way to prioritize design

considerations, ensuring that safety is not compromised while optimizing resource utilization. To address this

need, this thesis proposes a novel ranking algorithm to assess the impact of parameters on system safety, as

outlined in Section 2.2.3. The algorithm offers a comprehensive and objective method for determining the

relative importance of different parameters in the context of safety. By employing this ranking algorithm,

the thesis also introduces techniques to evaluate the permissible amount of uncertainty that a system can

tolerate without violating safety requirements. Ultimately, this thesis contributes to the development of robust

and reliable autonomous systems that can operate within predefined safety limits, even in the presence of

uncertainties. Furthermore, the techniques introduced in Chapter 2, on understanding roles of uncertainties,

will be used in the later chapters of this thesis to verify autonomous systems for safety, and design trustworthy

autonomous systems.

1.2 Verification of Autonomous Systems

The deployment of autonomous systems in safety-critical domains necessitates a high level of trust

and confidence in their reliable operation. These systems, however, encounter significant challenges when

5

Sridhar Duggirala
You cannot explain the importance of a concept such as reachable sets *after* you have already assumed that they are important in analysis in the previous chapter.

Sridhar Duggirala
The explanation is fine! However, you need to give more illustrations and examples to convince others that this is an important problem. Currently, with only text and no illustrations, these statements feel very shallow. That is why they do a poor job at motivating the problem.

Sridhar Duggirala
What is the cost you are talking about? I don't see any cost in any of the discussion about parameters. You should be precise in your communication.

operating in diverse environments characterized by a multitude of uncertainties. Uncertainties such as

modeling errors, sensor errors, timing errors, implementation uncertainties, and the dynamic nature of the

surroundings can have a profound impact on the safety of autonomous systems, even when present in small

amounts. This hampers the pursuit of achieving a higher degree of autonomy, particularly in safety-critical

domains where the consequences of system failures can be severe. To instill trust and confidence in the

deployment of autonomous systems, it becomes crucial to provably verify their safety in the presence

of uncertainties. The verification process ensures that the system’s behavior remains within acceptable

bounds, even when faced with environmental uncertainties that may affect its performance. By subjecting

autonomous systems to rigorous safety verification, it becomes possible to mitigate risks associated with

uncertain factors and enhance the system’s overall reliability. The presence of environmental uncertainties

highlights the need for proactive measures to guarantee the safety of autonomous systems. These uncertainties,

when left unaccounted for, can propagate and amplify, leading to potentially catastrophic consequences.

It is imperative to develop methodologies and techniques that enable the assessment and quantification of

uncertainties, allowing for the establishment of safety bounds that autonomous systems should adhere to. In

safety-critical domains, where the consequences of system failures can result in significant harm or loss of

life, the verification of provable safety is of utmost importance. The ability to ensure that an autonomous

system operates within predefined safety limits despite the presence of uncertainties can significantly enhance

the trustworthiness of such systems. It not only assures stakeholders that the deployed autonomous systems

are equipped to handle the challenges posed by uncertain environments but also instills confidence in the

public, regulators, and end-users. This thesis aims to address the critical need for provable safety verification

of autonomous systems in the presence of environmental uncertainties, particularly in safety-critical domains.

By investigating and developing robust methodologies, algorithms, and frameworks, we seek to provide

a comprehensive approach to verifying the safety of autonomous systems, accounting for various sources

of uncertainty. The thesis will focus on understanding the impact of uncertainties on system behavior

and developing techniques that enable the system to operate safely within predefined bounds despite these

uncertainties. The complexity of autonomous system modules, including neural networks, presents unique

challenges in ensuring provable safety. Formal safety verification techniques, such as those employing

reachable sets, have been extensively used to verify the safety properties of dynamical systems. However,

when applied to autonomous systems with intricate modules like neural networks, these techniques often

encounter scalability issues. The computational burden and limitations in capturing the complex behavior of

6

Sridhar Duggirala
The same sentence again? Feels like I am reading this a third time.

Sridhar Duggirala
Reads like a government document written by a babu! The same thing is said backwards and forwards.

Sridhar Duggirala
??? I just read this sentence earlier!!!

Sridhar Duggirala

neural networks hinder their effective application in safety verification. Consequently, new approaches are

required to address these challenges and enhance trust in the deployment of autonomous systems. In light of

these considerations, this thesis focuses on exploring statistical approaches for verifying the safety of complex

autonomous systems. By leveraging statistical techniques, it becomes possible to account for uncertainties

and intricacies in the behavior of autonomous system modules, such as neural networks. These approaches

offer a promising avenue for assessing the safety of autonomous systems and addressing the limitations of

traditional formal verification techniques. By advancing the field of statistical safety verification for complex

autonomous systems, this research contributes to addressing the challenges associated with ensuring provable

safety in the presence of uncertainties. The outcomes of this work will not only provide valuable insights into

the design and deployment of autonomous systems but also hope to lay the groundwork for the adoption of

statistical approaches as an alternate practice in safety-critical domains. Ultimately, the aim is to foster trust

and confidence in the deployment of autonomous systems while ensuring their safe operation in complex and

uncertain environments.

Chapter 2 introduces a comprehensive artifact that utilizes reachable sets to perform safety verification

in autonomous systems. However, the subsequent chapters of this thesis shift their focus to specific safety

verification paradigms, namely the monitoring of system behavior and the handling of timing uncertainty in

schedulers due to the sharing of processors by multiple controllers. These chapters, specifically Chapters 3

and 4, will present a range of safety verification methodologies that employ both formal and statistical

approaches. The following are the specific paradigms that will be extensively discussed in the subsequent

chapters of this thesis.

Monitoring of autonomous systems to detect crashes. Following a crash involving a plane or a vehicle,

crucial questions arise from both law enforcement agencies and insurance companies: “What caused the

crash?” and “Who is at fault?” To investigate these incidents, flights and vehicles are equipped with black

boxes, devices that store critical information about the vehicle or plane leading up to the crash. These black

boxes capture data such as controller inputs, voice recordings, and snapshots of state variables at specific

time instants. However, accurately logging data at all time steps poses challenges for various reasons. The

ability to log data accurately at every time step may be hindered by multiple factors. Systems designed on

a tight budget often rely on uncertain or less accurate sensors for logging purposes. Additionally, logging

data over an unreliable network can introduce uncertainties in the associated timestamps, leading to potential

7

Sridhar Duggirala
It is all repeated mumbo-jumbo until this point.

Sridhar Duggirala
again a lot of mumbo-jumbo.

What are the crucial insights? What is it that you are going to gain? Please be precise.

Sridhar Duggirala
Peak ChatGPT level.

Sridhar Duggirala
Finally, you get to the actual content here!

inaccuracies. In intermittently powered devices, allocating energy for continuous logging may not always be

feasible. Consequently, the collected logs can exhibit noise and contain missing samples, further complicating

subsequent analysis. To address these challenges, Chapter 3 proposes an offline monitoring technique

capable of analyzing noisy logs with missing samples while accounting for uncertainties in timestamps.

This offline monitoring approach aims to identify safety violations by thoroughly analyzing a given log.

Additionally, Chapter 3 introduces a safety-aware online logging approach that optimizes the logging process

by selectively recording data only when necessary. By employing such an online monitoring approach,

this thesis demonstrates the potential to enhance overall trust and energy efficiency in autonomous systems.

Furthermore, this approach has been rigorously proven to be both sound and complete. By combining offline

and online monitoring techniques, this thesis aims to contribute to improved crash investigations and the

proactive implementation of safety measures. The outcomes of this thesis hopes to have implications for law

enforcement agencies, insurance companies, and developers of autonomous systems, as they foster trust and

confidence in the operation of these systems. Ultimately, the goal is to advance autonomous systems while

ensuring their safe and efficient operation in real-world scenarios.

Verifying and designing autonomous system schedulers in the presence of timing uncertainties caused

by sharing of processor by the controllers. Consider the concept of quantitative safety in the context of

autonomous systems. Imagine a robot that is required to navigate along a predetermined path, avoiding

obstacles. The robot employs multiple controllers on a single processor, including those responsible for

perception, heat control, and a path follower that guides the robot along its predefined trajectory while

avoiding obstacles. However, due to the simultaneous execution of multiple controllers on a shared processor,

some controllers may fail to meet their deadlines, resulting in delayed computation of control inputs. In such

a scenario, what happens if the path follower misses its deadline? The robot’s trajectory can deviate from the

planned path, potentially compromising safety by bringing it closer to obstacles. It becomes evident that not

all patterns of deadline misses are equally safe. Deadline miss patterns that cause minimal deviation from the

planned trajectory are considered safe, while patterns resulting in significant deviation and potential collisions

are deemed unsafe. Chapter 4 of this thesis introduces techniques to prove the safety of autonomous system

controllers in the presence of timing uncertainties. Specifically, given a pattern of hits and misses in meeting

deadlines, we compute the maximum possible deviation that can occur for a controller. Furthermore, this

chapter briefly explores available techniques that leverage the aforementioned verification methodologies

8

Sridhar Duggirala
I once gave you a suggestion that you need to look up how much each black-box costs and add it as a motivation.

You should also highlight that there are other ways to monitoring, for example, a device periodically sends its recordings over the network. You have to discuss these monitoring mechanisms before going into the technical details.

Sridhar Duggirala
Too long a heading. Shorten.

Sridhar Duggirala
you cannot first mention the term and then define it. You have to first explain the phenomenon and then give it a term. You keep doing the exact opposite.

Sridhar Duggirala
You have not introduced the notation of a deadline. You have to first introduce a notion of a deadline, scheduler, and then highlight that deadlines might miss.

Also, I don't think this is the appropriate motivation. The issue is that we are now implementing more software than ever in these robotic navigation systems and there is a severe pressure on designing new schedulers which tolerate deadline misses.

Sridhar Duggirala
Not even one figure appeared until now. Maybe you can add some figures?

to design provably safe schedulers. These schedulers ensure that all controllers on a shared processor are

scheduled in a manner that guarantees safety, with none of the controllers violating the established safety

constraints. Through the proposed techniques and the incorporation of verified schedulers, this thesis aims to

enhance the safety and reliability of autonomous systems by addressing timing uncertainties and preventing

unsafe deviations from planned trajectories. The subsequent chapters delve into the detailed presentation and

evaluation of these techniques, contributing to the overall advancement of autonomous system safety.

1.3 Designing of Autonomous Systems

In addition to verification, the design of autonomous systems with provable performance and safety

guarantees is equally vital. However, this task is known to be computationally challenging, as it involves

navigating through numerous design choices while ensuring desired properties. The design process can

be seen as an iterative invocation of verification modules, evaluating different design options. This thesis

introduces design paradigms that leverages on the unique characteristics of the systems and the uncertainties

they encounter, leading to computationally scalable design algorithms. In Chapter 5, this thesis presents

algorithms that facilitate the design of autonomous systems with provable safety and optimal performance.

The proposed design paradigms take into account various aspects such as computational cost and control cost,

aiming to achieve optimal performance while maintaining safety guarantees. The algorithms leverage the

inherent properties of the systems and the nature of uncertainties in which they operate to develop efficient

and scalable design solutions. The thesis addresses several key design challenges in autonomous systems,

offering solutions to the following problems.

Choosing between two compute models. Consider the scenario of a robot engaged in autonomous driving,

where it is required to perform a task based on its perception capabilities. To facilitate this task, the robot is

equipped with a local model that is computationally efficient but possesses limited accuracy. Additionally,

the robot has access to a cloud model that offers high accuracy but comes with a higher computational cost.

The question that arises is whether the robot should invoke the cloud model at a given time step or not. If the

robot were to invoke the cloud model at every time step, it would achieve a high cumulative accuracy (low

loss) but at a significant cumulative computational cost. Conversely, relying solely on the local model at all

time steps would result in a low cumulative computational cost but also a low cumulative accuracy (high

loss). A smarter strategy in this context would involve invoking the cloud model selectively, particularly

9

Sridhar Duggirala
No! Verification is important because we want the designs to have provable guarantees.

Sridhar Duggirala
what verification modules? You mean invoke the verification engine for the same specification over various designs?

Sridhar Duggirala
This is a tall claim. You have just tackled the perception aspect of it. Nothing more.

Sridhar Duggirala
I don't know if you are being purposefully vague about the work because you want to *tie* it to the overall theme, but it is not working!

You have to be precise over anything else. Without making reference to perception aspect of autonomous systems, giving this info sounds very disingenuous!

Sridhar Duggirala
Purposefully generic and vague statement. Be precise.

Sridhar Duggirala
I sense a lack of imagination in terms of describing and motivating your work. You keep using the same terms again and again without fundamentally thinking about your work in a new way.

This part of your thesis, especially, can be embellished with a lot of interesting illustrations, but you choose to go with dull examples.

during complex maneuvers, while utilizing the local model for other instances. The aim is to achieve a

solution that strikes a balance between low cumulative computational cost and high cumulative accuracy.

This is referred to as the model selection problem. In Section 5.1 of this thesis, we propose a strategy that can

determine an optimal sequence for invoking the models, enabling the robot to achieve this desired balance in

a safe and provably optimal manner. By analyzing the context and requirements of the task, the proposed

strategy computes a sequence of model invocations that maximizes accuracy during crucial maneuvers while

minimizing computational costs during other periods. Through this research, we aim to address the challenge

of resource allocation in autonomous systems, specifically focusing on model invocations, to optimize the

trade-off between computational cost and accuracy. Chapter 5 provides a detailed exploration of the proposed

strategy, presenting its theoretical foundations, algorithmic implementation, and empirical evaluation. The

results demonstrate the effectiveness of this strategy in achieving optimal performance while ensuring safety,

contributing to the advancement of autonomous systems in real-world applications.

Decision making in perception-based robots. Fig. 5.13a depicts the wide array of perception networks

currently available, offering a range of accuracy and cost trade-offs. The b7 perception model is derived from

scaling up the parameters of the b0 model, resulting in a significant enhancement in accuracy. Numerous

models can be obtained by smoothly adjusting the parameter count of b0 to achieve a reasonable increase in

accuracy. Given this abundance of models, the question arises: Can we effectively perform model selection?

It is evident that such a strategy must effectively handle the complex relationship between loss and cost,

which can exhibit high degrees of non-linearity among the models. In Section 5.2, this question is answered

affirmatively. Specifically, Section 5.2 introduces an optimal solution to the model selection problem,

accommodating any number of perception models. Moreover, Section 5.2 demonstrates that a specific subset

of this problem can be solved in polynomial time. This implies the existence of design paradigms for training

perception models that can effectively balance accuracy and cost. Furthermore, the proposed approach was

evaluated on a photo-realistic drone landing scenario, outperforming benchmark methods.

By tackling these design problems, the thesis aims to contribute to the advancement of autonomous

systems by providing scalable design algorithms that guarantee safety and optimize performance. Chapter 5

delve into the detailed presentation, evaluation, and validation of these design solutions, offering valuable

insights into the development of reliable and efficient autonomous systems. The aim is to enhance the

10

Sridhar Duggirala
You could also include the design principle "invoke a model if the expected benefit is more than expected cost".

Sridhar Duggirala
Are you serious? You are referring to a figure in 5th chapter in the introduction? What?? I can't believe this.

trustworthiness and effectiveness of autonomous systems in real-world applications, hoping to pave the way

for their widespread adoption and integration into various domains.

1.4 Thesis

Autonomous systems have made significant progress in achieving limited autonomy in various domains.

However, the pursuit of greater autonomy is often impeded by the presence of uncertainties. This thesis aims

to address the challenge of designing and verifying autonomous systems in the face of uncertainties, with the

goal of creating robust, reliable systems capable of handling unexpected situations. The research presented

in this thesis can be broadly categorized into three main areas: understanding uncertainties, verification of

autonomous systems, and designing autonomous systems. In the first part, which focuses on understanding

uncertainties, the thesis proposes a safety verification approach for autonomous systems that incorporates

reachable sets capable of accounting for uncertainties (to be discussed in Chapter 2). Moreover, not all

uncertainties have the same impact on safety. To address this, an algorithm is introduced to rank uncertainties

based on their safety implications. By leveraging this algorithm, autonomous systems can be designed to

utilize resources efficiently while adhering to safety constraints. Additionally, the algorithm enables the

computation of the level of uncertainty a system can tolerate without compromising safety. The second

part of the thesis centers on the verification of autonomous systems. Here, the thesis presents techniques

for monitoring autonomous systems to detect the causes of crashes. Both offline and online monitoring

techniques are proposed, specifically tailored for autonomous systems with noisy logs and missing samples

(to be discussed in Chapter 3). Furthermore, quantitative verification methodologies are introduced to verify

the schedulers of autonomous systems in the presence of timing uncertainties (to be discussed in Chapter 4).

These techniques are particularly valuable in the design of modern vehicles that require running multiple

controllers on shared processors, eliminating the need for expensive high-bandwidth processors. Finally, the

thesis focuses on algorithms for designing autonomous systems that are both safe and performance optimal.

Specifically, it proposes a provably optimal solution to the model selection problem, initially considering

two compute models and subsequently extending to N perception models (to be discussed in Chapter 5).

The proposed methods have been evaluated through simulated navigation of a Mars rover on real Martian

terrain, utilizing NASA’s dataset to determine safety using reachable sets. Furthermore, they have been tested

in a photo-realistic drone landing scenario, achieving safe landings with minimal control cost and compute

11

Sridhar Duggirala
This one giant para seems like a data-dump to me. You should have explained a version of this before delving into the technical details of all the works.

time. The proposed approaches not only provide provable safety and performance optimality but also surpass

alternative methods in terms of effectiveness. Overall, this thesis offers novel insights and methodologies

to address the challenges of designing and verifying autonomous systems in the presence of uncertainties.

By considering uncertainties, autonomous systems can be equipped to handle unexpected events, ensuring

robustness and reliability. The research contributes to the advancement of autonomous systems, opening new

possibilities for their deployment in various domains.

Formally, I put forward the following thesis statement:

“Autonomous systems operating in uncertain environments are required to be performance

optimal, without violating safety, under the presence of uncertainties. Leveraging the knowledge

of environmental uncertainties, autonomous systems can be verified and designed to be prov-

ably safe with performance guarantees. Such guarantees can be obtained both formally and

statistically”

1.5 Contributions

The thesis has the following contribution.

1.5.1 Reachable set computation techniques that can account for uncertainties.

This thesis will propose reachable set computation techniques, both deterministic and probabilistic, that

can account for model uncertainties of linear dynamical systems. The detailed techniques are discussed in

Chapter 2. In particular, this thesis will explore the following.

1. Classes of uncertainties for which safety verification can be performed efficiently. In other words, we

will study conditions that can sufficiently guarantee efficient verification. The details are discussed in

Section 2.2.

2. Proposed generalized reachable set computation techniques that can handle uncertainties, both symbolic

and numerical techniques. This is discussed in Section 2.3.1.

3. All uncertainties are not equal—–some uncertainties have more impact on safety than others. Therefore,

we will discuss an algorithm to order the uncertainties based on its impact on safety. This is discussed

in Section 2.2.3.

12

Sridhar Duggirala
This itemized contributions seems much better than the giant para. The para seems very much redundant.

Sridhar Duggirala
This thesis statement should come very early in the introduction. You should present the high level challenges and then highlight this thesis statement.

4. Explore statistical methods to compute reachable sets, with probabilistic guarantees, to scale reachable

set computation for various types of systems. This is discussed in Section 2.3.2.

1.5.2 Scalable techniques to perform safety verification of systems under uncertainties.

In this part of the thesis, we will discuss scalable verification techniques, of autonomous systems, under

the presence of uncertainties. The detailed techniques are discussed in Chapters 3 and 4. In particular, this

thesis has the following contributions:

1. Monitoring-based techniques to analyze safety and correctness of dynamical systems, where traditional

analysis does not scale. This is discussed in Chapter 3.

2. A Python-based tool to perform monitoring of systems with a given log. The tool is available open-

source. This is discussed in Section 3.4.

3. Quantitative verification (and designing) of embedded controllers under timing uncertainties, where

qualitative analysis (viz., stability) might fail. This is discussed in Chapter 4.

1.5.3 Designing autonomous systems that can leverage heterogeneous compute resources optimally.

In the final part of the thesis, we will discuss optimal design approaches to design autonomous systems

that uses heterogeneous/distributed compute resources without violating safety and correctness. The detailed

techniques are discussed in Chapter 5. In particular, we will explore the following problems:

1. Optimal solution to the model selection problem with two compute models. This is discussed in

Section 5.1.

2. Optimal solution to the model selection problem with N perception models. This is discussed in

Section 5.2.

13

CHAPTER 2: HOW ROBUST IS SAFETY?

The modeling of autonomous systems depends on various parameters that are influenced by the specific

environment in which the system operates. These parameters include factors such as coefficient of friction

and density of materials. Since autonomous systems are now being used in diverse environments with

uncertainties, the task of modeling them becomes particularly challenging. In simpler terms, it is extremely

difficult, if not impossible, to obtain precise values for all the parameters necessary to model the system

accurately in such a wide range of environments. The fundamental algorithmic structure of most autonomous

systems, whether they are in the automotive or robotic domain, is a dynamical system. Therefore, in this

chapter, we introduce a formalism called the “Uncertain Linear System” which extends the capabilities of

linear dynamical systems by incorporating representations of uncertainties (also referred as linear uncertain

system or uncertain linear dynamical system).

In order to perform safety analysis on dynamical systems, it is necessary to have an accurate mathematical

model of the system. However, due to inherent uncertainties, constructing a completely precise model can

be challenging. Hence, it is crucial to assess the robustness of the safety analysis, which means evaluating

whether the safety specifications remain valid even when the model is subjected to certain perturbations. Let

us consider the example of a robot operating on a factory floor, depicted in Fig. 2.1. The robot’s objective

Robot

Reachable set with uncertainties

Reachable set without uncertainties

Figure 2.1: A robot, in a factory floor, trying to avoid collision with the wall (in red). The set of states reached by the robot on a
clean factory floor is marked in light blue. The set of states reached by the robot when there is an oil spill on the floor is marked in
dark blue (including the region in light blue).

14

Sridhar Duggirala
Wrong. The models do not depend on parameters. The parameters model specific aspects of environment that are either unknown or approximated to be in an interval.

You seem to be more bothered about just citing two examples and do a cursory job at this instead of actually providing a meaningful prose that helps the reader.

Sridhar Duggirala
You should highlight the usage of models first. Maybe give the example of feedback control in the beginning. Just highlight the basic workflow.

Sridhar Duggirala
Good.

Sridhar Duggirala
This should come first. Again, you are leaving the reader to guess what these mean. This is the first technical chapter and you have not introduced any notion of differential equations or difference equations, etc.

Sridhar Duggirala
What is the point of these various names when you have not explained what these terms actually mean!

Would a CS undergrad student understand what these terms mean?

Sridhar Duggirala
This seems repetative. I have no clue what you are trying to convey here.

1 𝑐1
0 𝑐2

𝑥1
+

𝑥2
+

𝑥1
𝑥2

Sensor 1

Sensor 2

Figure 2.2: An example an uncertain linear system, where parameter c1 is computed empirically using sensor 1, and c2 is computed
empirically using sensor 2. The main idea to prioritize one sensor over another based on the impact on safety its corresponding
parameter has.

is to navigate through the floor while avoiding collisions with a red wall. The robot’s model relies on a

parameter called the coefficient of friction, which was assumed to have a fixed value during the modeling

phase. However, due to an oil spill on the floor, the coefficient of friction has changed. During the traditional

formal verification process, the robot’s behavior was assessed based on the assumption that the coefficient

of friction remained constant (as used in the model). However, with the parameter altered by the oil spill,

the previously established safety guarantee no longer holds. In particular, the set of states that the robot can

reach, assuming the fixed coefficient of friction, is represented by the light blue region in the figure. Within

this region, the robot exhibits no unsafe behavior, meaning it avoids colliding with the wall. However, due to

the presence of the oil spill, the actual set of states that the robot can reach is now represented by the dark

blue region, which includes the previously considered light blue region. As a result, this expanded region

introduces the potential for unsafe behavior, namely colliding with the wall. Throughout the remainder of the

thesis, we refer to these modeling parameters as uncertainties since assigning a fixed value to them proves

challenging.

A (continuous time) linear dynamical system without uncertainties is defined as ẋ = Ax, where the

dynamics matrix A is assumed to be known accurately, i.e., all the elements of the matrix are known

accurately. Note the following Example 1 of a linear system.

Example 1. Consider the continuous time linear dynamical system ẋ = Ax, where A is

1 c

0 2

 and c

represents a system parameter.

Traditional methods of reachable set computation of linear systems assume a fixed value of c (say, -1)

[13, 14, 15, 16]. However, in reality, the exact value of c is unknown and can only be estimated. Therefore, it

is more appropriate to consider c as a parameter that can assume a range of values, denoted as c∈ [−1.1,−0.9]

15

Sridhar Duggirala
More crucially, during the control design phase too!

Sridhar Duggirala
You took several leaps and jumps without actually explaining what is happening here.

Why are you using formal verification, what are the artifacts generated in that process, what do these artifacts mean, how would they change with the model uncertainties.

The pattern is very similar to earlier feedback. You just dumped prose without any regard for flow or consistency.

Sridhar Duggirala
Why is this example here? You have included other works in this chapter that are beyond merely the EMSOFT work. So what is the motivation of giving this example here? Would a reader be capable of reading and understanding this part here?

I feel that you need to set the context of your work much better before this.

Also, you do not need the specific example of linear dynamical system. You can just make up some dynamical system or keep it abstract as \dot{x} = f(x,c_1, c_2), where c_1 and c_2 are parameters.

Sridhar Duggirala
You don't need this example for explaining the point!

for instance, taking into account the uncertainties associated with sensing and actuation. It is important to

note that traditional safety proofs based on reachable set techniques often fail to consider such uncertainties.

Further, the reachable set techniques do not inform us about the amount of uncertainties that can be tolerated

while maintaining safety. In this thesis, we consider a model with uncertainties—we define continuous time

uncertain linear systems as ẋ = Λux (corresponding discrete time uncertain system will also be introduced

later in this chapter), where the uncertainties in the model are considered as variables in Λu that can take

values from a bounded range.

As previously mentioned, the reachable set computation techniques do not offer insights into the level of

uncertainty that a system can tolerate, nor do they provide an ordering of uncertainties based on their impact

on safety. These types of information become valuable when modeling systems with budget constraints. To

illustrate this point, consider the uncertain linear system depicted in Fig. 2.2. The parameter c1 is empirically

measured using sensor 1, while c2 is measured using sensor 2. When modeling a system with budget

constraints, it becomes essential to understand which parameter, either c1 or c2, has a more significant impact

on safety. If c2 is determined to have a more substantial effect on safety, it would be logical to allocate more

energy and resources towards improving sensor 2, and vice versa. Once the uncertainties are appropriately

ordered, this information can be leveraged to determine the range of values that these parameters (c1 and

c2) can assume without violating safety. In other words, it becomes possible to compute the range of values

within which these parameters can vary while still maintaining safety. This calculation constitutes the

robustness threshold. As a second major contribution, we introduce an ordering algorithm that ranks the

parameters (cells of the dynamics matrix) based on their impact on safety. By utilizing this ordering, we

propose heuristics that can compute the robustness threshold, which establishes the range of values that these

parameters can tolerate without compromising safety. We also discuss the special subclass of uncertainties

for which the verification can be performed very efficitenly and precisely, i.e., this chapter will propose a

sound and complete verification technique for a special class of uncertainties.

About the chapter. The contents of this chapter is taken from [17, 18, 19]

2.1 Preliminaries

Dynamical systems evolve in a state space. In this chapter, our domain of state space is Rn. The state of

the system is denoted as x and vectors in Rn are denoted by v. Given a matrix M ∈Rm×n, the (i, j)th element is

16

Sridhar Duggirala
what is a reachable set. Not defined earlier.

denoted as M[i, j]. The domain of Boolean matrices of dimension m×n are denoted with Bm×n Given δ > 0,

Bδ (x) = {y | || y− x ||≤ δ}. For a set S⊂ Rn, Bδ (S) = ∪x∈SBδ (x). This operation over S is called bloating

the set S by δ . Given two sets S1, S2, its Minkowski sum is S1⊕S2 = {x1 + x2 | x1 ∈ S1,x2 ∈ S2}. Given

i, j ∈ Z, with i≤ j, [[i, j]] denotes the set {i, i+1, . . . , j}. A hyper-sphere with radius k ∈ R≥0 is denoted as

S(k)⊂ Rn; thus, a unit sphere is denoted as S(1). We denote the usual notion of absolute value of a ∈ R as

| a |∈ R≥0. We overload the operator | . | for matrices as well: given a matrix M ∈ Rn×m, |M | is a matrix

such that ∀i∈[[1,n]], j∈[[1,m]] |M | [i, j] = |M[i, j] |. Given a matrix M ∈ Rn×n, the maximum singular value (Max

SV) of M is denoted as σ(M), the determinant of M is denoted as det(M), and eM = I + M
1! +

M2

2! +

Definition 1 (Discrete Linear Dynamical Systems). Given a matrix A ∈ Rn×n, a discrete linear dynamical

system is denoted as:

x+ = Ax (2.1)

Definition 2 (Trajectories). A trajectory of the discrete linear dynamical system, denoted as ξA :Rn×N→Rn,

describes the evolution of the system in time. Given an initial state x0 ∈ Rn, the trajectory is defined as

ξA(x0,0) = x0. (2.2)

ξA(x0, t) = A×ξ (x0, t−1). (2.3)

Therefore, ξA(x0, t) = Atx0 where At = A×A× . . .×A︸ ︷︷ ︸
t-times

.

We drop A from the subscript of ξ when it is clear from the context.

Definition 3 (Reachable Set). Given a linear dynamical system x+ = Ax, initial set of states Θ, and a time

step t ∈ N, the reachable set of states

RS(A,Θ, t) = { x | ∃x0 ∈Θ,x = ξA(x0, t)} (2.4)

.

Definition 4 (Safety Specification). An uncertain linear dynamical system x+ = Λx with initial set Θ ∈ Rn

and time bound Tb ∈ N is said to be safe with respect to an unsafe set U ⊆ Rn if and only if

∀t ∈ N, 0≤ t ≤ Tb, RS(Λ,Θ, t)∩U = /0. (2.5)

17

Definition 5. A generalized star S is defined as a tuple ⟨c,V,P⟩ where c ∈ Rn is called the center, V =

{v1,v2, . . . ,vm} where ∀i,1≤ i≤ m,vi ∈ Rn are called a set of basis vectors (that span Rn), and P : Rm→

{⊤,⊥} is called the predicate. The set of states represented by a generalized star is defined as:

[[S]] = { x | ∃α1,α2, . . . ,αm such that

x = c+Σ
m
i=1αivi and P(α1,α2, . . . ,αm) =⊤} (2.6)

We abuse notation and use S to refer to both [[S]] and S.

Lemma 1 (Reachable Set Computation Using Generalized Stars). Given an initial set Θ in a generalized star

representation as ⟨c,V,P⟩, the reachable set, RS(A,Θ, t) = ⟨c′,V ′,P⟩ where c′ = Atc and V ′ = {v′1,v′2, . . . ,v′m}

and ∀i,1≤ i≤ m, v′i = Atvi.

Definition 6 (Linear Matrix Expressions). Let, Vars = {y1,y2, · · · ,yk} denote a set of variables and LE=

{∑k
i=1 βiyi,βi ∈ R} denote the set of all linear expressions over variables in Vars. A matrix M is called a

Linear Matrix Expression (LME) if M ∈ {R∪LE}n×n. An LME M over Vars = {y1,y2, . . . ,yk} can also be

written as M = N0 +N1y1 + . . .+Nkyk where ∀i,0≤ i≤ k,Ni ∈Rn×n and Ni represents the coefficients of the

variable yi. We represent the LME M as the tuple ⟨N0,N1, . . . ,Nk⟩. If the perturbations are time varying we

represent the variables as VarsT = {y1(t),y2(t), · · · ,yk(t)}. yi(t +1) denotes the valuation of (perturbation)

variable yi at time t +1.

Informally, the elements of the matrix M can be either real numbers or linear expressions of variables in

Vars.

Definition 7 (Uncertain Linear Systems). An uncertain linear system Λ is defined as a pair (M,Γ) where M

is a linear matrix expression over Vars and Γ : Rk→{⊤,⊥} is a predicate. The set of matrices denoted by Λ

are given as

Λ = {A | ∃γ1,γ2, . . . ,γk, such that Γ(γ1,γ2, . . . ,γk) =⊤

and A = N0 +N1γ1 + . . .+Nkγk︸ ︷︷ ︸
M

} (2.7)

18

Sridhar Duggirala
These all look good. No complaints.

Informally, Λ represents the set of matrices obtained by assigning different valuations to the variables

Vars that satisfy the predicate Γ. While in general, Γ can be any semi-algebraic set, in this paper, we restrict

Γ to represent polytopes. In this chapter we restrict Γ to represent a bounded polytope.

Definition 8. Continuous Time Linear System. Given a matrix A∈Rn×n, a continuous time linear dynamical

system is denoted as ẋ = Ax. The trajectory of linear dynamical systems that gives the state of the system at

time t starting from initial state x0 is given as ξ (x0, t) = eAtx0.

Definition 9. Interval Matrix (as defined in Section 2 of [20]). Given two matrices Amin,Amax ∈ Rn×n,

s.t. ∀i, j Amin[i, j]≤ Amax[i, j]: we define an interval matrix Λ⊂ Rn×n, also denoted as [Amin,Amax], where

the [i, j]th element is the interval [Amin[i, j],Amax[i, j]]. The center of Λ (also denoted as CΛ) is defined as

1
2(Amin +Amax). Similarly, ∆Λ = 1

2(Amax−Amin). A matrix E ∈ Λ if and only if ∀i, j,E[i, j] ∈ Λ[i, j].

Given two interval matrices Λ1,Λ2 ⊂ Rn×n, operations like addition, subtraction and multiplication

are performed according to usual matrix algebra, where each operation is performed according to interval

arithmetic. The notations are usual Λ1 ⋆Λ2, where ⋆= {+,×,−}. Given an interval matrix Λ⊂ Rn×n, the

singular value decomposition (SVD) of the interval matrix Λ is given as Λ =
⋃

A =
⋃

UΣV ∗, where U,V are

unitary matrices and Σ is a diagonal matrix; we assume the decomposition is such that, the diagonal matrix Σ

is sorted in descending order.

Definition 10. Matrix Norms. Given a matrix M ∈Rn×n, its matrix 2 norm is denoted as ||M ||2, and ||M ||F

is the matrix Frobenius norm. We also use ||M || to denote ||M ||p, where p can be anything in {2,F}. For

any matrix M, ||M ||2≤||M ||F .

Definition 11. Interval Matrix Norm (as defined in Theorem 1 of [20]). Given interval matrix Λ, || Λ ||p=

sup{|| A ||p | A ∈ Λ}, p ∈ {2,F}. We also use || Λ || to denote || Λ ||p, where p is obvious from the context.

Definition 12. Uncertain Linear System [11]. A uncertain linear system is denoted as ẋ = (A+Λ)x, where

A ∈ Rn×n is a matrix and Λ ⊂ Rn×n is an interval matrix. The uncertainties considered in the dynamics,

represented by the matrix Λ⊂ Rn×n, are time time-invariant, unlike the formulation considered in [21] or

more general formulation as in [22]. The set of states reached by a uncertain linear system after time t is

ξA+Λ(x0, t) = {e(A+M)tx0 | M ∈ Λ}.

19

Definition 13. Max SV Candidate Matrix. Given an interval matrix Λ⊂Rn×n, the Max SV Candidate Amax

is defined as Ξ(Λ) = Amax, where ∀A∈Λ σ(A)≤ σ(Amax). Note that Max SV Candidate need not be unique.

Let σ(Amax) = σmax.

Definition 14. Interval Matrix Transformation. Given a transformation f (θ) = Λθ , where θ ⊂ Rn and

Λ⊂ Rn×n, the transformation f (θ) is defined as f (θ) =
⋃

A∈Λ Aθ .

2.2 All Uncertainties Are Not Equal: Classifying Uncertainties Based on Their Impact on Safety

This section addresses the following question: Are there a class of uncertainties, for which, computing

the reachable set while accounting for uncertainties is computationally inexpensive? If so, how to characterize

such uncertainties? The answer to the above questions is an affirmative. We present a class of uncertainties

for which reachable set can be computed efficiently and safety verification can be performed using bi-linear

optimization. We present sufficient conditions for which our algorithm is applicable.

This algorithm relies on the observation that matrix multiplication is the key operation for computing

reachable set using generalized stars (Lemma 1). In this section, we identify a sub-class of linear systems

with uncertainties for which matrix multiplication can be performed using symbolic techniques. We illustrate

this in Examples 2 and 3.

Example 2. Consider the discrete linear dynamical system x+ = Ax where A is

1 α

0 2

 and α represents

either the modeling uncertainty or a parameter. Observe that A2 =

1 3α

0 4

 and does not contain any

quadratic terms or higher order terms of α . Additionally, for all k, Ak does not contain any quadratic or

higher order terms of α .

Example 3. Consider the linear dynamical system x+ = Ax where A is an n×n matrix given as A =

Q R

0 T


where Q (∈ Rm×m) is a block matrix of size m×m (where m < n), R is a block matrix of size m× (n−m), 0,

is a block matrix of size (m−n)×m containing only 0s, and T
(
∈ R(n−m)×(n−m)

)
is a block matrix of size

(n−m)× (n−m). Observe that A2 is

Q×Q Q×R+R×T

0 T ×T

. If all the uncertainties are in block matrix

R, then, similar to Example 2, A2 does not have any nonlinear terms in Q×R+R×T . Additionally, this

property holds for all Ak, k ≥ 2. Example 2 is a special case of this structure.

20

Sridhar Duggirala
Wrong heading? This should be efficiency of reachable sets, right?

The properties of matrices given in Example 2 and 3 are structural in nature. Consider Example 3;

irrespective of the values of elements in matrices Q (∈ Rm×m) and T
(
∈ R(n−m)×(n−m)

)
, the matrix Ak will

not have any nonlinear terms. We demonstrate that, reachable set for such systems can be represented using

bi-linear constraints. Hence, checking for safety specification can be performed using bi-linear programming.

In this section, we introduce a framework for checking if the uncertainties satisfy such structural properties.

We provide sufficient conditions under which such structural properties hold and present an algorithm for

safety verification using bi-linear optimization. Using these sufficient conditions, we construct an artifact

called robust reachable set that accounts for uncertainties. Given a dynamical system, we identify all the

uncertainties for which the sufficient condition is applicable and introduce uncertainties as suggested by

the user. The resulting reachable set also accounts for the effect of uncertainties over the reachable set. As

a result of the sufficient conditions, the robust reachable set can be computed symbolically and is not an

over-approximation. Experimental evaluation on several benchmarks demonstrates that this approach is

indeed computationally feasible.

Before we propose the main algorithm of this section, wish to layout some of the preliminaries.

As observed before, matrix-matrix multiplications is an important operation for computing reachable set

using generalized stars. To compute reachable set of uncertain linear systems represented as LMEs, one need

to compute products of two LMEs.

Definition 15. Given two LMEs A = ⟨N0,N1, . . . ,Nk⟩ and B = ⟨M0,M1, . . . ,Mk⟩ over the same set of variables

Vars = {y1,y2,

· · · ,yk}, the product of two LMEs (similar to product of two linear expressions) is defined as

A×B = (N0 +N1y1 + . . .+Nkyk)× (2.8)

(M0 +M1y1 + . . .+Mkyk)

= N0M0 +N0M1y1 + . . .+N0Mkyk

+N1M0y1 +N1M1y2
1 + . . .+N1Mky1yk

+
...

+NkM0yk +NkM1y1yk + . . .+NkMky2
k . (2.9)

21

Observe that product of two LMEs can have higher degree terms. However, in this paper, we focus our

attention on LMEs for which the product is closed i.e. does not have any non-linear terms.

Definition 16. LMEs A = ⟨N0, . . . ,Nk⟩ and B = ⟨M0, . . . ,Mk⟩ are said to be closed under multiplication if

the following two conditions are satisfied:

1. ∀1≤i≤k, Ni×Mi = 0

2. ∀1≤i, j≤k (Ni×M j) + (N j×Mi) = 0

Therefore, A×B = ⟨L0, . . . ,Lk⟩ where,

1. L0 = N0×M0.

2. ∀i 1≤ i≤ k, Li = (Ni×M0)+(N0×Mi).

If the uncertain linear system is represented as an LME, such that At−1 and A are both LME and closed

under multiplication, then the representation of the reachable set at time t using generalized stars will have

only second degree terms.

Definition 17 (Matrix Support). Given a matrix M ∈ Rm×n, supp(M) = B where B ∈ Bm×n such that for all

i,1≤ i≤ m,1≤ j ≤ n, B[i, j] = 0 if and only if M[i, j] = 0.

Informally, the support of a matrix identifies the elements of a matrix that are zero and the elements that

are non-zero.

Definition 18 (Block Boolean Matrix). A matrix B ∈ Bn×n is said to be a block Boolean matrix, denoted as

block((r1,c1),(r2,c2)) if and only if for all i, j where r1 ≤ i≤ r2 and c1 ≤ j ≤ c2, B[i, j] = 1 and B[i, j] = 0

otherwise.

Fig. 2.3 shows a pictorial representation of a Block Boolean Matrix.

Definition 19 (Addition and Multiplication of Boolean Matrices). Given Boolean matrices B1,B2 ∈ Bm×n,

we define the addition operation on Boolean matrices as B1⊕B2 = B3 where B3 ∈ Bm×n and

∀i, j,1≤ i≤ m,1≤ j ≤ n,B3[i, j] = B1[i, j]∨B2[i, j].

22

Figure 2.3: Pictorial representation of a Block Boolean Matrix block((r1,c1),(r2,c2)). Light Blue represents 0, and Dark Blue
represents 1

Given Boolean matrices B1 ∈ Bm×k and B2 ∈ Bk×n, we define the multiplication operation on Boolean

matrices as B1⊗B2 = B3 where B3 ∈ Bm×n and

∀i, j,1≤ i≤ m,1≤ j ≤ n,B3[i, j] =
k∨

l=1

B1[i, l]∧B2[l, j].

Informally, the addition and multiplication operations on

Boolean matrices are similar to that of matrices with real numbers. We also extend the matrix difference

operation as follows.

Definition 20. Given Boolean matrices B and B1, [[B1]]B is the difference matrix where [[B1]]B[i, j] = 1 if and

only if B[i, j] = 1 and B1[i, j] = 0.

Informally, in [[B1]]B, we remove all the 1s from B that are also 1s in B1. Given a set of matrices

B1,B2, . . . ,Bk, [[B1,B2, . . . ,Bk]]B = [[B1⊕ . . .⊕Bk]]B.

Definition 21 (Sub-Support and Super-Support). Given Boolean matrices B1,B2 ∈ Bm×n, we say that B1 is a

sub-support of B2, denoted as B1 ≤ B2 if and only if for all i, j, if B1[i, j] = 1 then B2[i, j] = 1. An equivalent

formulation is for all i, j, if B2[i, j] = 0 then B1[i, j] = 0. We also say that B2 is a super-support of B1.

Definition 22 (Intersection of Support Matrices). Given Boolean matrices B1,B2 ∈ Bm×n, we denote intersec-

tion B1∩B2 = B, where B ∈ Bm×n and B[i, j] = B1[i, j]∧B2[i, j]

Lemma 2. Given M1,M2 ∈ Rm×n, supp(M1 +M2)≤ supp(M1)⊕ supp(M2).

Proof. Let us denote supp(M1 +M2) as B1 and supp(M1)⊕ supp(M2) as B2. Consider an i, j such that

B2[i, j] = 0. From Definition 19, it follows that supp(M1)[i, j] = 0 and supp(M2)[i, j] = 0. Therefore,

23

M1[i, j] = 0 and M2[i, j] = 0. Therefore (M1 +M2)[i, j] = 0. Therefore supp(M1 +M2)[i, j] = 0. Therefore,

for all i, j if B2[i, j] = 0 then B1[i, j] = 0. Therefore B1 ≤ B2.

Lemma 3. Given M1 ∈ Rm×n and M2 ∈ Rn×l , supp(M1×M2)≤ supp(M1)⊗ supp(M2).

Proof. Let us denote supp(M1×M2) as B1 and supp(M1)⊗ supp(M2) as B2. Consider an i, j such that

B2[i, j] = 0. From Definition 19, it follows that for all k, either supp(M1)[i,k] = 0 or supp(M2)[k, j] = 0 or

both. Hence, for all k, either M1[i,k] = 0 or M2[k, j] = 0 or both. Therefore (M1×M2)[i, j] = 0. Therefore

supp(M1×M2)[i, j] = 0, that is, B1[i, j] = 0. Therefore B1 ≤ B2.

Corollary 1. Given matrices M1 and M2, if supp(M1)⊗ supp(M2) = 0, then M1×M2 = 0

2.2.1 Sufficient Conditions for Representing Reachable Set of Uncertain Linear Systems using Bi-

linear Inequalities

In this section, we present sufficient conditions for product of LMEs to be closed under product (Defi-

nition 16). This allows us to compute the symbolic representation of the reachable set of uncertain linear

systems using bi-linear inequalities.

Lemma 4. Given LMEs A = ⟨N0,N1, . . . ,Nk⟩ and B = ⟨M0,M1, . . . ,Mk⟩ over the same set of variables Vars.

If ∀i, j, 1≤ i≤ k and 1≤ j ≤ k, supp(Ni)⊗ supp(M j) = 0, then A×B results in an LME.

Proof. From Corollary 1, if for all i, j, supp(Ni)⊗ supp(M j) = 0, then for all i, Ni×Mi = 0 and for all i, j,

with i ̸= j, Ni×M j = 0 and N j×Mi = 0. Therefore Ni×M j +N j×Mi = 0.

Therefore, both the conditions specified in Definition 16 for closure of products over LMEs are satisfied.

Hence A×B results in an LME.

Lemma 4 provides a sufficient condition for product of two LMEs to result in an LME. We now present

sufficient conditions for Ak to be an LME.

Theorem 1. Given an LME A = ⟨N0,N1, . . . ,Nk⟩ if

∀i, j,1≤ i, j ≤ k,supp(Ni)⊗ supp(N j) = 0 (2.10)

∀i,0≤ i≤ k,supp(N0)⊗ supp(Ni)≤ supp(Ni),

and supp(Ni)⊗ supp(N0)≤ supp(Ni). (2.11)

24

then for all m≥ 2, Am is an LME.

Proof. The proof is by induction. We strengthen the inductive hypothesis to prove the above property.

Inductive Hypothesis: Given an LME A that satisfies Equations (2.10) and (2.11), for all m≥ 2, Am is an

LME ⟨Lm
0 ,L

m
1 , . . . ,L

m
k ⟩, and additionally, for all i,0≤ i≤ k, supp(Lm

i)≤ supp(Ni).

Base Case (m = 2): Given Equations 2.10 and 2.11, using Lemma 4, we know that A2 is an LME. Let us

denote A2 = ⟨L2
0,L

2
1, . . . ,L

2
k⟩.

Consider L2
i where i > 0. From Definition 16, we know that L2

i = N0×Ni +Ni×N0. Therefore

supp(L2
i) = supp(N0×Ni +Ni×N0)

≤ supp(N0×Ni)⊕ supp(Ni×N0)

(from Lemma 2)

≤
(
supp(N0)⊗ supp(Ni)

)
⊕
(
supp(Ni)⊗ supp(N0)

)
(from Lemma 3)

≤ supp(Ni)⊕ supp(Ni) (from Condition 2.11)

≤ supp(Ni)

Hence, ∀i > 0 supp(L2
i)≤ supp(Ni).

The reasoning for supp(L2
0)≤ supp(N0) follows similarly.

Induction Step: Suppose that for an m > 2 the induction hypothesis is satisfied. We now prove that the

inductive hypothesis holds for m+1.

Let us denote Am as ⟨Lm
0 ,L

m
1 , . . . ,L

m
k ⟩. From inductive hypothesis, we know that, for all i, 0 ≤ i ≤ k,

supp(Lm
i)≤ supp(Ni). Therefore, from Equation (2.10) and Corollary 1, we know that ∀i, j i > 0, j > 0, N j×

Lm
i = 0. Therefore, from Definition 16, A×Am results in an LME. Let us denote Am+1 = ⟨Lm+1

0 ,Lm+1
1 , . . . ,Lm+1

k ⟩.

To prove the inductive hypothesis, consider Lm+1
i where i > 0. From Definition 16, we know that

Lm+1
i = N0×Lm

i +Ni×Lm
0 . Therefore

supp(Lm+1
1) = supp(N0×Lm

i +Ni×Lm
0)

≤ supp(N0×Lm
i)⊕ supp(Ni×Lm

0)

(from Lemma 2)

25

≤
(
supp(N0)⊗ supp(Lm

i)
)
⊕(

supp(Ni)⊗ supp(Lm
0)
)

(from Lemma 3)

≤
(
supp(N0)⊗ supp(Ni)

)
⊕(

supp(Ni)⊗ supp(N0)
)

(from Induction)

≤ supp(Ni)⊕ supp(Ni) from Condition 2.11.

≤ supp(Ni)

Hence, ∀i> 0 supp(Lm+1
i)≤ supp(Ni). The reasoning for supp(Lm+1

0)≤ supp(N0) follows similarly.

Theorem 2. Let Λ= (A,Γ) be an uncertain system where A= ⟨N0,N1, . . . ,Nk⟩ is an LME satisfying Equations

(2.10) and (2.11), and Γ : Rk→ {⊤,⊥}. Since A satisfies Equations (2.10) and (2.11), from Theorem 1, it

follows that, given t, At is also an LME, represented as ⟨L0,L1, . . . ,Lk⟩. Given an initial set Θ = ⟨c,V,P⟩; the

reachable set is given as:

RS(Λ,Θ, t) = { x | ∃y1, . . . ,∃yk,∃α1, . . . ,∃αm, (2.12)

x = c′+Σ
m
i=1αiv′i (2.13)

c′ = (L0 +L1y1 + . . .Lkyk)× c,

∀i,1≤ i≤ m,v′i = (L0 +L1y1 + . . .Lkyk)vi,

and Γ(y1, . . . ,yk) =⊤∧P(α1, . . . ,αm) =⊤}

Proof. Consider an M ∈ Λ, therefore, M = N0 +N1γ1 + . . .+Nkγk where Γ(γ1, . . . ,γk) =⊤. Since At is also

an LME, we have Mt = L0 +L1γ1 + . . .+Lkγk. Hence, RS(M,Θ, t) is given as

RS(M,Θ, t) = { x | ∃α1, . . . ,∃αm,x = c′+Σ
m
i=1αiv′i (2.14)

c′ = (L0 +L1γ1 + . . .+Lkγk)× c,

∀1≤ i≤ m,v′i = (L0 +L1γ1 + . . .+Lkγk)vi,

and P(α1, . . . ,αm) =⊤}

Since RS(Λ,Θ,k) =
⋃

M∈Λ RS(M,Θ, t). Hence, adding existential quantifiers for Equation (2.14) will yield

Equation (2.13).

26

Observe that RS(Λ,Θ, t) can be formulated as a semi-algebraic set with bi-linear constraints. The safety

verification algorithm for uncertain linear systems first checks if Conditions 2.10 and 2.11 are satisfied by

the uncertain linear system. If the conditions are satisfied, then Ak is computed as an LME. For checking

RS(Λ,Θ, t)∩U where the unsafe set U is given as a polyhedral or quadratic constraints, one can employ

quadratically constrained quadratic programming tools (such as Gurobi).

Algorithm 1: Algorithm for performing safety verification of uncertain linear system when A
satisfies Conditions 2.10 and 2.11.

input :Uncertain linear system Λ = (A,Γ) where A = ⟨N0,N1, . . . ,Nk⟩; Initial set Θ = ⟨c,V,P⟩;
Time step t; Unsafe Set U

output : Safe or Unsafe or Invalid

1 if Condition 2.10 or 2.11 is not satisfied by A then
2 return Invalid;

3 Compute At as ⟨L0,L1, . . . ,Lk⟩;
4 Compute RS(Λ,Θ, t) according to Equation (2.13);
5 if RS(Λ,Θ, t)∩U ̸= /0 then
6 return Unsafe;

7 else
8 return Safe;

Algorithm 8 for performing safety verification of uncertain linear systems relies on Theorem 2. Lines

1-2 in the algorithm checks if the condition 2.10 and 2.11 are satisfied. At line 3, At is calculated. From

Theorem 1 we know that At is also an LME as it satisfies conditions condition 2.10 and 2.11. At line 4 the

reachable set is computed. Finally, lines 5-7 checks if the reachable set intersects with the unsafe set. This

check can be formulated as a bi-linear programming.

There are several advantages of computing the reachable set of an uncertain linear system in this

manner. First, this representation is exact and is not an over-approximation. Second, computing this symbolic

representation requires only matrix-matrix multiplications. Standard libraries that perform these computations

are very efficient. Third, one need not recompute the reachable set for changing the uncertainty. One can

simply change the set of constraints Γ and re-use the results of reachable set computation. Finally, this

technique can provide counterexamples. That is, if the safety property is violated, one can diagnose the

problem and provide the values corresponding to the uncertainty that lead to the safety violation. This ability

to generate counterexamples is generally not possible while computing over-approximations.

27

Example 4. Conditions in Equations (2.10) and (2.11) are only sufficient conditions over an LME A such

that Ak is also an LME. We provide an example to demonstrate that these conditions are not necessary.

Consider A =

1+ x x

−x 1− x

. That is, A = N0 +N1x where N0 =

1 0

0 1

 and N1 =

 1 1

−1 −1

. It

is easy to infer that not only A2 is also an LME but for all t > 2,At is an LME. Furthermore, supp(N1)⊗

supp(N1) ̸= 0 and hence Condition 2.10 is not satisfied.

Observe that At = N0 + tN1x. Hence, even small perturbations over the model can grow over time and

significantly change the reachable set.

Note, if a given linear dynamics is already known to satisfy conditions 2.10 and 2.11, one need not check

for the conditions (lines 1-2, Algorithm 1). Computing the power (line 3, Algorithm 1) will automatically

preserve the required structural properties (i.e. we can execute lines 3-8 by skipping 1-2 of Algorithm 1).

This paper have introduced the notion of structures for two reasons. First, to understand the general principle

behind the empirical observations, and second, to determine the instances to introduce uncertainties while

ensuring that the robust reachable set can still be represented using quadratic constraints.

2.2.1.1 Generalizing Sufficient Conditions for Closure of LME products

Conditions 2.10 and 2.11 are restrictive and require

supp(N0)⊗ supp(N0)≤ supp(N0). We present a less restrictive conditions where given an LME A, Ak is also

an LME.

Lemma 5. Given LME A = ⟨N0,N1, . . . ,Nk⟩, if ∃E0,∃E1, . . . ,∃Ek where, for all i,Ei ∈ Bn×n such that

∀i,supp(Ni)≤ Ei. (2.15)

∀i, j,1≤ i, j ≤ k,Ei⊗E j = 0. (2.16)

∀i,0≤ i≤ k,E0⊗Ei ≤ Ei and Ei⊗E0 ≤ Ei. (2.17)

Then for all n≥ 2, An is also an LME.

Proof. This proof, similar to the proof of Theorem 1, is a proof by induction where inductive hypothesis is

strengthened.

28

Inductive Hypothesis: Given an LME A that satisfies Equations (2.15), (2.16) and (2.17), for all m≥ 2, Am

is an LME ⟨Lm
0 ,L

m
1 , . . . ,L

m
k ⟩, and additionally, for all i,0≤ i≤ k, supp(Lm

i)≤ supp(Ei).

The proof for the base case and the inductive step are very similar to that of proof of Theorem 1. The

proof is given as a part of Appendix.

Conditions 2.16 and 2.17 are less restrictive versions of conditions 2.10 and 2.11 respectively, because

of condition 2.15. Informally, any support matrix Ui, which is a super support of Ni and satisfies conditions

2.16 and 2.17 will also satisfy conditions 2.10 and 2.11.

According to Lemma 5, if conditions 2.15, 2.16 and 2.17 are satisfied, then 2.10 can be general-

ized to condition 2.16 and condition 2.11 can be generalized to ∀i,0 ≤ i ≤ k, if supp(N0)⊗ supp(Ni) ≤

supp(Ui), and supp(Ni)⊗ supp(N0)≤ supp(Ui)

2.2.1.2 Sufficient Conditions for Time-Varying Perturbations

In this section, we extend the sufficient conditions to time-varying uncertainties. Let, the given dynamics

be represented by the LME A = ⟨N0,N1, . . . ,Nk⟩ and the time-varying uncertainties are denoted as VarsT =

{y1(t),y2(t), · · · ,yk(t)}. That is, at time t = 1, the LME is given as N0 +N1y1(1)+ · · ·+Nkyk(1). At t = 2,

the LME is given as N0 +N1y1(2)+ · · ·+Nkyk(2).

Theorem 3. Given an LME A = ⟨N0,N1, . . . ,Nk⟩ over time-varying variables

VarsT = {y1(t),y2(t), · · · ,yk(t)}, if

∀i, j,1≤ i, j ≤ k,supp(Ni)⊗ supp(N j) = 0 (2.18)

∀i,0≤ i≤ k,supp(N0)⊗ supp(Ni)≤ supp(Ni),

and supp(Ni)⊗ supp(N0)≤ supp(Ni). (2.19)

then for all m≥ 2, Am is an LME.

Proof. The proof is by induction. We prove a stronger inductive property of the LMEs.

Base Case (m = 2): Due to conditions 2.18 and 2.19, A2 will also be an LME (Similar proof as lemma 4). And

the corresponding LME is: N2
0 +
(
N0N1y1(2)+N1N0y1(1)

)
+
(
N0N2y2(2)+N2N0y2(1)

)
+ · · · +

(
N0Nkyk(2)+

NkN0yk(1)
)
.

29

Rearranging the terms we get: N2
0 +
(
M1

1 y1(1)+M1
2 y1(2)

)
+
(
M2

1 y2(1)+M2
2 y2(2)

)
+ · · · +

(
Mk

1yk(1)+

Mk
2yk(2)

)
. From Equation 2.19, it follows that ∀1≤ i≤ k,∀1≤ j ≤ 2, supp(Mi

j)≤ supp(Ni).

Inductive Hypothesis: Let, the LME representation be as follows: Nm
0 +

(
O1

1y1(1) + O1
2y1(2) + · · ·+

O1
my1(m)

)
+
(
O2

1y2(1)+O2
2y2(2)+ · · ·+O2

my2(m)
)

+ · · · +
(
Ok

1yk(1)+Ok
2yk(2)+ · · ·+Ok

myk(m)
)
. From

stronger inductive hypothesis, we also have, ∀i,1≤ i≤ k,∀ j,1≤ j≤m, supp(Oi
j)≤ supp(Ni) and supp(Nm

0)≤

supp(N0)).

Induction Step: At m+1 step, we will have the following representation: Nm+1
0 + N0

(
O1

1y1(1)+O1
2y1(2)+

· · ·+O1
my1(m)

)
+ N1Nm

0 y1(m+1) + N0
(
O2

1y2(1)+O2
2y2(2) + · · · + O2

my2(m)
)

+ · · · + N0
(
Ok

1yk(1)+Ok
2yk(2)+

· · ·+Ok
myk(m)

)
+ NkNm

0 yk(m+1) Therefore, this is also an LME. Additionally, ∀i, i ≤ i ≤ k∀ j,1 ≤ j ≤ m

supp(N0×Oi
j)≤ supp(Ni) [supp(Oi

j)≤ supp(Ni)]; and, ∀i,1≤ i≤ k supp(NiNm
0)≤ supp(Ni).

2.2.1.3 Comparing with Interval Arithmetic

In this section, we provide an example where calculating reachable set using naive interval arithmetic

results in an over approximation, whereas symbolic reachable set is exact. It should also be noted, in case

of interval arithmetic, if the uncertainty changes (even for a single variable), the reachable set needs to

be recomputed from scratch, whereas in case of symbolic reachable set computation no re-computation is

required.

Following example illustrates the over-approximation caused by interval arithmetic in reachable set

computation.

Example 5. Consider the matrix A =

2 4α

0 −1

, where α ∈ [2,4] corresponds to a perturbation. The

uncertain matrix after performing matrix multiplication using interval arithmetic will be A2 =

2 4[2,4]

0 −1

×
2 4[2,4]

0 −1

=

4 [0,24]

0 1

 Using symbolic computation, it will be A2 =

4 4α

0 1


It is easy to verify that example 5 satisfies the sufficient conditions 2.10 and 2.11.

30

2.2.2 Robust Reachable Set: Introducing Perturbations in the Linear Dynamics

In Section 2.2.1, we presented a set of sufficient conditions for which the reachable set of uncertain

system can be represented using bi-linear inequalities. In this section, we will apply these sufficient conditions

to compute the robust reachable set. Our procedure is as follows: Given a linear dynamical system x+ = Ax,

we identify the set Ψ of all indices [i, j] such that, the LME obtained after replacing the indices in Ψ with a

variable, satisfies the conditions presented in Section 2.2.1.

Once the set of indices Ψ is identified, we construct the uncertain linear system by introducing perturba-

tions in the numerical values in the matrix A at indices in Ψ by a value determined by the user. That is, the

user would be interested to check whether the safety property is satisfied after changing the numerical value

at index i, j by ±5% or ±10%.

To discover the set Ψ, we search for all Block Boolean matrices H ∈ Bn×n such that the generalized

sufficient conditions are satisfied. Given H, we first construct a matrix UH such that, for all matrices G where

supp(G)≤UH , we have
(
supp(G)⊗H

)
⊕
(
H⊗ supp(G)

)
≤ H.

Lemma 6. Given a block matrix N = block((r1,c1),(r2,c2)), the corresponding UN ∈ Bn×n is given as

UN [i, j] =


0 if ((i < r1∨ i > r2)∧ (r1 ≤ j ≤ r2))

or ((j < c1∨ j > c2)∧ (c1 ≤ i≤ c2))

1 otherwise.

Proof. This proof has two parts. First, for the above UN , we prove that (UN⊗N)⊕ (N⊗UN)≤ N. Second,

for any U ′N such that UN ≤U ′N and UN ̸=U ′N , we show that (U ′N⊗N)⊕ (N⊗U ′N)≰ N.

Part 1: Given the above UN , we first prove that UN⊗N ≤N. The proof for N⊗UN ≤N follows similarly.

To prove that UN ⊗N ≤ N, it suffices to prove the two parts. First, ∀ j, j < c1 or j > c2, (UN ⊗N)[i, j] = 0.

Second, when c1 ≤ j ≤ c2, and i < r1 or i > r2, (UN⊗N)[i, j] = 0. Consider the element at [i, j] of UN⊗N.

(UN⊗N)[i, j] =
n∨

k=1

UN [i,k]∧N[k, j].

1) Since N is a block matrix with corners (r1,c1) and (r2,c2), all the elements in columns less than c1

and greater than c2 in N are zeros. Hence, for all j < c1 or j > c2, (UN⊗N)[i, j] = 0.

31

Figure 2.4: Pictorial representation of a block matrix N and its corresponding UN . Light Blue represents 0, and Dark Blue
represents 1

2) Consider c1 ≤ j ≤ c2 and i < r1 or i > r2. If k < r1 or k > r2 then N[k, j] = 0 and if r1 ≤ k ≤ r2,

UN [i,k] = 0. Therefore, the disjunction
∨n

k=1UN [i,k]∧N[k, j] will result in 0. That is, when i < r1 or i > r2

and c1 ≤ j ≤ c2, (UN⊗N)[i, j] = 0.

Therefore, UN⊗N ≤ N.

The proof for N⊗UN ≤ N follows similarly.

Part 2: Consider U ′N (different from UN) such that UN ≤U ′N , then there exists at least one i, j such that

U ′N [i, j] = 1 and UN [i, j] = 0. Let us consider the case where (j < c1 ∨ j > c2)∧ (c1 ≤ i ≤ c2). For such

an i, j, we have that (U ′N⊗N)[i, j] =
∨n

k=1U ′N [i,k]∧N[k, j]. By definition, it follows that (U ′N⊗N)[i, j] = 1.

However N[i, j] = 0. Therefore U ′N⊗N ≰ N. The proof for the case where (i < r1∨ i > r2)∧ (r1 ≤ j ≤ r2)

follows similarly.

Fig. 2.4 shows a pictorial view of UN , given N. Given a Boolean matrix N that represents the support

of the system dynamics and a set of Block Boolean matrices {N1,N2, · · · ,Nk} representing the support of

uncertainties, we construct [[Ni]]N and check if [[Ni]]N ≤UNi . If not, we can infer that introducing uncertainties

at Ni might not preserve the closure under multiplication of the resulting LMEs.

Theorem 4. Let, N1,N2, · · · ,Nk be a set of Block Boolean Matrices, representing uncertainties in a given

dynamics. If ∃1≤i≤kNi, such that, it violates either of the following conditions:

Ni⊗N j = 0 (2.20)

[[Ni]]N0⊗Ni ≤ Ni,

and Ni⊗ [[Ni]]N0 ≤ Ni. (2.21)

32

then [[N1,N2, · · · ,Nk]]N0 with the uncertainties N1, · · · ,Nk violates either Condition 2.10 or 2.11, or both.

Proof. Case 1: ∃1≤p,r≤k Np×Nr ̸= 0. Trivial.

Case 2: Let Ni = block((r1,c1),(r2,c2)). and it violates Condition 2.21 with [[Ni]]N0. It implies columns r1

to r2 excluding the rows r1 to r2 has a 1 in [[Ni]]N0, at-least in one cell; OR rows c1 to c2 excluding columns

c1 to c2 has 1 in [[Ni]]N0, at-least in one cell (from Lemma 6).

Let us assume [[N1,N2, · · · ,Nk]]N0 along with the set of uncertainties N1,N2, · · · ,Ni, · · · ,Nk satisfies Conditions

2.10 and 2.11.

To satisfy Condition 2.11, the 1 in columns r1 to r2 excluding the rows r1 to r2 OR rows c1 to c2 excluding

columns c1 to c2 must not be present in [[N1,N2, · · · ,Nk]]N0. The only way to achieve that is, if ∃ j ̸=i 1≤ j ≤ k

N j intersects with columns r1 to r2 excluding the rows r1 to r2 OR rows c1 to c2 excluding columns c1 to c2

where there is a 1 in [[N1,N2, · · · ,Nk]]N0; in such a case Ni×N j ̸= 0, violating condition 2.10.

Therefore, [[N1,N2, · · · ,Nk]]N0 along with the set of uncertainties N1,N2, · · · ,Ni, · · · ,Nk does not satisfy

Conditions 2.10 or 2.11

Corollary 2. If [[N1,N2, · · · ,Nk]]N0 along with the set of uncertainties N1,N2, · · · ,Nk satisfy Conditions 2.10

and 2.11 then ∀1≤i≤kNi will satisfy Conditions 2.20 and 2.21 with [[Ni]]N0

It is easy to observe that converse of Theorem 4 does not hold true i.e. if N1,N2, · · · ,Nk are a set of Block

Boolean Matrix, representing uncertainties in a given dynamics and ∀i Ni satisfies Conditions 2.20 and 2.21

with [[Ni]]N0 then it does not imply [[N1,N2, · · · ,Nk]]N0 along with the set of uncertainties N1,N2,

· · · ,Nk will satisfy Conditions 2.10 and 2.11.

We leverage Theorem 4 to search for block uncertainties in a given dynamics, such that Conditions 2.10

and 2.11 are satisfied. Given a block size of p× r, we look for all block uncertainties Ni of size p× r such

that they satisfy Conditions 2.20 and 2.21 with [[Ni]]N0 and put it in a set κ . The maximal subset of κ is the

maximum number of uncertain blocks of size p× r that can be induced in A so that conditions 2.10 and 2.11

are satisfied. From Theorem 4 we know if a block Ni of size m×n is not in κ , it can never be in any of the

sets of block uncertainties that satisfies condition 2.10 and 2.11.

We use Lemma 6 and Theorem 4 for introducing uncertainties in the given linear dynamics x+ = Ax such

that it satisfies the sufficient conditions in Lemma 5. We search for all block matrices M such that N×N = 0.

Let, [[N]]N0 be a matrix representing the constants coefficients after excluding all the block matrices N. Then

we check if supp([[N]]N0)≤UN and add them to a set κ . We consider all possible subsets of κ and check

33

if the sufficient conditions in Lemma 5 are satisfied. We collect the subset with the maximum number of

uncertainties that can be introduced and return the corresponding LME. The algorithm is formally given in

Algorithm 2.

Algorithm 2: Algorithm that searches for all possible LMEs that satisfy the sufficient conditions
in Lemma 5 and returns the LME with maximum number of uncertainties.

input :Linear dynamical system x+ = Ax
output :Linear Matrix Expression A′ = ⟨N0,N1, . . . ,Nk⟩ that satisfies conditions in Lemma 5.

1 κ ← /0;
2 maxPerturbations← 0;
3 maxS← /0;
4 N0← supp(A);
5 for all blocks N = block((r1,c1),(r2,c2)) of size less than n×n in the matrix A do
6 if supp([[N]]N0)≤UN and N×N = 0 and UN×UN ≤UN then
7 κ ← κ ∪{N};

8 if κ = /0 then
9 return Cannot introduce uncertainties;

10 for all subsets S of κ do
11 S = {N1,N2, . . . ,Nk};
12 U0 =

⋂
UNi ;

13 if ∀i, j,1≤ i, j ≤ k,Hi×H j = 0 then
14 if U0×U0 ≤U0, ∧ supp(N0)≤U0 then
15 if size(S)>maxPerturbations then
16 maxPerturbations← size(S);
17 maxS← S;

18 return ⟨A,N1, . . . ,Nk⟩ where maxS= {N1,N2, . . . ,Nk}.

Description of Algorithm 2: Lines 4-6, searches for all the blocks N in the given dynamics A such that

it satisfies Conditions 2.20 and 2.21 with [[N]]N0.

Lines 7-8: If there are no blocks found in the previous step (Lines 4-6) that satisfies Conditions 2.20 and 2.21

then, no fault introduction is possible which satisfies Conditions 2.10 and 2.11; this follows from Theorem 4.

Lines 9-16: We look for the largest subset of κ that satisfies Conditions 2.10 and 2.11. From Theorem 4

this set is guaranteed to be the largest set which satisfies Conditions 2.10 and 2.11. The conditions checked

in line 13 if satisfied implies the conditions mentioned in Lemma 5. Therefore, the subset S satisfies all the

sufficient conditions.

Line 17: Returns the maximal subset {N1,N2, · · · ,Nk} that satisfies the Conditions 2.10 and 2.11.

For a particular subset S: line 12, has a run time of O(n2 · k), where A is of size n×n; the check in line 13

34

takes O(k2), as checking Hi×H j O(1), and there are O(k2) of them; checks in line 14 takes O(n2).

This shows that if the uncertain blocks are given by the user i.e. uncertain blocks are already known, we can

check if they satisfy Conditions 2.10 and 2.11 very efficiently. Moreover this check needs to be performed

only once at the start. And then the safety verification can be performed using bi-linear optimization as

discussed.

Observations: Notice that the Algorithm 2 searches through all possible block matrices (potentially

n4) to search for matrices that satisfy sufficient conditions and then searches for all possible subsets of the

set κ (potentially 2n4
). For each subset s = {N1,N2, · · · ,Nk}, we check if supp(N0) ≤U0. Where N0 is the

coefficient matrix, excluding all Ni; U0 =
⋂

UNi and UNi are obtained according to Lemma 6. However, due

to the restriction that N×N = 0 and the condition that supp(N0)≤U0, we observe that, in practice, the set

κ often contains the subsets of the order O(n). Hence, we found that our approach to be useful in several

benchmarks with dimensions ranging from 5 to 20.

2.2.2.1 Illustration

In this section we show how the experiments were performed with the help of a toy example. In the rest

of the section we evaluate the applicability of our approach on several benchmarks. In each benchmark we

provide all the set of inputs required to test the applicability of our approach. Let us consider the following

example: 

x+1

x+2

x+3

x+4


=



3 2.9 3.9 2

0 7 0 0

0 0 2 0

0 0 0 1





x1

x2

x3

x4


In the above example, the values in magenta (2.9) and brown (3.9) are uncertain. The different colors

symbolize that these uncertainties are independent. Let, the initial set Θ
∆

= [1,2]× [2,2]× [3,3]× [1,1].

Suppose that the uncertainty associated with the value in magenta be ±10% and the value in brown be ±20%.

The system is considered to be safe if at every step the value of x1 < 100. For performing safety verification

of the uncertain linear system, the following steps are performed.

35

• A is represented as the following LME; the variables y and z correspond to the uncertainties.



3 0 0 2

0 7 0 0

0 0 2 0

0 0 0 1


︸ ︷︷ ︸

N0

+



0 2.9 0 0

0 0 0 0

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

N1

y+



0 0 3.9 0

0 0 0 0

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

N2

z

• We now check the sufficient conditions in Equations (2.10) and (2.11). That is, the following conditions

are checked:

– Check supp(N1)× supp(N2) = 0, supp(N2)× supp(N1) = 0, supp(N1)× supp(N1) = 0, and

supp(N2)× supp(N2) = 0.

– Compute UN =UN1 ∩UN2 . UN1 and UN2 are obtained based on Lemma 6. Check if supp(N0)≤UN

and UN×UN ≤UN

All the above conditions are satisfied for this example. Hence, from Theorem 1, we know that for all t,

At is an LME.

• We now compute A2 as



9 0 0 8

0 49 0 0

0 0 4 0

0 0 0 1


+



0 29 0 0

0 0 0 0

0 0 0 0

0 0 0 0


y+



0 0 19.5 0

0 0 0 0

0 0 0 0

0 0 0 0


z

• For checking the safety property of x1 < 100, we give the following constraints from the reachable set

to Gurobi.

x1− (9α1 +29yα2 +19.5zα3 +8α4) = 0

x1 ≥ 100

1≤ α1 ≤ 2, 2≤ α2 ≤ 2, 3≤ α3 ≤ 3, 1≤ α4 ≤ 1

0.9≤ y≤ 1.1, 0.8≤ z≤ 1.2

36

where αi represents the constraints on xi in the initial set and y and z represents the uncertainties.

• If Gurobi returns that the above set of equations are feasible, then we report that the system is unsafe.

Else, the system is safe. Since most of these conditions are linear and contain only a few quadratic

constraints (that too only product of variable terms), Gurobi can quickly solve such instances.

2.2.3 Ordering Uncertainties Based on their Impact on Safety

In this section, we discuss several other artifacts that provide more understanding on types and effects of

various classes of uncertainties on a linear system. In particular, we propose an algorithm to order uncertainties

based on its impact on safety. Further, leveraging this ordering, we propose heuristics to compute robustness

threshold (i.e., amount of uncertainty that can be tolerated by the system without violating safety).

2.2.3.1 Relationship between Reachable Sets and Singular Values

In this section, we demonstrate the relationship between the reachable set of a linear system and its

corresponding singular values. We first show that the widening of the reachable set (along particular

directions), when viewed as a linear transformation, is dependent on the singular values. We then provide a

template based overapproximation of the reachable set that is dependent on the maximum singular values.

This relationship between the widening of the reachable set and the singular values would help us understand

the effect of specific uncertainties on the reachable set.

Remark. Given a set θ = S(1) (hyper-sphere of unit radius) and a linear transformation A, the change in

the width of the set θ (in directions determined by the SVD of A) after the linear transformation, is equal

to the singular values of A. That is, the width of the set Aθ , in evaluated directions, is equal to the singular

values.

Consider the singular value decomposition UΣV ∗ of the matrix A. The linear transformation can be

understood as a sequence of three linear transformations V ∗, followed by Σ, followed by U . Since U and

V ∗ are unitary matrices, the transformation does not cause the set to widen in any direction. Whereas, the

widening of the set Aθ , in evaluated directions from U and V ∗, to the set θ is equal to the singular values of

A. More specifically, the transformation Aθ is an ordered sequence of rotation, scaling, and rotation. That is,

V ∗ is a rotation, Σ is a scaling, and U is a rotation. This is illustrated in Fig. 2.5a.

37

(a) Geometric interpretation
of SVD. [23]

(b) Illustration of the overapproximation being contained in S(σA
max). Purple hypersphere: S(1) the

initial set that is invariant to transformation by unitary matrix. Blue ellipse: S(1) after applying the
transformation Σ causes scaling along various dimensions. Green hypersphere: S(σA

max) that contains all
possible transformations U of the blue ellipse.

Figure 2.5: Reachable sets and singular values.

We now show that a template based overapproximation of the set Aθ is proportional to the maximum

singular value of A. We illustrate this by performing a linear transformation on a unit sphere S(1) and show

that the overapproximation of AS(1) is contained within a sphere of radius σA
max, the maximum singular value

of A.

Lemma 7. Given the unit sphere S(1) and a matrix A, we have A×S(1) ⊆ S(σA
max), where σA

max is the

maximum singular value of the matrix A.

Proof. This proof hinges on the geometric interpretation of the singular value decomposition. Consider the

SVD of A as UΣV ∗. Since a unit sphere is symmetric, the linear transformation of V ∗S(1) (i.e. a rotation) is

same as S(1). The transformation of Σ, a diagonal matrix with singular values, scales (widens) the ith axis by

the corresponding singular value σi, resulting in an ellipsoid whose axes are defined by the singular values.

The transformation of the ellipsoid with U (i.e. another rotation) will reorient the axes but not cause any

further widening. Therefore, the maximum distance of any point on AS(1) is bounded by σA
max, the maximum

singular value of A. Hence, AS(1)⊆ S(σA
max). This has been illustrated in Fig. 2.5b.

In this section, we are interested in understanding the effect of matrix uncertainties on the reachable set.

Given an uncertain system ẋ = Λx, from Lemma 7, we know that the matrix with the maximum singular

value of the matrix exponential would have the largest effect vis-à-vis widening on the reachable set—this has

been formalized in Theorem 5. Therefore, the uncertainties that will increase the maximum singular value

would cause maximum increase in the width of the overapproximation of the reachable set. Therefore, for

evaluating the robustness of safety of a linear dynamical system, we introduce perturbations that cause largest

change in the maximum singular value. In the following theorem, we show that the reachable set, viewed

38

Sridhar Duggirala
I made a slightly different observation. I was reading a bit more and it turns out that the volume of a shape after linear transformation is equal to the determinant of the matrix times the original volume.

For a square matrix, its determinant is equal to the product of singular values. We can extend the current result using perturbation theory and get rid of the overapproximation.

as a transformation, can be computed using just the maximum singular value of the Max SV Candidate

(Definition 13).

Theorem 5. Given a transformation f (θ) = Λθ where Λ⊂ Rn×n; and θ = S(1), then f (θ)⊆ S(σmax).

Proof. Follows from Lemma 7.

2.2.3.2 Ordering the cells of the matrix based on its sensitivity to perturbation

In this section, we study the effect of introducing uncertainties in different cells of a linear dynamical

system. From Theorem 5 we know that by studying the effect of an uncertainty on the singular value, we can

understand the effect of that uncertainty on the magnitude of change in the reachable set.

The effect of perturbations on the singular values of a matrix has, fortunately, already been studied

in [24]. In [24], given matrices A and B, the singular values of the matrices A+ εB+O(ε2) are shown to

have the form σi + kiε +O(ε2). Additionally, [24] also provides the closed form expression to compute ki as

a function of A and B. Therefore, the matrix with largest ki causes the largest effect in the singular values as a

result of perturbation.

Using the closed form expression provided in [24], we can introduce a perturbation in each cell of A and

study its effect on the singular value. To introduce a perturbation of ε in the [i, j]th element of the matrix A

and observe the change in singular values, we use the expression in [24] with matrix B as a zero matrix except

for the [i, j]th element being 1. A similar technique for constructing B where B[i, j] = A[i, j] can be used to

study the effect of relative perturbation on singular values. If perturbation in a cell (i, j) has more impact on

the singular value vis-à-vis the reachable set than a cell (k, l), then Algorithm 3 orders (i, j) before (k, l).

Algorithm 3 ranks the cells of the matrix in decreasing order of relative change in the singular values by

perturbation. That is, a perturbation in the first element of SingularOrder causes the maximum change in the

singular values of the matrix A (thus on the reachable set). Since we are interested in relative perturbation,

i.e., the elements of the matrix A are subjected to relative uncertainty (such as 1%,5%, etc.), we initiate

B[i, j] = A[i, j] (and rest of the elements as 0) in Algorithm 3.

For each cell [i, j] of the matrix, Algorithm 3 constructs the matrix B that is all zeros, except for the

cell [i, j] and invokes the closed form expression provided in [24] with the pair (A,B). This expression will

determine the change in maximum singular value of A after applying ε relative perturbation. The magnitude

39

Algorithm 3: Algorithm to find an ordering on the cells of the matrix A with decreasing sensitivity
to perturbation

1 B← zeros[n][n]
2 for 1≤ i, j ≤ n do
3 B[i, j] = A[i, j];
4 Ord[i, j]←maximumSingularValueChange(A,B) ▷

(
Eq (3.8) in [24]

)
;

5 B[i, j] = 0;

6 SingularOrder← Sort (i, j) based on decreasing value of Ord[i, j];
7 return SingularOrder;

of this change is stored in Ord[i, j] (Algorithm 4). All the cells of the matrix are sorted according to the

decreasing order of the effect on maximum singular value.

2.2.3.3 Computing Robustness Threshold

We define robustness threshold of a linear dynamical system as: given a set of cells of the dynamics

matrix and an unsafe set, the maximum amount of perturbation that can be introduced to the dynamics while

being safe.

Definition 23. Given a dynamical system ẋ = Ax, initial set Θ, unsafe set U, and time bound T , the robustness

threshold r is given as:

r = max||Λ||{Λ⊆ Rn×n | ∀A′,A′ ∈ A+Λ,∀t, t ∈ [0,T],eA′t
Θ∩U = /0} (2.22)

Given that matrix exponential is a nonlinear function, performing the quantifier elimination and computing

the exact value of robustness threshold exactly is impractical. In this section, we provide empirical techniques

to approximate the value of robustness threshold. Our procedure follows a numerical search, i.e., we first

determine an uncertainty Λ such that the uncertain linear system is safe and then progressively increase the

uncertainties, until a safety violation is discovered. Instead of computing the matrix exponential for all the

matrices in the uncertain linear system, we compute the overapproximation of the reachable set.

We provide two heuristics for numerically estimating the value of robustness threshold in this section.

Both the proposed heuristics rely on the effect of a perturbation on the maximum singular value as computed

in Algorithm 3. We first pick an initial value for the budget of perturbation (say 1% relative perturbation to be

distributed in the given cells). Given a bound on the total perturbation that can be introduced in a dynamics,

40

Sridhar Duggirala
Surprisingly, for the extension, all we need to check is not just the change of maximum singular values, but the sum of changes of all the singular values. Empirically, I think both would be the same.

the perturbation should be distributed such that: the cells that have larger effect on the maximum singular

value receive a smaller proportion of the total perturbation and vice-versa. Recall that Ord matrix, computed

in Algorithm 3, measures the effect of the cell [i, j] on the maximum singular value. Therefore, the higher the

value of Ord[i, j], the lower is the amount of perturbation that can be tolerated while keeping the system safe.

We distribute this budget among the various cells according to two heuristics. The first heuristic,

Proportional Distribution is such that the perturbation introduced in cell [i, j] is proportional to the

values of Ord[i′, j′] that are less than Ord[i, j]. The second heuristic, Harmonic Distribution is such

that the perturbation introduced in cell [i, j] is proportional to 1
Ord[i][j] . We use the baseline of Equal

Distribution where the same amount of perturbation is introduced in all cells, irrespective of their effect

on maximum singular value.

Once the perturbations for each cell is allocated, we compute the overapproximation of the reachable

set for the uncertain linear system and infer safety. If the uncertain system is safe, we increase the budget

by a constant value (say addition of 10%) for perturbation and continue. We terminate when any further

increase in the perturbation budget will cause the system to be unsafe. This procedure is formally described

in Algorithm 4.

Algorithm 4: Heuristic to compute robustness metric of linear dynamics

1 p← 0 ▷ (perturbation budget) step← user chosen parameter ▷ (increase in perturbation after each
iteration) Λold={};

2 while True do
3 Λ← Perturb cells A according to budget p and user determined distribution;
4 if U ∩ORSt(A+Λ) ̸= /0 then
5 return || Λold ||
6 p = p+ step Λold = Λ

2.3 Safety Verification of Autonomous Systems in the Presence of Uncertainties

2.3.1 Deterministic Approaches

In this section, we consider a model with uncertainties—we define continuous time uncertain linear

systems as ẋ = Λux, where the uncertainties in the model are considered as variables in Λu that can take values

from a bounded range. Interval matrix, a matrix where elements are intervals, is a convenient representation

of such a matrix Λu. The uncertain linear system ẋ = Λux can equivalently be represented by separating

41

the nominal and the perturbed dynamics as ẋ = (A+Λ)x, where Λu = A+Λ. In this section, we discuss

two reachable set computation techniques of uncertain linear systems: one using perturbation theory (by

extending results from classical perturbation theory, and interval matrix analysis), and the other using set

based numerical method. In particular, the contributions of this section are follows:

1. A symbolic approach, using classical approaches from perturbation theory, which is computationally

very fast.

2. A set based representation (numeric) approach, where the reachable set is represented as a Minkowski

sum of its unperturbed part with the effect of perturbation. We further discuss two methods to improve

the performance of our set based representation method.

3. We provide two extensive case studies, from two different domains, to demonstrate the broad-spectrum

applicability of the proposed artifacts.

2.3.1.1 Reachability Using Perturbation Analysis

In the early days of studying numerical techniques for solving ordinary differential equations, there

was a significant interest in bounding the errors introduced by using finite precision representation of real

numbers. Seminal works in this domain, such as [25] and [26], investigated analytical methods for computing

upper bounds on the sensitivity of matrix exponential. Given a linear dynamical system ẋ = Ax and its

perturbation ẋ = (A+E)x, these methods presented expressions to upper bound the relative distance between

the trajectories of the nominal (unperturbed) and the perturbed system. The relative distance, denoted by

φ(A,E)(t), is given as:

φ(A,E)(t) =
|| e(A+E)t − eAt ||
|| eAt ||

. (2.23)

Notice that [25] and [26] were applicable for specific matrices A and E, since we deal with bounded model

uncertainties, we extend the same definition from a matrix E to an interval matrix Λ. We extend the notation

to include interval matrices as follows:

φ(A,Λ)(t) = supE∈Λ

|| e(A+E)t − eAt ||
|| eAt ||

. (2.24)

42

Using the analytical expressions for φ(A,E)(t) that were presented in [25] and [26], we provide analytical

expressions for φ(A,Λ)(t), involving interval matrices. To compute φ(A,Λ)(t), we leverage some of the results

on interval matrix norms that are provided in [20].

Lemma 8. [From [25], Table 4.1 (4.14)] Given a matrix A and perturbation E ∈ Rn×n,

φ(A,E)(t)≤ pn−1(||A||2t)×
(

exp
(

pn−1(|| A ||2 t) || E ||2 t
)
−1
)
. (2.25)

where pn−1(x) = Σ
n−1
k=0

xk

k! ,

Notice from Lemma 8 that φ(A,E)(t) is monotonically increasing with || E ||2. Therefore, to extend this

analysis to interval matrices, one merely needs to compute the supremum of the set of 2-norms of all the

matrices in the interval matrix.

Lemma 9. sup
E∈Λ

{|| E ||2}=|| Λ ||2.

As || Λ ||2 is obtained using Theorem 7 of [20], where ||Λ||2 is defined in Definition 11, the above lemma

holds true.

Theorem 6. φ(A,Λ)(t)≤ pn−1(|| A ||2 t)(exp(pn−1(|| A ||2 t) || Λ ||2 t)−1).

Proof. Observe that φ(A,E)(t) (in Lemma 8) monotonically increases with || E ||2, and Lemma 9 states that

the 2 norm of the interval matrix Λ is the supremum of 2-norms of all the matrices in the interval matrix.

Therefore, we have φ(A,Λ)(t)≤ pn−1(|| A ||2 t)(exp(pn−1(|| A ||2 t) || Λ ||2 t)−1).

We denote the upper bound provided in Theorem 6 as Kagstrom1.

In the next two Theorems, we provide two different upper bounds of φ(A,Λ)(t) than in Theorem 6.

Lemma 10. [From [25], Table 4.1 (4.12)] Given a matrix A and perturbation E ∈ Rn×n,

φ(A,E)(t)≤ K(SD)eεt(eK(SD)·||E||2t −1), (2.26)

where (a) for a matrix M, K(M) is its condition number ||M || · ||M−1 ||, (b) SJS−1 is the Jordan form of the

matrix A, and (c) D is a diagonal matrix s.t. || D−1JD ||2≤ ε .

Theorem 7. φ(A,Λ)(t)≤ K(SD)eεt(eK(SD)·||Λ||2t −1); where K, S, D, and ε are as defined in Lemma 10.

43

Proof. Similar to the proof of Theorem 6—follows from monotonicity of φ(A,E)(t) (Lemma 10) with respect

to || E ||2, and Lemma 9.

We denote the upper bound provided in Theorem 7 as Kagstrom2.

Lemma 11. [From [26], Theorem 1] Given a matrix A and perturbation E ∈ Rn×n

φ(A,E)(t)≤ t || E ||2 e(||A||2−α(A)+||E||2)t , (2.27)

where, for any square matrix M, α(M) is the largest real component of the eigenvalues of M.

Theorem 8. φ(A,Λ)(t)≤ t || Λ ||2 e(||A||2−α(A)+||Λ||2)t .

Proof. Similar to the proof of Theorem 7.

We denote the upper bound provided in Theorem 8 as Loan.

Note that [25] and [26] contain many such formulas for computing an upper bound on φ(A,E)(t). This

thesis focused on three of these specific formulas primarily because they yielded the best results on the

standard verification benchmarks. Theorem 6, Theorem 7 and Theorem 8 summarize the new contributions of

this section in extending the perturbation theory based techniques. Computing the reachable set of a linear

system with uncertainty is, therefore, a two step process. First, we compute the reachable set of the dynamical

system ẋ = Ax. Second, we compute an upper bound on the relative error for the bounded uncertainties

(i.e. φ(A,Λ)(t)) and bloat the reachable set computed in the first step. It is easy to prove that this procedure

results in an overapproximation of the reachable set for linear systems with uncertainties. The reachable

set computation technique, proposed in this section, is computationally very efficient—one merely needs to

compute the bloating factors, as given in Theorem 6, Theorem 7 and Theorem 8, and bloat the reachable

set of the nominal dynamics to obtain the reachable set of the uncertain system. The evaluation on several

(low and high dimensional) benchmarks show that the reachable set of a uncertain linear system can be

computed in just few seconds (less than a second for most of the benchmarks). Next, we extend these results

(Theorem 6, Theorem 7 and Theorem 8) to use Interval Matrix Frobenius Norm, as it is computationally

more efficient [20], compensating the quality of overapproximation (see Section 2.4.1 for details).

Theorem 9. (Re-writing Theorem 6)

φ(A,Λ)(t)≤ pn−1(|| A ||2 t)(exp(pn−1(|| A ||2 t) || Λ ||F t)−1).

44

Theorem 10. (Re-writing Theorem 7)

φ(A,Λ)(t)≤ K(SD)eεt(eK(SD)·||Λ||F t −1) where K, S, D, and ε are as defined in Lemma 10.

Theorem 11. (Re-writing Theorem 8)

φ(A,Λ)(t)≤ t || Λ ||F e(||A||2−α(A)+||Λ||F)t .

In all our experiments, we compute 2-norm of interval matrices (Theorem 6, Theorem 7 and Theorem 8)

when it is easy to compute (for low dimensional systems). However, for high dimensional systems, we use

Frobenius norm of interval matrices (Theorem 9, Theorem 10, Theorem 11).

We finally conclude this section with the following discussion. Since the perturbation analysis based

technique proposed in this paper is oblivious of the structure of the matrix and merely uses norm sensitivity

of matrix exponentials, it bloats the nominal reachable set in all directions. Our experiments show (provided

later) that for smaller values of t, the bloating factor obtained is reasonable but blows up for higher values

of t (as is expected). Improving the tightness of this approach—in particular, considering direction specific

bloating factors—is left as a future work. It might require us to move away from merely studying sensitivity of

matrix exponentials with respect to norms, to a more structure aware metric. However, computing reachable

sets using this technique, thanks to perturbation theory, is extremely computationally efficient—one merely

needs to compute the bloating factor using the provided expressions, and bloat the nominal (unperturbed)

reachable set. Such techniques might be useful in monitoring of systems [12, 27, 28, 29]—both for online

and offline where time is of the essence or when timesteps between the logs are reasonably small. The

approach we propose in the next section that relies on a discretized dynamics, does not suffer from such

issues—enabling users to compute tighter reachable sets.

2.3.1.2 Reachability Using Set Representations

In reachable set computation techniques, a suitable representation (such as Zonotopes [30], Support

functions [31], or Stars [32]) is chosen to represent the set of states reached by a dynamical system. For

efficient computation of reachable set, a time step h is chosen, and the linear dynamical system ẋ = Ax is

converted into a discrete time dynamical system x+ = eAhx. Given an initial set Θ in the representation,

the linear transformation of Θ, i.e., eAhΘ is computed in the same representation. For scenarios where the

application is modelled using continuous time, reachable sets computed using discretized dynamics lack

formal soundness. However, for systems where the behavior does not change faster than a given frequency

45

Λ ⋅ ⟨𝑎, 𝐺, 𝑃 ⟩

𝑢

(a) Illustration of Theorem 12. The set of stars Λ · ⟨a,G,P⟩ being
approximated by a hyperbox u (represented as a star), by projecting it
onto orthonormal axis.

Θ𝑚

Θ𝑛

(b) Illustration of Theorem 13. The stars Θm being approximated by a
hyperbox Θn (represented as a star), by projecting it onto orthonormal
axis.

Figure 2.6: Illustration of Theorem 12 and Theorem 13.

(e.g., the processor clock), we can find a granularity small enough for the discrete time evolution. Moreover,

discrete time systems are actively being used in research, such as in distributed embedded controllers [33, 34],

studying cyber-attacks [35], modelling network forecasts [36].

In the case of uncertain linear systems, i.e., ẋ = (A+Λ)x, we perform the same thing and compute a

linear uncertain transformation as x+ = e(A+Λ)hx. Using widely known techniques for computing matrix

exponential [37, 38], we compute a discrete time uncertain linear system, where x+ = (Ā+ Λ̄)x. Since the

reachable set computation technique, proposed in this section, only relies on discrete transformation, in

this section, we abuse notation and represent the discrete time uncertain linear system as x+ = (A+Λ)x. In

this section, we use star representation [39] for computing reachable sets of uncertain linear systems. We

overapproximate the effect of model uncertainties as time varying environmental inputs, and represent the

reachable set as a Minkowski sum of the reachable set without inputs and the effect of inputs, as presented

in [40]. We also provide two new methods to improve the scalability of this approach and evaluate this

method on a wide variety of benchmarks.

Computation of Reachable Sets for Uncertain Linear Systems using Stars. To perform the linear

uncertain transformation x+ = (A+Λ)x over a star ⟨a,G,P⟩, our approach considers Λ as an additional input.

That is, (A+Λ) · ⟨a,G,P⟩ is computed as A · ⟨a,G,P⟩⊕Λ · ⟨a,G,P⟩. The former part of the summation(
A · ⟨a,G,P⟩

)
is easier to compute. For the latter part, Λ · ⟨a,G,P⟩, we impose a specific assumption on P,

and compute a set u, s.t Λ · ⟨a,G,P⟩ ⊆ u. Note that, as Λ is an interval matrix, Λ · ⟨a,G,P⟩ is a set of stars,

i.e., Λ · ⟨a,G,P⟩=
⋃

E∈Λ⟨E ·a,E ·G,P⟩. Using Theorem 12, we overapproximate Λ · ⟨a,G,P⟩ (a set of stars)

with a star u, i.e., Λ · ⟨a,G,P⟩ ⊆ u.

46

Theorem 12. Given an interval matrix Λ and a star ⟨a,G,P⟩, let Λ · ⟨a,G,P⟩ =
⋃

E∈Λ E · ⟨a,G,P⟩. Also

consider that ∀α1, . . . ,αm such that P(α1, . . . ,αm) = ⊤, the upper and lower bounds on α j are c j
low and

c j
high. We have Λ · ⟨a,G,P⟩ ⊆ u, where u = ⟨0̄, In,P′⟩: (a) 0̄ represents the origin, (b) In is the collection of n

orthonormal unit vectors that are axis aligned, and (c) P′ is a conjunction of box aligned constraints such

that di
low ≤ α ′i ≤ di

high, where [di
low,d

i
high] is the interval obtained by performing (Λ ·a)[i]+Σm

j=1(Λ ·G)[i][j] ·

[c j
low,c

j
high] using interval arithmetic.

Proof. Using the expansion of the definition of stars and the provable overapproximation of interval arithmetic,

we use contradiction to prove this theorem. Let there be an 1≤ i≤ n for which Λ · ⟨a,G,P⟩ ̸⊆ ⟨0̄, In,P′⟩. This

would imply [di
low,d

i
high] ̸⊆ [low(α ′i),high(α ′i)], which violates the assumption, where low(·) and high(·)

denotes the lower and upper bound respectively.

Intuitively, Theorem 12 overapproximates Λ·⟨a,G,P⟩with an axis-aligned hyperbox u, i.e., Λ ·⟨a,G,P⟩⊆

u—this is illustrated in Fig. 2.6a. Therefore, using Theorem 12, given an interval matrix Λ and a star ⟨a,G,P⟩,

one can easily compute a u, s.t Λ · ⟨a,G,P⟩ ⊆ u. Using Theorem 12, we can overapproximate the linear

uncertain transformation (i.e., A+Λ) of a star θ (say) as a Minkowski sum of two stars. Let A ·θ ⊕u0 be

the overapproximation of the reachable set after one transformation, where Λ ·θ ⊆ u0 (u0 is obtained using

Theorem 12). Applying the transformation of (A+Λ) for the second time would yield A2 ·θ ⊕A ·u0⊕u1,

where u1 is obtained by applying Theorem 12 on Λ(A ·Θ⊕u0). The recursive relationship that represents the

overapproximation of the reachable set, at time step k, is given as follows:

ORSk = θ (initial set) if k = 0

= A ·ORSk−1⊕uk otherwise. (2.28)

This is graphically represented in Fig. 2.7. It also follows from Theorem 12 that (A+Λ)k ·θ ⊆ ORSk.

Methods to improve performance The set representation based method performs Minkowski sum of two

stars, at every step, to compute the overapproximate reachable set. The reachable set at time step k+1 is

given by ORSk+1 = A ·ORSk⊕uk. Due to the Minkowski sum of two stars, at every time step, we increase the

number of basis vectors for representing the overapproximate reachable set by n (where n is the dimension

of the system). The number of basis vectors increases by n at each step, because uk is represented using n

basis vectors (as it is computed using Theorem 12).

47

Figure 2.7: Recurrence relation to compute an overapproximate reachable set of a uncertain linear system, using Set Representation
method.

Due to the increase in the number of basis vectors of the star representing the overapproximate reachable

set at each step, the computation of uk, using Theorem 12, becomes computationally expensive. Say, the star

representing the overapproximate reachable set ORSk, at time step k, has m basis vectors, where m≫ n: then

the computation of uk (using Theorem 12), s.t Λ ·ORSk ⊆ uk, will involve computing maximum and minimum

value of (Λ ·a)[i]+Σm
j=1(Λ ·G)[i][j] · [c j

low,c
j
high], where j ∈ [[1,m]], i ∈ [[1,n]], and Λ is an interval matrix. As

the number of basis vectors m, representing the reachable set, increases at every step (increases by n at each

step), the number of interval arithmetic operations needed to compute uk also increases. Hence, reducing the

number of generators would significantly improve the performance of the reachable set computation. We

present the following two methods for this purpose.

Interval Arithmetic Based Reduction. In the first method, given ORSk, we project the generators (along

with the coefficients) of ORSk on the orthonormal axis and compute n (n is the dimension of the system) axis

aligned generators. That is, we compute an axis aligned hyperbox (represented as a star with n basis vectors)

that overapproximates ORSk. Given a star Θm = ⟨a,G,P⟩ (representing a reachable set of an n dimensional

system) with m basis vectors (m≫ n), we use Theorem 13 to compute a star Θn, with n basis vectors, s.t

Θm ⊆Θn.

Theorem 13. Let a star be Θm = ⟨a,G,P⟩; where G is a set of m basis vectors, and let P be of the form

c j
low ≤ α j ≤ c j

high. Then Θm = ⟨a,G,P⟩ ⊆ Θn, where Θn = ⟨0̄, In,P′⟩: (a) 0̄ represents the origin, (b) In

is the collection of n orthonormal unit vectors that are axis aligned, and (c) P′ is a conjunction of box

aligned constraints such that di
low ≤ α ′i ≤ di

high, where [di
low,d

i
high] is the interval obtained by performing

a[i]+Σm
j=1[c

j
low,c

j
high] ·G[i][j] using interval arithmetic.

Proof. Similar to the proof of Theorem 12.

48

Intuitively, given a star Θm with m basis vectors, Theorem 13 computes an axis aligned hyperbox Sn,

represented as a star with n basis vectors, s.t Θm ⊆ Θn—this is illustrated in Fig. 2.6b. This operation is

used to reduce the number of generators from m to n. Since the Minkowski sum increases the number of

generators by n at each step, applying this technique at regular intervals reduces the (generator) size of the

star. However, it also results in increased overapproximation of the reachable set.

Zonotope Based Reduction. The second method for reducing the number of generators uses a tool

for performing operations on polytopes, called pypolycontain [41]1. In [41], the authors propose a

representation for polytopes that makes checking of polytope containment very efficient. As a side effect,

it also provides an efficient Zonotope reduction method that uses linear programming. The details of the

technique can be found in Section 2.4.2.

2.3.1.3 Case Studies

We demonstrate the applicability (and usability) of the artifacts, proposed in this section, on a variety

of real life examples from robotics to medical devices. The algorithms and heuristics in a python-based

prototype tool, named CRULS. The tool uses numpy [42], scipy [43], mpmath [44] for matrix multiplications,

Gurobi [45] engine for visualization of the reachable sets, and PythonRobotics [46] for various robotics

modules such as Spline Planner and Model Predictive Control (MPC). All of the experiments were performed

on a Lenovo ThinkPad Mobile Workstation with i7-8750H CPU with 2.20 GHz and 32GiB memory on

Ubuntu 18.04 operating system (64 bit).

Anaesthesia Delivery—A PK/PD Model. Over or under use of anaesthesia can be fatal to a patient—over-

dose can cause long term detrimental effect, and under-dose might fail to maintain the state of hypnosis,

causing a traumatic experience to the patient [10]. Though anaesthesia has traditionally been performed

manually, with improvements in healthcare infrastructure, there is a push for automating the process; thereby

raising a need to verify such safety critical systems. With the aforementioned motivation, in this case study,

we study a commonly used anaesthetic drug, propofol, [10] vis-à-vis safety with perturbation in model

parameters.

Model. The model considered in this case study has two components, PK and PD: the pharmacokinetics

(PK) models the change in concentration of the drug as the body metabolizes it, and pharmacodynamics (PD)

1https://github.com/sadraddini/pypolycontain

49

https://github.com/sadraddini/pypolycontain

models the effect of the drug on the body. The model has three compartments, and the state variables track

the concentration of each compartment: (i) the first peripheral compartment c1, (ii) the second peripheral

compartment c2, (iii) the plasma compartment cp. The input to the model is the infusion rate of the drug

(propofol). The evolution of the states are dependent on several parameters, such as: the weight of the

patient (weight), the first order rate constants between the compartments, k10, k12, k13, k21 and k31. The

aforementioned compartments—c1, c2 and cp—comprise the pharmacokinetics (PK). The pharmacodynamics

(PD), on the other hand, is tracked by the state variable ce, which evolves relying on the parameter kd (the

rate constant between plasma and effect site) and other state variables. The detailed model can be found

in Equation 5 of [10]. The system is considered safe—that is, no under/over dose occurs—if the following

concentration levels are maintained: c1 ∈ [1,10], c2 ∈ [1,10], cp ∈ [1,6] and ce ∈ [1,8], where the input

u ∈ [0,200]. In this case study, we study the following questions:

1. Impact on the concentration levels of the first and the second peripheral compartment, c1 and c2

respectively, due to small perturbations in parameters k21 and k31.

2. Impact on the concentration level of the plasma compartment, cp, due to small errors in the weight

measurement of the patient.

3. Impact on the concentration level of the PD component, ce, due to small perturbations in the parameter

kd . We answer questions (1) to (3) using the artifacts developed in Section 2.3.1.2.

4. Which parameter has more impact on the concentration level of the first peripheral compartment (c1),

k21 or k31? We answer this question using Algorithm 3.

5. The amount of error in the weight measurement of the patient that can be tolerated without violating

the safe concentration level of the plasma compartment cp; we answer this question using Algorithm 4.

The answers to the above questions, (1) to (5), establish connections between the concentration levels

of the various compartments and the model parameters with regards to perturbation; thus helping the

practitioners/designers to be mindful of any unfortunate parameter or measurement errors that might occur

during the process.

Results. The dynamics given in Equation 5 of [10] was discretized (with a step size 0.01) and the answers to

questions (1)-(5) were obtained.

50

• Answer to Question (1). To answer this question, we introduced a small perturbation of ±1.8% in

the parameters k21 and k31. We observed that starting with an initial concentration level of cp ∈ [2,4],

c1 ∈ [4,6], c2 ∈ [4,6], ce ∈ [3,5] and u ∈ [0,10], the system reaches an unsafe concentration level in

the first peripheral compartment c1 in 20 time steps, whereas the unperturbed system (i.e., with no

perturbation) remains safe. The reachable sets, up-to 20 time steps, have been shown in Fig. 2.8: The x

and the y axis represents the concentration levels c1 and c2 respectively. Green represents reachable

sets of the unperturbed system, and blue represents the reachable set of the perturbed system. This

analysis, using the reachable set computation method proposed in Section 2.3.1.2, took 0.32 seconds.

• Answer to Question (2). We introduced a small perturbation of ±0.8% in the weight measurement

of the patient, and observed that starting with an initial concentration level of cp ∈ [2,4], c1 ∈ [3,6],

c2 ∈ [3,6], ce ∈ [2,4] and u ∈ [2,10], the system reaches an unsafe concentration level in the plasma

compartment cp in 20 time steps, whereas the unperturbed system remains safe. The reachable sets,

up-to 20 time steps, have been shown in Fig. 2.9a: The x and the y axis represents the time steps and the

concentration level cp respectively. Cyan represents reachable sets of the unperturbed system, and blue

represents the reachable set of the perturbed system. This analysis, using the reachable set computation

method proposed in Section 2.3.1.2, took 0.32 seconds.

• Answer to Question (3). We introduced a perturbation of ±5% in the parameter kd , and observed that

starting with the same initial concentration level as before, the system reaches an unsafe concentration

level in the PK component ce in 20 time steps, whereas the unperturbed system remains safe. The

reachable sets, up-to 20 time steps, have been shown in Fig. 2.9b: The x and the y axis represents the

time steps and the concentration level cp respectively. Cyan represents reachable sets of the unperturbed

system, and blue represents the reachable set of the perturbed system. This analysis, using the reachable

set computation method proposed in Section 2.3.1.2, took 0.32 seconds.

• Answer to Question (4). Since we are interested in the impact of k31 and k21 on concentration level of

only the first peripheral compartment (c1), we projected our model to the c1 dimension for this analysis.

After the projection, we applied Algorithm 3 and found that the parameter k31 has more impact than

k21: k31 is more sensitive to perturbation than k21 with regards to concentration level c1. With an initial

concentration level cp ∈ [2,4], c1 ∈ [4,6], c2 ∈ [4,6], ce ∈ [3,5] and u ∈ [0,10], we separately studied

the impact of ±2% on k31 and k21—perturbation in k31 has more impact on the reachable set than

51

Figure 2.8: (Anaesthesia: Concentration level of c1 and c2 with perturbation in k21 and k31) The x and the y axis represents the
concentration levels c1 and c2 respectively. Green: Phase plots of the reachable sets of the unperturbed system. Blue: Reachable sets
of the perturbed system. Red: Lines demarcating the safe region. That is, c1 is considered safe if it is between 0 to 10. The safety of
c2 is interpreted similarly.

perturbation in k21. We illustrate this in Fig. 2.9c: The x and the y axis represents the time steps and

the concentration level of c1 respectively. Cyan represents reachable sets with ±2% in k21, and blue

represents the reachable set with ±2% in k31. This analysis, i.e., applying Algorithm 3 took just 0.024

seconds.

• Answer to Question (5). With an initial concentration level of cp ∈ [2,4], c1 ∈ [3,6], c2 ∈ [3,6],

ce ∈ [2,4] and u ∈ [2,10], we applied Algorithm 4 to find out the amount of perturbation that can be

introduced to the weight measurement of the patient without violating the safe concentration level of

the plasma compartment cp. In just 4.32 seconds, we found that an error of ±0.4% can be tolerated

in the weight measurement without violating safety up-to 20 time steps. The reachable sets, up-to 20

time steps and ±0.4% perturbation in weight, have been shown in Fig. Fig. 2.9d: The x and the y axis

represents the time steps and the concentration level cp respectively. Cyan represents reachable sets of

the unperturbed system, and blue represents the reachable set of the perturbed system.

Mars Rover. In this case study, similar to the previous one, we illustrate various artifacts proposed in

this paper on a Mars Rover simulated on real Martian Terrain. In the robotics community, reachable set

computation with model uncertainties has been previously considered to compute safety of a Mars Rover [47].

Here, in this case study, we not just limit our attention to determine safety of a Mars Rover’s path, but also

find out the parameters that are more sensitive to perturbations and also compute the amount of perturbation

the rover can tolerate without violating safety—to the best of the authors’ knowledge, such questions have not

been addressed before. In this case study, a Mars Rover is required to determine the safety of its computed

path, in a real Martian Terrain, where the model of the rover has uncertainties in its parameters like velocity,

52

(a) (Anaesthesia: Concentration level of cp with perturbation in the
weight measurement of the patient) The x and the y axis represents time
steps and the concentration level cp respectively. Cyan: Phase plots of
the reachable sets of the unperturbed system. Blue: Reachable sets of
the perturbed system.

(b) (Anaesthesia: Concentration Level of ce with perturbation in kd)
The x and the y axis represents time steps and the concentration level ce
respectively. Cyan: Phase plots of the reachable sets of the unperturbed
system. Blue: Reachable sets of the perturbed system.

(c) (Anaesthesia: Comparing concentration level of c1 with perturbation
in k31 and k21) The x and the y axis represents time steps and the
concentration level c1 respectively. Cyan: Phase plots of the reachable
sets with perturbation of ±2% in k21. Blue: Reachable sets with the
same amount of perturbation in k31.

(d) (Anaesthesia: Concentration level of cp with safe amount of per-
turbation in the weight measurement of the patient) The x and the y
axis represents time steps and the concentration level cp respectively.
Cyan: Phase plots of the reachable sets of the unperturbed system. Blue:
Reachable sets with safe amount of perturbation in the weight measure-
ment of the patient.

Figure 2.9: (Reachable Sets of Anaesthesia Delivery Model) Red: Lines demarcating the safe region. For example, in Fig. 2.9a, cp
is considered safe if it is between 1 to 6.

53

yaw angle, etc. We perform the safety analysis of a given path of the Mars Rover using the reachable set

computation method proposed in Section 2.3.1.2, with uncertainties in its model. We simulate the above

mentioned scenario using NASA’s HiRise Dataset [2, 3], where the rover is required to safely maneuver in

the Martian Terrain avoiding the steep obstacles. The rover is assumed to follow a linearized bicycle model

with perturbations in the dynamics matrix. Similar to [47], the path of the Mars Rover is computed as follows:

given a set of waypoints (including the start and end coordinates) in the Martian Terrain, we compute a

reference trajectory using Cubic Spline Planner [46], which is then used to plan the Mars Rover’s control

inputs using Model Predictive Control (MPC) [46].

Model of the Rover. We assume a linearized bicycle model [46] for our rover dynamics, with state variables:

(i) x-position x, (ii) y-position y, (iii) velocity v, (iv) yaw angle φ . The input to the rover dynamics are: (i)

acceleration a, (ii) steering angle δ . The states of the rover dynamics evolve by relating itself to other state

variables through complicated trigonometric functions of v, φ and δ . The detailed model can be found in

[46]. Note that, since the given model is non-linear (it has trigonometric terms), we use the MPC path to

assign value to the trigonometric terms and obtain a linear dynamics at each time step. Therefore, for this

case study, we solve reachability at each time step.

Here, we not just limit our attention to compute reachable sets of the Mars Rover with model uncertainties,

but also use the artifacts, developed in this paper, to identify (rather) simpler trigonometric terms—that

are sensitive to perturbation—relating it (the given state variable) to other state variables. Specifically, we

answer the following questions:

1. Impact of perturbation, in the yaw angle φ , on the Mars Rover’s path.

2. Identify simpler trigonometric terms—that relate evolution of the x and y dimensions to other state

variables, based on their sensitivity to perturbation.

3. Amount of perturbation that can be tolerated in the yaw angle φ without violating the safety of the

Mars Rover.

The answers to the above questions will help an engineer/practitioner to carefully tune the error tolerances

of the various sensors available. This is particularly useful in scenarios, such as this, where there is a

limited resource available and therefore resources should be allocated very judiciously to various sensors and

controllers.

54

Results. In the following experiments, to maintain consistency for comparing the results, we have used the

same waypoints and therefore yielding the same MPC path. In the following figures, the red dots represent

high raised obstacles (or unsuitable temperature) in the Martian Terrain.

• Answer to Question (1). We compute the reachable sets, with ±15% perturbation in yaw angle (φ),

using the method proposed in Section 2.3.1.2. In Fig. 2.10a we show the computed reachable sets: Blue

represents the computed reachable sets with ±15% perturbation in yaw angle (φ); the same reachable

set is highlighted in red when it intersects with an unsafe point in the Martian Terrain. This analysis

just took 2.30 seconds.

• Answer to Question (2). Since we are interested in identifying simpler terms that affect the evolution of

just the x and y dimensions, in relation to perturbation, we projected our model to the x and y dimensions

for this analysis. After the projection, we applied Algorithm 3 to find the simpler trigonometric terms

(i.e. elements of individual cells) that are most and least sensitive to perturbation with respect to x− y

dimension. The most sensitive terms for x dimension are: v · sin(φ) ·φ , and cos(φ) relating x to the

state variable v. The most sensitive terms for y dimension are: v · cos(φ) relating y to state variable

φ , and sin(φ) relating y to the state variable v. Similarly, the least sensitive terms for x dimension

are: −v · sin(φ) relating x to φ , and cos(φ) relating x to v. The least sensitive term for y dimension is:

−v · cos(φ) ·φ . By introducing a perturbation of ±10% to the most and the least sensitive terms, we

compute the reachable sets separately, illustrating the impact of the top versus the bottom cells (as in

this case terms), as returned by Algorithm 3, on the reachable set. This is illustrated in Fig. 2.10b: Blue

represents reachable set with perturbation in the most sensitive cells, and green represents reachable set

with perturbation in the least sensitive cells. Identifying the most and the least sensitive terms, using

Algorithm 3, took 0.04 seconds.

• Answer to Question (3). We applied Algorithm 4 to find out the amount of perturbation that can be

introduced to the yaw angle without violating the safety. In 2675.39 seconds, we found that an error

of ±9% can be introduced to the yaw angle without violating safety. The reachable sets with ±9%

perturbation in the yaw angle have been shown in Fig. Fig. 2.10c: Blue represents the computed

reachable sets with ±9% perturbation in φ .

55

(a) (Reachable Set with perturbation in the
yaw angle) Blue: Phase plots of the reachable
sets with perturbation in the yaw angle. Red:
The same reachable sets are highlighted in red
when it intersects with an unsafe point in the
Martian Terrain.

(b) (Comparing reachable sets with pertur-
bation in the most and the least sensitive
terms) Blue: Phase plots of the reachable sets
with perturbation in the most sensitive terms.
Green: Reachable sets with the same amount
of perturbation in the least sensitive terms.

(c) (Reachable Set with tolerable perturbation
in the yaw angle) Blue: Phase plots of the
reachable sets with tolerable perturbation in
the yaw angle.

Figure 2.10: (Mars Rover Reachable Sets) Red Dots: Unsafe points in the Martian Terrain representing high raised obstacle or
unsuitable temperature.

2.3.2 Verifying Complex Autonomous Systems: Statistical Approaches

As discussed earlier, model uncertainty has a complex nonlinear impact on trajectories. The existing

methods for rigorous safety analysis face limitations in scalability, requiring either conservative overap-

proximations or time-consuming computations to determine reachable sets accurately. To address these

challenges, this section proposes computing reachable set artifacts that offer statistical guarantees. Computing

statistically correct reachable sets presents several advantages over statistical verification. Firstly, the reach-

able set artifacts provide a comprehensive understanding of the system’s possible states in the presence of

model uncertainties, offering better intuition for system designers. Secondly, these artifacts can be reused for

evaluating safety across different specifications, unlike statistical verification that necessitates repeated safety

analyses when modifying specifications. Thirdly, the artifacts enable a trade-off between computational

cost and desired statistical guarantees, empowering users to compute reachable sets with varying levels of

confidence based on specific application scenarios. Lastly, the proposed approach eliminates the “wrapping

effect” ensuring that the overapproximation at each time step is independent of previous representations.

It is further worth noting that these reachable set computation techniques have also been used in

monitoring autonomous systems [27], and in robotics to perform safe navigation with least computation

cost [47]. In the context of monitoring, these techniques are utilized when provided with a noisy system log

that may have missing samples at certain time steps, along with a bounding model of the system (such as a

56

uncertain linear system). By leveraging reachable set computation techniques, the behavior of the system for

the missing samples can be overapproximated. Subsequently, monitoring algorithms examine the intersection

of the reachable set with unsafe specifications to ensure safety. During monitoring tasks, the ability to compute

tight reachable sets rapidly becomes crucial, and statistical techniques can be particularly advantageous in

such scenarios. Secondly, these techniques have also been used in safe navigation of simulated Mars rover

to maneuver through a real-Martian terrain. In this context, the rover follows a predetermined path, and

considering the criticality of each maneuver, it computes reachable sets with varying degrees of confidence

throughout its navigation. This approach allows the rover to verify the safety of its path while minimizing

the cumulative computation time. As a result, the navigation process remains safe while ensuring efficient

resource utilization. Therefore, the technique proposed in this paper for computing reachable sets holds great

potential in verifying and designing complex autonomous systems, offering valuable insights and practical

solutions to enhance their safety and performance.

In this section, we introduce two techniques for computing reachable sets. The first technique applies

sequential hypothesis testing, commonly used in statistical verification, to compute reachable sets using a

counterexample guided refinement framework. The second technique utilizes model learning with probably

approximately correct guarantees. By solving an optimization problem, the technique learns a model that

approximates the reachable set of uncertain linear systems, ensuring statistical guarantees. A python prototype

tool was implemented to showcase the applicability of the approaches on standard benchmarks. Comparisons

with an existing techniques, Flow*, was also conducted to demonstrate the trade-off between computational

effort and statistical guarantees. To the best of authors’ knowledge, the standard statistical verification

techniques and model learning techniques have not been applied to compute statistically approximate

reachable set for uncertain linear systems.

2.3.2.1 Reachable Sets With Probabilistic Guarantees using Hypothesis Testing

This section introduces a technique to compute reachable sets, using a counterexample guided refinement

framework, with a statistical verifier using hypothesis testing. This approach consists of three sub-routines:

Generator, Verifier, and Refiner. The Generator sub-routine computes a candidate reachable set by performing

operations on the reachable sets of sampled dynamics from Λ. The Verifier sub-routine employs statistical

verification techniques, specifically the Jeffries Bayes Factor test, to confirm that the candidate set generated

57

Figure 2.11: Workflow for computing probably approximately correct reachable set for uncertain linear systems.

by the Generator highly likely contains reachable sets of dynamics from Λ. The Refiner sub-routine is

invoked only if the Verifier determines that the candidate set does not pass the test. In such cases, the Refiner

reuses the artifacts generated during the verification phase and calls Generator with additional parameters to

generate a different candidate set. The workflow is illustrated in Figure 2.11.

Generator: Computing Candidate Reachable Set. Here, we present several heuristics for computing the

candidate for provably approximate reachable set. Given that the validation of a candidate reachable set relies

on a statistical hypothesis testing framework, any heuristic can be employed to generate a candidate reachable

set. A common approach involves computing reachable sets of dynamics sampled from Λ using various

methods. We present four well-informed heuristics for computing a candidate reachable set. Among these

heuristics, one in particular, that generates the candidate based on structure of uncertainties is a conservative

overapproximation of the reachable set of uncertain systems. For each proposed heuristic, we offer a

fundamental rationale for its inclusion and provide theoretical guarantees if applicable.

Bloating the Reachable Set of Mean Dynamics. In this particular heuristic, our initial step involves

computing the reachable set of the mean dynamical system (obtained by substituting all the intervals with the

corresponding mid-points). Subsequently, we determine the Hausdorff distance between the mean reachable

set and the reachable set obtained from a random sample of N dynamics originating from ẋ = Λx. Next,

we bloat the reachable set of the mean dynamics by incorporating the computed Hausdorff distance along

with an additional predetermined padding factor ε . The detailed steps for this heuristic can be found in

Appendix 2.4.3. The resulting reachable set produced by this process is labeled as bloatMean(Λ,θ , t).

Convex Overapproximation Using Oriented Rectangular Hulls. Instead of simply bloating the reachable

set of the mean dynamics of the system from random samples, a more natural approach is to generate a set that

58

tightly encloses the randomly generated sets. After computing the reachable sets from the generated samples,

we employ the concept of Oriented Rectangular Hulls to aggregate these reachable sets. Oriented rectangular

hulls, as proposed in [48], are parallelotopes where the directions are selected through principal component

analysis (PCA) of various sample trajectories. For a linear uncertain system ẋ = Λx, an initial set θ , and a

given time t, the candidate reachable set produced using this heuristic is denoted as encloseORH(Λ,θ , t).

One specific instance of computing the candidate reachable set would be to use the orthonormal directions

for the template directions, instead of performing PCA on sample trajectories. For such template directions,

there is no need to invoke an optimization problem as required for computing the Oriented Rectangular

Hull. Instead, an axis-aligned overapproximation can be computed using interval arithmetic. Furthermore,

performing a convex hull operation on such axis-aligned sets is computationally efficient (as it can be done

by computing a box hull of the sets). We represent such axis aligned reachable sets as boxBloat(Λ,θ , t).

Structure Guided Reachable Set Computation. In [17], a set of sufficient conditions (referred to as

linearity conditions) is proposed to exploit the structure of the dynamics. When these conditions are satisfied,

the uncertainties in the system do not exhibit non-linear growth over time but instead preserve linearity

at all time steps. Consequently, if these conditions are met, verification can be performed efficiently and

precisely, ensuring both soundness and completeness. However, it is important to note that our paper focuses

on uncertainties that go beyond the scope of the aforementioned work [17]. In this particular heuristic, we

separate the uncertainties in the dynamics into two parts: one that satisfies the linearity conditions and another

that does not. For the part of the dynamics that satisfies the linearity conditions, we propose a deterministic

technique to compute a provable overapproximation of the reachable set associated with that portion of the

dynamics. The details and proof of this method can be found in Appendix 2.4.4. For the remaining part of

the dynamics that does not satisfy the linearity conditions, we compute the reachable set using heuristics

based on random sampling of the dynamics. The specific mathematical treatments and further information

about this heuristic can be found in Appendix 2.4.4.1. Given a linear uncertain dynamics ẋ = Λx, an initial

set θ and time t, we denote the reachable set computed using this heuristic as uniformORH(Λ,θ , t).

Sampling Based on Singular Values. Expanding on the heuristic involving the use of Mean Dynamics, it

is not immediately clear why the reachable set of the mean dynamics is chosen and subsequently bloated.

Therefore, we question whether there exists a more suitable sample reachable set that can be appropriately

bloated to compute the candidate reachable set. Since computing the reachable set involves evaluating the

matrix exponential, a more appropriate choice would be a sample with higher magnitude of eAt . This leads

59

us to consider matrices with higher singular values, as we know that the singular values directly influence

the magnitude of the matrix exponential. For our analysis, we focus on uncertain systems represented as

interval matrices. In [20], given an interval matrix Λ, the norm-2 of Λ, denoted as ||Λ||2, is defined as

follows: ||Λ||2 = sup
{
||A||2 | A ∈ Λ

}
. Let Amax ∈ Λ be an element in Λ with the maximum singular value,

i.e., ∀A∈Λσmax(Amax)≥ σmax(A), where σmax(Amax) = ||Λ||2. In [20], Theorem 7 provides an algorithm to

compute ||Λ||2. We utilize this result to determine the matrix with the maximum singular value, denoted as

Amax. The steps for computing the candidate reachable set using the matrix with the maximum singular

value are similar to those of bloatMean(Λ,θ , t), with the distinction that Ac is replaced by Amax. Further

details can be found in the Appendix, specifically in Section 2.4.5. For a linear uncertain dynamics ẋ = Λx,

an initial set θ , and a given time t, we refer to the candidate reachable set computed using this approach as

maxSV(Λ,θ , t).

2.3.2.2 Statistical Verification of Candidate Reachable Sets

In this subsection, we introduce the statistical hypothesis testing framework utilized to demonstrate that

the candidate reachable set is a conservative estimate of the reachable set of the linear uncertain system with

a high level of confidence. Let Prob(Λ,θ , t,S) represent the probability that the reachable set of a randomly

selected sample dynamics (denoted as A ∈ Λ, RS(A,θ , t)) is contained within the set S . To be more specific,

given a candidate reachable set S and a confidence threshold c (say, 0.99), we employ the Jeffries Bayes

Factor test [49] to determine if Prob(Λ,θ , t,RS)≥ c. We choose the Bayes Factor test for two main reasons.

Firstly, this verification process involves computing the reachable set for sample dynamics generated from Λ,

which can be performed very efficiently. Secondly, the number of samples that need to be verified using this

technique is independent of the number of uncertainties in Λ or the size of the domain of uncertainties DΛ.

This is in contrast to other methods of computing reachable sets, where the computation time depends on the

number of uncertainties and the size of the domain DΛ. The algorithm we propose in this method will be the

Verifier subroutine in the overall workflow.

In Statistical Hypothesis Testing, one is required to form two hypotheses — the null hypothesis H0 and

the alternate hypothesis H1. After the hypotheses are formalized, evidence is gathered by randomly sampling

(finite number of samples) the sample space — once sufficient evidence has been gathered to support either

of the hypotheses i.e. H0 or H1, the algorithm terminates by accepting the hypothesis, which has been

60

supported by the observed random samples and rejecting the other one. The criterion for accepting/rejecting

a hypothesis is based on the method one chooses. In this work, we choose a Bayesian approach — Jeffries

Bayes Factor test as in [49], as it is suitable and yet simple for our purpose. The probability of wrongly

accepting H1, when H0 is the actual truth, is known as the type I error. Informally, if H1 states that the given

approximation property is true (H0 states otherwise) — for our answer to be credible, the value of type I

error has to be sufficiently low. Given a confidence value c ∈ [0,1], our null hypothesis H0 and alternate

hypothesis H1 are as follows: H0 : Prob(Λ,θ , t,RS)< c and H1 : Prob(Λ,θ , t,RS)≥ c. Next, we proceed to

describe the methodology we employ to determine whether to accept H0 or H1. Let, A1,A2, · · · ,AK be a set of

K sample dynamics of Λ, s.t. ∀
1≤ j≤K

A j ∈ Λ∧RSθ (Ai, t)⊆ RS. The probability of this event occurring under

the assumption that the null hypothesis H0 is true can be expressed as:

P
[K∧

j=1

RSθ (Ai, t)⊆ RS | H0
]
=
∫ c

0
qK dq

Similarly, the probability of A1,A2, · · · ,AK satisfies RSθ (Ai, t)⊆ RS, given H1 is true is:

P
[K∧

j=1

RSθ (Ai, t)⊆ RS | H1
]
=
∫ 1

c
qK dq

Given the above two probabilities, the Bayes Factor is given by the ratio of the above two probabilities:

P
[K∧

j=1
RSθ (Ai, t)⊆ RS | H1

]
P
[K∧

j=1
RSθ (Ai, t)⊆ RS | H0

] = 1− cK+1

cK+1 > B (2.29)

Intuitively, the Bayes Factor is the strength of evidence favoring one hypothesis over another. A

sufficiently high value of B indicates that the evidence favors H1 over H0. Given B, we can compute K from

Equation 4.12 (as given in [49])

K > − log(B+1)
log(c)

(2.30)

61

Given B and c, [49] gives the formula for calculating type I error (falsely accepting H1, when H0 is the

actual truth), denoted as err(B,c) as follows:

err(B,c) =
c

c+(1− c)B
(2.31)

Note that, err(B,c) is therefore the probability that our answer is wrong — we infer Prob(Λ,θ , t,RS)≥ c,

when in reality Prob(Λ,θ , t,RS)< c. The algorithm, as used by the Verifier module to accept/reject H0 or

H1 is therefore given as follows:

1. Given (sufficiently high) values of B and c, compute K using Section 2.3.2.2.

2. Let, S = {A1,A2, · · · ,AK} be a set of K random sample dynamics of Λ generated according to the

probability density function µ .

3. If all the K samples in S satisfies: RSθ (Ai, t)⊆ RS; we accept H1.

4. Otherwise, we reject H1 and accept H0 with a counterexample C . Where C = RSθ (A′, t), such that

RSθ (A′, t)⊈ RS.

In the above mentioned algorithm (steps 1-4), the probability of falsely accepting H1, when H0 is the real

truth (type I error) is given by err(B,c).

2.3.2.3 Main Algorithm

In this subsection, we integrate the sub-routines Generator, Verifier, and Refiner. The algorithm

takes three inputs: (i) an uncertain dynamics Λ, (ii) an initial set θ , and (iii) a time value t. Following are the

details of our algorithm:

1. Generator: When provided with the uncertain dynamics Λ, initial set θ , and time t as input, the

generator produces a candidate reachable set using one of the four heuristics outlined in Section 2.3.2.1.

2. Verifier: When given the input the property of interest (whether the reachable set is contained in the

candidate reachable set or is from bounded distance from it), the confidence value (generally c = 0.99),

and the threshold of type I error, the Verifier either accepts the candidate reachable set or rejects it

by producing an instance of the dynamics A′ that does not satisfy the property of interest (that is, the

62

reachable set is not contained in the candidate set or not within the bounded distance from candidate

set).

3. Refiner: Given the candidate reachable set RS rejected by the Verifier and the instance of reachable

set that violates the property, the Refiner increases the value of ε used in the bloating of each set such

that ε > dis(RS,RSθ (A′, t)). This new value of ε is given as input to the generator in recomputing the

candidate reachable set.

Given the three modules Generator, Verifier and Refiner, the main algorithm, an ensemble of the

three modules is given in Algorithm 5

Algorithm 5: Reachable set computation
input :Uncertain dynamics Λ, an initial set θ , time t, ε > 0.

output :Reachable set A .

1 RS := Generator(Λ,θ , t,ε) ;

2 (res, C) := Verifier(RS, c, Property) ;

3 if res = accept then

4 returnRS ;

5 while True do

6 ε := Refine(RS,C) ;

7 RS := Generator(Λ,θ , t,ε) ;

8 (res, C) := Verifier(RS, c, Property) ;

9 if (res = accept) then

10 returnRS ;

2.3.2.4 Reachable Sets Using Model Learning

In this section, we present a Model Learning based approach for computing the reachable set of a linear

uncertain system. Here, we aim to learn a probably approximately correct model of eΛt . To achieve efficient

model learning and reachable set computation, we approximate eΛt using a linear function represented by

63

w(x,γ, t), which follows the following template:

w(x,γ, t) = eActx +


c1,1 · · · c1,p

...
. . .

...

cn,1 · · · cn,p


︸ ︷︷ ︸

C

γ; (2.32)

where x ∈ θ , γ ∈DΛ, t ∈R≥0, θ is the initial set, DΛ is the set values of the uncertain variables and Ac ∈ Λ is

the mean dynamics. Once such a model is learnt —given θ represented as a hyper-rectangle, DΛ represented

as an interval set and a time step t—the reachable set can be computed very efficiently using interval arithmetic

by plugging in the values in Eq. (2.32). Once the model is learned (i.e., the parameters ci, j are learnt) the

reachable set can be computed efficiently using interval arithmetic. This can be achieved by substituting the

values into Eq. (2.32), considering the given θ represented as a hyper-rectangle, DΛ represented as an interval

set, and the chosen time step t. In Section 2.4.6.1, we present a concise overview of Scenario Optimization

[50] (as detailed in [51]). Next, we outline the necessary steps for model learning, specifically the process of

learning the parameters C[i, j]. In the last step, we propose our algorithm for computing reachable sets based

on model learning.

1. Sampling. Given a set θ ⊂ Rn, the set of values of uncertain variables in Λ represented as an interval

set DΛ ⊆ Rp (where p is the number of uncertainties in Λ), time interval tδ ⊆ [0,T], we define the

following randomly chosen samples according to their corresponding probability distributions. (i) Let,

{x1,x2, · · · ,xM} be M random samples of θ , i.e., xi ∈ θ . We denote the set {x1,x2, · · · ,xM} as {xi}M.

(ii) Let, {γ1,γ2, · · · ,γN} be N random samples of DΛ, i.e. γ j ∈DΛ. We denote the set {γ1,γ2, · · · ,γN} as

{γ j}N . (iii) Let, {t1, t2, · · · , tO} be O random samples of tδ , i.e. tk ∈ tδ . We denote the set {t1, t2, · · · , tO}

as {tk}O. Given a γ j ∈ DΛ, let Aγ j ∈ Λ be the matrix obtained by assigning values γ j to the variables of

Λ. We denote the reachable point for a given sample point (xi,γ j, tk) as yi, j,k, i.e., yi, j,k = RS(xi,Aγ j , tk).

Let, {yi, j,k}M·N·O =
{

yi, j,k = RS(xi,Aγ j , tk) | xi ∈ {xi}M ∧ γ j ∈ {γ j}N ∧ tk ∈ {tk}O
}

. Let, the shorthand

of the above sampling method be denoted as sample(θ ,DΛ, tδ) =
(
{xi}M,{γ j}N ,{tk}O,{yi, j,k}M·N·O).

2. Learning the Model. We formulate the problem of learning the parameters C in Equation 2.32 as a

Scenario Optimization problem. Consequently, the guarantees obtained will be statistical in nature.

Consequently, the guarantees we obtain will have a statistical nature. We start with an initial set θ ,

64

a collection of uncertainties DΛ, and a time interval tδ . We represent the samples derived from these

inputs as sample(θ ,DΛ, tδ). Using these samples, we proceed to learn the parameters C (as shown

in Equation 2.32) by formulating it as an optimization problem. Additional details can be found in

Appendix 2.4.6.2. We denote the solution to this optimization problem as (C∗,κ∗), where C∗[i, j] = c∗i, j

and κ∗ denotes the deviation of the learnt model from the true model. Let, the shorthand of this learning

module be denoted as learnModel(θ ,DΛ, tδ) = (C∗,κ∗).

3. Computing Reachable Sets from the Learnt Model. Once a probably approximately correct model

of eΛt is learned, we compute the reachable set by bloating the reachable set obtained from the

model by κ∗. Let the reachable set from the learned model be θt . From the optimization problem in

Eq. (2.37), we get a statistical guarantee that the set θt is κ∗ close to RS(θ ,Λ, t). So to compute an

overapproximation of RS(θ ,Λ, t), we bloat θt by κ∗. Consequently, RS(θ ,Λ, t)⊆ Bloat(θt ,κ
∗), with

statistical guarantee as in Theorem 16. We formalize this approach in Algorithm 6, and refer to this

approach as modelLearn.

2.3.2.5 Evaluation

Algorithm 5 and 6 was implemented in a Python based tool. We have used Gurobi2 [45] for visual-

izing the reachable sets. For computing distances and to perform subset checking, we have used the tool

pypolycontain3. Additionally, we use numpy4 [42], scipy5 [43] and mpmath6 for several other functional-

ities. If the paper gets accepted, we will open source our tool. In the following subsections, we will evaluate

our Algorithm 5 and 6 on several benchmarks, and show that our technique is indeed scalable, even for high

dimensional benchmarks. Most of the benchmarks are taken from ARCH workshop7. All the experiments

were performed on a Lenovo ThinkPad Mobile Workstation with i7-8750H CPU with 2.20 GHz and 32GiB

memory on Ubuntu 18.04 operating system (64 bit). We assume that all the model uncertainties of the system

are uniformly distributed and use uniform distribution for statistical validation and model learning. We report

2https://www.gurobi.com/

3https://github.com/sadraddini/pypolycontain

4https://numpy.org/

5https://www.scipy.org/

6http://mpmath.org/

7https://cps-vo.org/group/ARCH/benchmarks

65

https://www.gurobi.com/
https://github.com/sadraddini/pypolycontain
https://numpy.org/
https://www.scipy.org/
http://mpmath.org/
https://cps-vo.org/group/ARCH/benchmarks

Hypothesis Testing
Benchmark Dim Mean SV ORH Uniform Box Learn Flow*
Adaptive Cruise Control 4 9.28 14.15 11.16 11.58 1.57 3.97 41.35
Flight Collision 4 12.35 7.28 10.36 7.59 2.045 4.077 922.48
Anaesthesia 5 7.39 12.44 31.53 17.89 1.78 8.13 24.73
Motor-Transmission 5 17.95 12.73 13.02 12.78 1.72 9.18 19.51
Spacecraft Rendezvous 6 25.18 19.1 19.477 18.98 3.05 24.57 2176.54
2-wheeled Robot 10 112.68 - 119.52 109.88 7.604 90.51 50.48
5 Vehicle Platoon 15 250.1 - 231.41 214.38 11.455 147.9 1745.47
Quadrotor 16 330.1 - 392.37 350.84 5.74 152.73 39.62

Table 2.1: Evaluation on Benchmarks. Dim: Number of dimensions of the benchmark; Hypothesis Testing: Time taken (in seconds) by various
hypothesis testing based methods (The sub-columns are as follows. Mean: bloatMean, SV: maxSV, ORH: encloseORH, Uniform: uniformORH,
Box: boxBloat.); Learn: Time taken (in seconds) by modelLearn method; Flow*: Time taken (in seconds) by Flow*.

the following: (i) performance of Algorithm 5 using all the heuristics, bloatMean, maxSV, encloseORH,

uniformORH and boxBloat; (ii) performance of Algorithm 6; (iii) finally, we compare the performance of

Algorithm 5 and 6 mutually and with Flow∗. A summary of the evaluations on all the benchmarks is given in

Table 2.1.

Flight Collision. [52] provides an aircraft collision avoidance maneuver model. In air traffic control, collision

avoidance maneuvers are used to resolve conflicting paths that arise during free flight. Given the safety

critical nature of the system, and also the environmental uncertainties associated with the system dynamics,

this benchmark is ideally suited for our analysis. The model of the system is given in Section 1 of [11].

The differential equations governing the maneuver is dependent on ω , angular velocity of the flight. Given

the model, and an uncertain parameter ω , we assume ω ∈ [1,3] to evaluate our algorithm. And the initial

set θ = [-1,1] × [-1,1] × [20,30] × [20,30]. We tune the StatVer module with B = 9000 and c = 0.99,

yielding K = 906 (number of samples required) from Equation 2.30, and type I error of err(B,c) = 0.01

from Equation 2.31. And we tune learnModel module with N = O = 100 (We don’t consider M as we are

doing it for a particular time step). In Fig. 2.12, we show the reachable set for time step 2000, compared with

Flow*, and the timing details are provided in Table 2.1.

Spacecraft Rendezvous. [53] provides a linear model of autonomous maneuver for rendezvous between two

spacecraft. The dynamics of the two spacecraft in orbit, called as target and chaser, respectively, are derived

from Kepler’s laws. The two spacecrafts are assumed to be in same the orbital plane. The target is assumed

to move on a circular orbit. The linearized model is given in Section 3.2 of [54]. The equations depend on

parameters like n =
√

µ

r , where µ = 3.986×1014m3/s2 and r = 42164km and mc = 500kg, the mass of the

spacecraft. For our experiments, we assume mc ∈ [475,525], as a result of perturbation due to measurement

66

Figure 2.12: Over-approximate reachable sets of Flight Collision model. Dirty Blue: Computed using bloatMean; Black: Computed
using boxBloat; Cyan: Random reachable set; Navy Blue: Computed using modelLearn; Red: Computed using Flow*.

and n ∈ [97200,97250]. And let the initial θ = [-1,1] × [-1,1] × [0,0] × [0,0] × [1,1] × [1,1]. We tune the

StatVer module with B = 9000 and c = 0.99, yielding K = 906 from Equation 2.30, and err(B,c) = 0.01

from Equation 2.31. We tune learnModel module with N = O = 200. In Fig. 2.13 (Right), we show the

reachable set for time step 1901, compared with Flow*. Note that Flow* stopped after 1901 time steps, as it

could not compute the flowpipes anymore. This tool showed no such limitations. The details of the time taken

is given in Table 2.1.

Figure 2.13: Left: Over-approximate reachable sets of 5 Vehicle Platoon model. Dirty Blue: Computed using bloatMean; Black:
Computed using boxBloat; Cyan: Random reachable set; Navy Blue: Computed using modelLearn; Red: Computed using Flow*.
Right: Over-approximate reachable sets of Spacecraft Rendezvous model. Dirty Blue: Computed using maxSV; Black: Computed
using boxBloat; Cyan: Random reachable set; Navy Blue: Computed using modelLearn; Red: Computed using Flow*.

More Benchmarks. We evaluated the algorithms on several other benchmarks — (i) An Anaesthesia

Delivery Model [10], a 5 dimensional model; (ii) a 16 dimensional Autonomous Quadrotors Model [55]; (iii)

a 5 dimensional Motor Transmission Drive System [56]; (iv) A 10 dimensional model of a Self-balancing

Two-wheeled Robot [57]; (v) a 4 dimensional model of an Adaptive Cruise Control (ACC) [9]. The summary

of all the evaluation is provided in Table 2.1.

67

2.4 Detailed Analysis

2.4.1 Computational Benefits of Using Frobenius Norm Over 2-Norm

The 2-norm of an interval matrix Λ can be computed using Theorem 7 of [20] as follows:

|| Λ ||2= sup|y|=en,|z|=en ||CΛ +(yzT) ·∆Λ || . (2.33)

where en = (1,1, · · · ,1)T . Additionally, the elements of y and z can only be±1. Therefore, computing ||Λ ||2,

in the worst case, requires computing 2-norm of 22n matrices. That is, O(22n f2(n)), where f2(n) is the time

complexity for computing 2-norm of a matrix. On the other hand, Frobenius norm, which upper bounds

2-norm, is easy to compute. From Theorem 10 of [20], we have: ||Λ ||F=|| |CΛ |+∆Λ ||F . Hence, Frobenius

norm of interval matrices can be computed by computing Frobenius norm of a single matrix. Therefore, using

this, we provide conservative upper bounds of Kagstrom1, Kagstrom2 and Loan (Theorem 6, Theorem 7

and Theorem 8), using Frobenius norm, in Theorem 9, Theorem 10 and Theorem 11.

2.4.2 Zonotope Based Reduction

Our second method for reducing the number of generators uses a tool for performing operations on

polytopes, called pypolycontain [41]8. In [41], the authors propose a representation for polytopes that

makes checking of polytope containment very efficient. As a side effect, it also provides an efficient Zonotope

reduction method that uses linear programming. When provided with an initial set of generators and a

Zonotope as input, the tool performs refinement and returns a Zonotope that has same number of generators

as the provided initial set of generators and overapproximates the input Zonotope. Given a star Θm = ⟨a,G,P⟩

representing a reachable set of an n dimensional system, where G is a set of m basis vectors (m≫ n); using

this open source tool, we obtain a Zonotope (therefore a star) Θn, with n basis vectors, s.t. Θm ⊆ Θn. We

modified this tool to take our star as input and return a star as output. Similar to the first method, this method

also gives a quadratic improvement in performance and increases the order of overapproximation of the

reachable set. Additionally, the overapproximation is also dependent on the initial set of generators provided

to the tool.

8https://github.com/sadraddini/pypolycontain

68

https://github.com/sadraddini/pypolycontain

Apart from the two approaches mentioned in this section, [58, 59] provides several other approaches that

can be used to perform zonotope order reduction. However, in this paper, our intent is to show that one can

use any existing zonotope order reduction based on their application. Here we explore two such methods,

interested readers are referred to [58, 59] for more such reduction techniques.

2.4.3 Bloating the Reachable Set of Mean Dynamics

1. We compute the mean dynamics Ac ∈ Λ. If the uncertainties in the dynamics are intervals, then, this

mean dynamics is often the matrix obtained by substituting all the intervals with the corresponding

mid-points.

2. Let, S= {A1,A2, · · · ,AN} be a set of N random sample dynamics of Λ. Let, d = max
A∈S

{
dis
(
RSθ (Ac, t),RSθ (A, t)

)}
.

Where, dis(S1,S2) is defined as the Hausdorff distance between S1 and S2.

3. Compute Bloat
(
RSθ (Ac, t),d + ε

)
, where ε > 0 is specified by the user.

2.4.4 Structure Guided Reachable Set Computation

In [17], authors considered uncertain matrices as linear matrix expressions and present sufficient con-

ditions where the linear matrix expressions are closed under multiplication. We now present a sampling

based reachable set computation technique that computes a provable overapproximation of the uncertain

systems considered in [17]. However, if the conditions provided in [17] are not satisfied, then our reachable

set need not be a conservative overapproximation. Hence, for such instances, one has to perform statistical

verification, similar to the verification of the candidate reachable sets for other heuristics. We follow [17] and

separate the variables in linear uncertain system as LME preserving and non LME preserving. For the LME

preserving variables, we sample all the vertices of the domain DΛ and grid based uniform sampling for all

non LME preserving variables.

Definition 24. Given an linear uncertain system ẋ = Λx, a variable yi ∈Vars is called LME preserving for

MΛ if and only if the following conditions are satisfied.

1. The variable yi only has terms of degree one in MΛ.

2. supp(M0)×supp(M0)≤ supp(M0), where M0 is the constant term in the matrix polynomial expression

MΛ.

69

3. supp(M0)× supp(Mi)+ supp(Mi)× supp(M0)≤ supp(Mi) where Mi is the coefficient matrix of the

variable yi in MΛ.

All the variables that do not satisfy these conditions are considered as non LME preserving.

We compute the oriented rectangular hull overapproximation of the reachable sets of dynamics sampled

from the vertices of DΛ and for non LME preserving variables, we generate additional sample dynamics,

generated at regular intervals in DΛ. The steps for computing the candidate reachable set using this heuristic

are given below.

1. Compute all LME preserving variables in Vars.

2. Let VerticesΛ = {A1,A2, . . . ,AM} be the sample dynamics obtained by evaluating the linear uncertain

system on the vertices of DΛ. Additionally, for all non LME preserving variables, generate K samples

at regular intervals for each variable from DΛ, called Uni f ormΛ.

3. Compute the reachable set of all the dynamics in VerticesΛ and Uni f ormΛ at time t.

4. Compute the oriented rectangular hull overapproximation of all the reachable sets computed in

VerticesΛ and Uni f ormΛ.

Given a linear uncertain dynamics ẋ = Λx, an initial set θ and time t, we denote the reachable set

computed using this heuristic as uniformORH(Λ,θ , t). If all the variables in Λ are LME preserving, then

uniformORH(Λ,θ , t) is an overapproximation of the reachable set of all the dynamics in Λ for initial set θ .

We provide a proof of this is in Appendix, Section 2.4.4.1.

2.4.4.1 Structure Guided Reachable Set Computation

In this section, we prove that if all the variables in Λ are LME preserving, then

uniformORH(Λ,θ , t) is an overapproximation of the reachable set of all the dynamics in Λ for initial set θ .

This proof has two parts. First, we show that if all variables are LME preserving, then the matrix exponential

is also an LME. Second, if the matrix exponential is an LME, then the union of matrix exponential of all

samples in Λ can be obtained by computing convex hull of the matrix exponential of vertices of Λ. As a

consequence, the convex hull of the reachable set of the vertices of Λ contains the union of reachable set of

all samples in Λ.

70

Lemma 12. If the uncertain linear system satisfies the conditions in Definition 16, then eMΛ is also an LME.

Here, the matrix exponential eM = I + M
1! +

M2

2! +
M3

3! +

Proof. Follows from the fact that Mn
Λ

is also an LME for all n ≥ 1 and LMEs are closed under addition

operation.

Lemma 13. Given an uncertain linear system Λ with closed LME, and γ1,γ2 be two valuations of variables

in DΛ, we have eΛβγ1+(1−β)γ2 = βeΛγ1 +(1−β)eΛγ2 .

Proof. From Lemma 12, we know that eΛ is an LME, say Q0 +Q1y1 + . . .Qkyk. Evaluating this LME over

valuation γ1 would yield

eΛγ1 = Q0 +Q1γ1[1]+ . . .Qkγ1[k].

and evaluating the LME over γ2 yields

eΛγ2 = Q0 +Q1γ2[1]+ . . .Qkγ2[k].

Observing these expressions, it is trivial to observe that the lemma holds.

Theorem 14. Given an uncertain linear system Λ that is an LME closed under multiplication, and let

A1,A2, . . . ,AM be the sample dynamics that are a result of assigning variables to the vertices of DΛ.

Given an initial set θ , let RSi denote RSθ (Ai, t) for 1≤ i≤M. Then we have

ConvexHull(RS1, . . . ,RSM)⊇
⋃

A∈Λ

RSθ (A, t).

Proof. consider an state x0 ∈ θ and A ∈ Λ. The state reached by x0 after time t with the dynamics ẋ = Ax is

eAtx0.

Now, since A ∈ Λ and A1, . . . ,AM are the vertices of Λ, from Lemma 13, we have ∃λ1, . . . ,λM such that

0≤ λi ≤ 1 and ΣM
i=1λi = 1 such that

eAt = λ1eA1t + . . .+λMeAMt .

Therefore,

eAtx0 = λ1eA1tx0 + . . .+λMeAMtx0.

71

Since λ1eA1tx0 + . . .+λMeAMtx0 ∈ ConvexHull(RS1, . . . ,RSM), the proof is complete.

2.4.5 Singular Values based Reachable Set Computation

The steps to compute reachable set using singular values are:

1. Compute the maximum singular value matrix Amax ∈ Λ using the technique described in [20] and

compute the reachable set RSθ (Amax, t).

2. Let, S= {A1,A2, · · · ,AN} be a set of N random sample dynamics of Λ. Let, d = max
A∈S

{
dis
(
RSθ (Amax, t),RSθ (A, t)

)}
.

Where, dis(S1,S2) is the Hausdorff distance between the two sets.

3. Compute Bloat
(
RSθ (Amax, t),d + ε

)
, where ε > 0 is provided by the user.

2.4.6 Model Learning Based Reachable Set Compution

Algorithm 6: Reachable set computation using Model Learning
input :Λ, θ , tδ

output :Θt

1 DΛ ← Hyper-box representing the values of the uncertain variables in Λ ;

2 (C∗,κ∗)=learnModel
(

Bloat(θ ,δ1), Bloat(DΛ,δ2), Bloat(tδ ,δ3)
)

;

3 Θt = {} ;

4 for all t ∈ tδ do

5 tmp = eAct ·Box(θ)+C∗ ·DΛ ;

6 Θt = Θt ∪{Bloat(tmp,κ∗)}

7 returnΘt ;

2.4.6.1 Scenario Optimization Details

In this subsection, we provide a brief introduction to Scenario Optimization [50] (as explained in [51]).

Given an optimization problem as follows [eq. (2) of [51]]:

min
γ∈Γ⊆Rm

c⊺γ

s.t. fδ ≤ 0, ∀δ ∈ ∆

(2.34)

72

where fδ (γ) are continuous continuous and convex functions over the m dimensional optimization variable γ

for every δ ∈ ∆. Also, the sets Γ and ∆ are convex and closed. The optimization problem in Equation 2.34

can be reformulated and solved, with statistical guarantees, as shown in [50], as follows [eq. (3) of [51]]:

min
γ∈Γ⊆Rm

c⊺γ

s.t. ∧K
i=1 fδi ≤ 0, ∀δ ∈ ∆

(2.35)

Note that the reformulation of the problem (in Equation 2.34), to the problem in equation 2.35 only considers

finite subset out of the infinite number of constraints in Equation 2.34. Given, γ∗, the solution to Equation

2.35, the statistical guarantees can be given as follows [Theorem 1 in [51]]:

Theorem 15. (Theorem 1 in [51]) If Equation 2.35 is feasible and attains unique optimal solution γ∗, and

ε ≥ 2
K
(ln

1
β
+m) (2.36)

where ε ∈ (0,1) and β ∈ (0,1) are user-chosen error and confidence levels, then with at least 1−β confidence,

γ∗ satisfies all constraints in ∆ but at most a fraction of probability measure ε , i.e., P
(
{δ ∈ ∆ | fδ (γ

∗) ≤

0}
)
≤ ε , where the confidence β is the K-fold probability pK in ∆k = ∆×∆×·· ·∆, which is the set to which

the extracted sample (δ1,δ2, · · · ,δK) belongs.

The above conclusion still holds if the uniqueness of optimal solutions to Equation 2.35 is removed

[51], since a unique optimal solution can always be obtained according to Tie-break rule if multiple optimal

solutions occur.

73

2.4.6.2 Learning the Model

min
C,κ

κ

s.t. ∀(xi ∈ {xi}M,γ j ∈ {γ j}N , tk ∈ {tk}O)

w(C,xi,γ j, tk)− yi, j,k ≤ [κ κ · · · κ]⊺︸ ︷︷ ︸
n

yi, j,k−w(C,xi,γ j, tk)≤ [κ κ · · · κ]⊺︸ ︷︷ ︸
n

∀r∈[1,n],s∈[1,p] −UC ≤C[r,s]≤UC

0≤ κ ≤Uκ

(2.37)

Let, the solution to the above optimization problem be (C∗,κ∗), where C∗[i, j] = c∗i, j. Let, the shorthand

of this learning module be denoted as

learnModel(θ ,DΛ, tδ) = (C∗,κ∗).

Statistical Guarantees We now formalize the statistical guarantees on the solution to the Scenario Optimiza-

tion problem in Eq. (2.37). The statistical guarantees on the solution (C∗,κ∗) is given as follows.

Theorem 16. Let

τ(x,γ) = {t ∈ tδ | w(C∗,x,γ, t)−RS(x,Aγ , t)≤ [κ∗ κ
∗ · · · κ

∗]⊺}

χ(u) = {x ∈ θ | Pt(τ(x,u))≥ 1− ε1 with confidence 1−β1}

U = {u ∈ DΛ | Px(χ(u))≥ 1− ε2 with confidence 1−β2}

then we have: Pu({u | u ∈ U} ≥ 1− ε3 with confidence 1−β3

where Pt ,Px,Pu are the probability measures on the sets tδ ,θ ,U respectively. And εi ≥ 2
M (ln 1

βi
+np+1), for

i ∈ {1,2,3}

Proof. Follows directly from Theorem 3 of [51].

74

CHAPTER 3: MONITORING AUTONOMOUS SYSTEMS—ANALYZING LOGS TO DETECT A
CRASH

The prevalence of distributed autonomous systems is experiencing significant growth, along with the

emergence of safety concerns associated with them. Traditional formal verification methods typically rely on

a white-box model, which is often unavailable due to certain components being black-box or the absence

of a formal model for the entire system. Moreover, formal verification techniques for autonomous systems

often encounter challenges related to state space explosion, impeding their scalability and effectiveness.

Consequently, monitoring, as a lightweight yet feasible verification technique, can bring practical results of

high importance for larger models.

Monitoring aims at analyzing the log of a concrete system, so as to deduce whether a specification (e.g. a

safety property) is violated. Monitoring can be done offline (i.e. after the system execution, assuming the

knowledge of the entire log), or online (at runtime, assuming a partial log). When the log is an aperiodic

timed sequence of valuations of continuous variables, with a logging not occurring at every discrete time step,

and when the system under monitoring is a black box, a major issue is: how to be certain that, in between

two discrete valuations, the specification was not violated at another discrete time step at which no logging

was performed? For example, consider a system for which a logging at every discrete time step would yield

the log depicted in Fig. 3.1a. Assume the logging was done at only some time steps, given in Fig. 3.1b,

due to some sensor faults, or to save energy with only a sparse, scattered logging. How to be certain that,

in between two discrete samples, another discrete sample (not recorded) did not violate the specification?

For example, by just looking at the discrete samples in Fig. 3.1b, there is no way to formally guarantee that

the unsafe zone (i.e. above the red, dashed line) was never reached by another discrete sample which was

x

t

(a) Full

x

t

(b) Monitored

x

t

(c) Extrapo.

x

t

(d) Extrapo.

x

t

(e) Violation

x

t

(f) Uncertain

Figure 3.1: Monitoring at discrete time steps

75

not recorded. In many practical cases, a piecewise-constant or linear approximation (see, e.g. Figs. 3.1c

and 3.1d, where the large blue dots denote actual samples, while the small green dots denote reconstructed

samples using some extrapolation) is arbitrary and not appropriate; even worse, it can yield a “safe” answer,

while the actual system could actually have been unsafe at some of the missing time steps. On the contrary,

assuming a completely arbitrary dynamics will always yield “potentially unsafe”—thus removing the interest

of monitoring. For example, from the samples in Fig. 3.1b, without any knowledge of the model, one can

always envision the situation in Fig. 3.1e, which shows the variable x crossing the unsafe region (dashed) at

some unlogged discrete time step—even though this is unlikely if the dynamics is known to vary “not very

fast”.

Contribution. In this chapter, the problem of performing monitoring over a set of scattered and uncertain

samples is addressed. First, uncertainties arising from the sensors are addressed by accommodating for

uncertain samples, represented as zonotopes encompassing the continuous variables. In other words, instead

of providing a constant value for the continuous variables at each logged timestamp, the log presents a

zonotope. An illustration of a straightforward instance of an uncertain log involving a single variable, denoted

as x, is presented in Fig. 3.1f in the form of basic intervals. In addition, the timestamp at each discrete

sample of the log can itself be uncertain, in the form of an interval (not shown in Fig. 3.1f, where the

timestamp is punctual). Second, rather than defining the bounding model with an LHA to over-approximate

the system behavior, and following the approach of “model-bounded monitoring” proposed in [12], an

extension of linear dynamical systems is employed. This extension incorporates uncertainty by allowing for

uncertainties in the dynamics matrix [11]. Having some over-approximated knowledge of the system is a

natural assumption in practice: when monitoring a car, one generally knows an upper-bound on its maximum

speed, or on its maximum acceleration (perhaps depending on its current speed). In order to handle the flexible

dynamics of the extended linear dynamical systems, a recent technique [18] (see Chapter 2) is employed.

This technique enables an efficient reachability analysis for uncertain linear dynamical systems. By utilizing

an over-approximation of the actual system, this approach focuses on identifying and disregarding unlikely

behaviors, including the safety violation illustrated in Fig. 3.1e.

The first major contribution of the this chapter is the introduction of a novel and rigorous analysis

technique for offline monitoring of safety properties concerning scattered uncertain samples. This technique

involves employing uncertain linear systems as an over-approximation of the system. By utilizing this

76

over-approximation, it becomes possible to extrapolate the system’s behavior from the most recent known

sample and eliminate the possibility of safety violations at certain missing discrete samples. Note that this

approach uses some discrete analysis as underlying reachability computation technique, and will not however

guarantee the absence of safety violations at arbitrary (continuous) timestamps; its main advantage is to offer

formal guarantees in the context of missing discrete samples for a given logging granularity. The second

main contribution focuses on energy-efficient online monitoring. For each recorded sample, reachability

analysis is run to derive the smallest next discrete time step t in the future at which the safety property may be

violated depending on the latest known sample and the over-approximated model dynamics. In a context in

which monitoring simply observes the behavior and does not lead to corrective actions, any sample before t is

useless because we know from the over-approximated model dynamics that no safety violation can happen

before t. Therefore, one can schedule the next sample at time t, which reduces the number of discrete samples,

and therefore the energy consumption and bandwidth use. The third main contribution of this chapter is to

introduce a tool MoULDyS to perform monitoring of autonomous systems as proposed in this paper. MoULyS

implements efficient offline and online monitoring algorithms of black-box autonomous systems w.r.t. safety

properties. MoULDyS takes as input an uncertain log (with noisy and missing samples), as well as a bounding

model in the form of an uncertain linear system; this latter model plays the role of an over-approximation so

as to reduce the number of false alarms. MoULDyS is Python-based and available under the GNU General

Public License v3.0 (gpl-3.0). The practical applicability of these approaches on three benchmarks—an

anesthesia model, an adaptive cruise controller, and an aircraft orbiting system—is shown in [27, 28].

About the chapter. The content of this chapter is taken from [27, 28, 29].

3.1 Preliminaries

This section lays out the notations and definitions used in the rest of the chapter. Given an initial set

θ0 ⊂ Rn and given a time step t, θt ⊂ Rn denotes the reachable set of the system (represented as uncertain

linear dynamical system) at time step t. Next, we define a log of the system with uncertainties in both in

system states and timestamps.

77

Definition 25 (Uncertain log). Given an uncertain linear dynamical system, a finite length uncertain log is

defined as follows:

ℓ=
{(

θ̂t , [t lb, tub]
)
| θt ⊆ θ̂t , for some t ∈ [t lb, tub], t lb ≤ tub ≤ H

}
,

where H is a given time bound.

Each tuple
(
θ̂t , [t lb, tub]

)
is called a sample. Observe that, both the system state θ̂t and timestamp [t lb, tub],

in a sample are not necessarily reduced to a point. The length of log ℓ—number of samples in ℓ—is given

by |ℓ|. Given an uncertain log ℓ, the k-th sample of ℓ is given as ℓk =
(
θ̂tk , [t

lb
k , tub

k]
)
, where θ̂tk is an over-

approximation of the system state at some time step tk, where tk ∈ [t lb
k , tub

k]. Such a sample denotes that

over-approximate state of the system was observed to be θ̂tk , for some time step tk, where tk ∈ [t lb
k , tub

k] (but

the exact tk is not known). This formalism facilitates modeling of situations when the samples are collected

over an uncertain channel (such as a shared network with delays) and the precise timestamp is unknown.

Note that the log can be scattered—it does not necessarily contain a sample for each t ∈ {1, . . . ,H}, i.e.

{1, · · · ,H} ̸⊆
⋃
k

[t lb
k , tub

k].

Further note that the uncertainties in the logs, arising from the sensor uncertainties of the logging system, are

independent of the uncertainties in the system modeling. Given two consecutive samples ℓk =
(
θ̂tk , [t

lb
k , tub

k]
)

and ℓk+1 =
(
θ̂tk+1 , [t

lb
k+1, t

ub
k+1]

)
, we assume that their timestamps do not intersect, i.e. [t lb

k , tub
k]∩ [t lb

k+1, t
ub
k+1] = /0;

or, put differently, tub
k < t lb

k+1.

When the samples are being collected locally, timestamps can be precisely known (for all practical

purposes). In such cases—while we still can have uncertainties in the system state—the timestamp can be

known precisely. This leads to a simpler case of logs as defined as follows.

Definition 26 (Fixed timestamp uncertain log). A finite length uncertain log with fixed timestamps is defined

as follows: ℓ= {(θ̂t , t) | θt ⊆ θ̂t , t ≤ H}, where H is a given time bound.

We call a fixed timestamp uncertain log ℓ accurate if it satisfies the following condition: ∀1 ≤ k ≤

|ℓ| : θ̂tk = θtk . Given an uncertain linear dynamical system, x+ = Λx with an initial set θ0 ⊂ Rn, an over-

approximate reachable set of x+ at time step t is overReach(Λ,θ0, t), such that θt ⊆ overReach(Λ,θ0, t).

The technique proposed in [18] is used to compute overReach(Λ,θ0, t) in this work (see Section 2.3.1.2).

78

𝑡

sample𝑘 = (, 𝑡)

𝑡 + 1
𝑡 + 2

𝑡 + 5

Unsafe Setsample𝑘+1 = (, 𝑡 + 5)

Unsafe Region

(a) Offline

𝑡 + 4
𝑡 𝑡 + 1

𝑡 + 2 𝑡 + 3

Sample at this time step

Unsafe Set

(b) Online

Figure 3.2: (3.2a): Offline Monitoring. Black: Two consecutive samples, k and k+ 1, at time steps t and t + 5 respectively.
Blue: The over-approximate reachable set computed from sample k using overReach(.). (3.2b): Online Monitoring. Blue:
Over-approximate reachable set computed, at each step, using overReach(.).

3.2 Offline Monitoring: Analyzing Noisy Logs with Missing Samples

Given an uncertain log—arising, e.g. due to faulty sensors and collected over a shared network—this

section proposes an algorithm to infer the safety of a system represented as uncertain linear dynamical system.

In this setting, we assume full knowledge of the (possibly scattered) uncertain log, usually after an execution

is completely over. In a first step, logs are assumed to be known with full certainty regarding the time step;

that is, the input is a fixed timestamp uncertain log. The case of a fully uncertain log will be addressed in

Section 3.2.1.

Before the offline algorithm is proposed, it is illustrated in Fig. 3.2a. Consider two consecutive samples k

and k+1, marked in black, at time steps t and t +5 respectively. The reachable sets, in blue, represent the

over-approximate behaviors possible by the system between time steps t and t +5. Consider the case where

at time step t +2 the over-approximate reachable set intersects with the unsafe region. Once the algorithm

detects a possible unsafe behavior, it computes the intersection between the over-approximate reachable set

(here, the reachable set at time-step t +2) and the unsafe set. Then it checks whether the reachable set, given

in the next sample (k+1), is reachable from the unsafe region—if yes, it infers unsafe; if not, it infers safe.

Next, the offline monitoring method in proposed in Algorithm 7 for a given fixed timestamp uncertain log ℓ.

Description. As we first consider an input log given in the form of a fixed timestamp uncertain log (Defi-

nition 26), we consider a simpler version of Algorithm 7 without the highlighted lines: at line 2, we have

t lb
k = tub

k = tk, and at line 3 we have t lb
k+1 = tub

k+1 = tk+1; in addition, the for loops at lines 4 and 5 can be

discarded. Let us now describe this simpler version of the algorithm. The for loop, starting in line 1, traverses

through each sample, and checks if the system can reach a possibly unsafe behavior between two consecutive

79

Algorithm 7: Offline monitoring
input :An uncertain log ℓ of a system x+ = Λx, and an unsafe set U .
output :Return safe (resp. unsafe) if the actual system behavior is safe (resp. potentially unsafe).

1 for k ∈ {1, . . . , |ℓ|−1} do
2

(
θ̂tk ,
[
t lb
k , tub

k

])
← ℓk ; // current sample, with interval time step

3
(

θ̂tk+1 ,
[
t lb
k+1, t

ub
k+1

])
← ℓk+1 ; // next sample, with interval time step

4 for tk ∈
{

t lb
k , . . . , tub

k

}
do

5 for tk+1 ∈
{

t lb
k+1, . . . , t

ub
k+1

}
do

6 t∆ = tk+1− tk−1 ; // time gap between two possible time steps of the two samples

/* Compute reachable set for all possible time steps (from the two intervals of

time steps) between two samples. Check if any of the sets intersect with the

unsafe set */

7 for p ∈ {1, . . . , t∆−1} do
8 if θ̂tk+p∩U ≠ /0 then

/* Refinement process starts */

9 ψ ← θ̂tk+p∩U ; // compute the unsafe region of the system

10 td = tk+1− (tk + p) ;
11 ϑ ← overReach(Λ,ψ, td) ;

/* Check if the next sample is reachable from the unsafe region */

12 if ϑ ∩ θ̂tk+1 ̸= /0 then
13 return unsafe ; // the next sample is reachable from the unsafe region

14 θ̂tk+p+1← overReach(Λ, θ̂tk+p,1) ;

15 return safe ;

samples (computed in lines 2-3), using over-approximate reachable set computation. If the over-approximate

reachable set between two consecutive samples intersect with the unsafe set (line 8), a refinement is performed

as follows (lines 9–13): The unsafe region is computed (intersection between unsafe set and over-approximate

reachable set) in line 9, then checked if the next sample can be reached from the unsafe region (lines 11–13).

If the next sample is reachable from the unsafe behavior, we conclude the system is unsafe (lines 12–13).

Soundness and incompleteness. Our proposed offline monitoring approach is sound at discrete time steps,

but not complete—there might be cases where our algorithm returns unsafe even though the actual system

is safe. The primary reason for its incompleteness is due to the fact that overReach(.) computes an

over-approximate reachable set. Formally:

Theorem 17 (soundness at discrete time steps for a fixed timestamp uncertain log). If the actual system is

unsafe at some discrete time step, then Algorithm 7 returns unsafe. Equivalently, if Algorithm 7 returns safe,

then the actual system is safe at every discrete time step.

80

Proof. We consider a fixed timestamp uncertain log. Let the actual trajectory τ , between two samples k

and k+ 1, become unsafe at time step tun. Therefore, the over-approximate reachable set, computed by

overReach(·) at time step tun, will also intersect with the unsafe set (due to soundness of overReach(·)).

Note that the actual trajectory τ , originating from the sample k, intersects the unsafe region at time step tun,

and reaches the sample k+1. The refinement module (lines 7, 9–13), using over-approximate reachable sets

will therefore infer the same, concluding the system behavior to be unsafe.

3.2.1 What If Timestamps Are Noisy, Too?

We now extend the offline monitoring to logs with uncertainty not only in the state dimension, but

also in the timestamp dimension (as in Algorithm 25). The extended version of the algorithm is the full

Algorithm 7, including the highlighted parts. We namely add a pair of for loops at lines 4 and 5, iterating

over each (concrete) timestamp in the current uncertain sample ([t lb
k , tub

k]) and over the next uncertain sample

([t lb
k+1, t

ub
k+1]). That is, we handle uncertainty over the logging times by iterating over each possible concrete

log time in the logged interval. This is a crux to ensure soundness of this approach, and guarantee that a safe

answer indeed guarantees safety of the actual system (at all discrete time steps).

Conversely, and as in Section 3.2, our algorithm is not necessarily complete (our algorithm might return

unsafe even though the actual system is safe) due to the over-approximation of the reachable set computation.

We prove formally the soundness of Algorithm 7 below:

Theorem 18 (soundness at discrete time steps for an uncertain log). If the actual system is unsafe at some

discrete uncertain time step, then Algorithm 7 returns unsafe. Equivalently, if Algorithm 7 returns safe, then

the actual system is safe at every discrete uncertain time step.

Proof. Let the actual trajectory τ , between two samples k and k+1, with uncertain time steps [t lb
k , tub

k] and

[t lb
k+1, t

ub
k+1], become unsafe at time step tun. Algorithm 7 computes the reachable set of all possible time steps

between [t lb
k , tub

k] and [t lb
k+1, t

ub
k+1]. Therefore, the over-approximate reachable set, computed by overReach(·)

at time step tun, will also intersect with the unsafe set (due to soundness of overReach(·)). Note that the

actual trajectory τ , originating from the sample k, intersects the unsafe region at time step tun, and reaches the

sample k+1. The refinement module (lines 7, 9–13), using over-approximate reachable sets will therefore

infer the same, concluding the system behavior to be unsafe.

81

3.3 Online Monitoring: Gather Samples Only When Necessary

We now move to online monitoring. In contrast to Section 3.2, in the online setting, timestamps are

necessarily exact, as we suppose we can trigger (instantaneously) a sample. However, the logged states are

still uncertain (as in Definition 26). We propose the online monitoring method in Algorithm 8.

Algorithm 8: Online monitoring
input :An uncertain system x+ = Λx, an unsafe set U , time bound H.
output :Return safe iff the actual system behavior is safe.

1 θ̂0← Sampling at time step 0 ; // initial behavior of the system.

/* Check whether the initial behavior is safe */

2 if θ̂0∩U ≠ /0 then return unsafe ;
3 for t ∈ {1,2, . . . ,H−1} do
4 θ̂t+1← overReach(Λ, θ̂t ,1) ; // over-approximate reachable set at next step

/* Check whether the over-approximate reachable set is unsafe */

5 if θ̂t+1∩U ≠ /0 then
6 ℓt+1← Sample at time step t +1 ;

/* Check whether the actual reachable set is unsafe */

7 if ℓt+1∩U ≠ /0 then
8 return unsafe ;

9 θ̂t+1 = ℓt+1 ; // reset to actual behavior

10 return safe;

Description. The online monitoring algorithm begins by sampling the system at the initial time step, say 0,

in Algorithm 1. As a sanity check, the initial behavior of the system is confirmed to be safe in line 2. The for

loop starting in line 2—where each iteration corresponds to the set of actions for a time step t—performs the

following: At a given time step t, the over-approximate reachable set is computed at the next time step t +1

(line 6). If the computed over-approximate reachable set intersects with the unsafe set, the system is sampled

at time step t +1 to check if the actual behavior is also unsafe (lines 5–9). If safe, the behavior is rest (line 9);

if unsafe, it is returned to be unsafe (line 8). Intuitively, this method samples the actual system only when

the over-approximate reachable set, computed by overReach(.), intersects the unsafe set. This process is

illustrated in Fig. 3.2b.

Soundness and completeness. The online monitoring algorithm is correct (safe and complete) at discrete

time steps, provided the samples are accurate—it returns safe if and only if the actual behavior of the system

82

is safe at all discrete time steps, when accurate samples are obtained. Intuitively, we get the completeness

from the fact that it returns unsafe if and only if the (accurate) sample is unsafe. Formally:

Theorem 19. Algorithm 8 returns safe iff the actual behavior at all discrete time steps is safe.

Proof. The soundness proof—if the actual behavior is unsafe, Algorithm 8 infers unsafe—is straightforward.

Hence, we now argue the completeness—if the actual behavior is safe, Algorithm 8 infers safe. Note that,

Algorithm 8 infers the system behavior as unsafe only when a sampled log (actual behavior) becomes unsafe.

Therefore, if the samples are free from uncertainties (i.e. exact), Algorithm 8 is complete.

Remark. While our aim is to consider continuous systems, note that, for discrete-time systems, this

approach is entirely correct (sound and complete), without the need for a restriction to “discrete time steps”,

since one can find a granularity small enough for the discrete-time evolution. This is notably the case for

systems where the behavior does not change faster than a given frequency (e.g. the processor clock).

3.4 MoULDyS: A Monitoring Tool for Autonomous Systems

Here, we present a monitoring tool, MoULDyS1, which aims to identify potential safety breaches by

analyzing logs. The distinctive characteristics of MoULDyS can be summarized as follows.

1. The possibility to monitor aperiodic logs, or periodic logs with missing samples, and with possible

noise over the recorded data; and.

2. The presence of a bounding model following the formalism of uncertain linear systems.

3.4.1 Software Architecture

The architecture of MoULDyS is given in Fig. 3.3. Each block in Fig. 3.3 represents a core part (either

functional or input) of the tool, and the arrows indicate the flow of data. The dataflow of MoULDyS, for both

Figs. 3.4 and 3.5 (offline and online monitoring respectively), starts from the blocks in the left (e.g. bounding

model, unsafe set, etc.) and ends at the extreme right of the figures (outputting the safety status, visualization,

and/or synthesized log). Since both the offline (Block 1 of Figs. 3.3 and 3.4) and online monitoring

algorithm (Block 2 in Figs. 3.3 and 3.5) uses reachability of uncertain linear systems (Block 3 of Fig. 3.3),

1https://sites.google.com/view/mouldys

83

https://sites.google.com/view/mouldys

Bounding System
Model
Type: Uncertain Linear
System.
Representation: Numpy
array and Python

dictionary.

Log
Type: Noisy, aperiodic
valuations of the state
variables.
Representation: File
(.mlog)

Unsafe Set
Type: Constraints on
state variables.
Representation:
Python list.

System Behavior
Type: Valuations of the
state variables, at all
time steps.
Representation: File
(.mbeh).

Comment: A simulation
of the system behavior

Block 1.A

Random Log
Generator

Block 3

Offline
Monitoring

Online
Monitoring

Block 1

Block 2

Reachable Set
Computation

Safety Status, with
visualization.

Log (.mlog file)

Safety Status, with
visualization.

Block 1.B

Figure 3.3: MoULDyS Architecture. Each block identifies a core part of the tool, and the arrows indicate the flow of data.

Bounding System Model
• Type: Uncertain Linear System.
• Representation: Numpy

array and Python

dictionary.

Safety Status, with
visualization.

Offline Monitoring

Log
• Type: Noisy, aperiodic

valuations of the state
variables.

• Representation: File (with
extension .mlog)

Unsafe Set
• Type: Constraints on state

variables.
• Representation: Python

list.

Figure 3.4: Dataflow diagram of the offline monitoring functionality of MoULDyS.

a data exchange occurs between Block 1 and Block 3, as well as Block 2 and Block 3. MoULDyS

implements a built-in reachability algorithm. The native reachable set computation support facilitates faster

84

Bounding System Model
• Type: Uncertain Linear System.
• Representation: Numpy

array and Python

dictionary

Online Monitoring

System Behavior
• Type: Valuations of the state

variables, at all time steps.
• Representation: File (with

extension .mbeh).

• Comment: A simulation of the
system behavior

Unsafe Set
• Type: Constraints on state

variables .
• Representation: Python

list.

Safety Status, with
visualization.

Log (.mlog file)

Figure 3.5: Dataflow diagram of the online monitoring functionality of MoULDyS.

computing (i.e. no data exchange with third party tool is required, which would potentially require additional

data reformatting) with no additional tool installation required. MoULDyS implements efficient technique

for computing such over-approximations presented in [18]. After obtaining the reachable sets, MoULDyS

verifies the safety of these sets by comparing them against provided safety specifications. These safety

specifications are constraints on state variables, which can be complex and involve multiple state variables

(e.g. linear inequalities involving several state variables). To represent such safety specifications, MoULDyS

uses zonotopes. MoULDyS can check multiple safety specifications, each represented as a zonotope and

involving several state variables.

3.4.2 Implementation

MoULDyS is implemented using Python 3.7.x, and runs in a Linux environment. The tool can be

used in the following two ways. On the one hand, users can use it through the provided virtual machine2,

which already contains all the necessary dependencies and has the path variable set. Nevertheless, users are

still required to obtain and install the Gurobi license themselves, since Gurobi only grants free academic

licenses to individuals. On the other hand, the tool can also be downloaded and setup from its public GitHub

210.5281/zenodo.7888502

85

https://www.doi.org/10.5281/zenodo.7888502

repository3. If users aim to recreate the results in the paper or simply employ it for basic monitoring purposes,

using the provided virtual machine is recommended. However, if the tool will be used for research and

development purposes, it is recommended to download and set it up on a local machine. The detailed

installation instructions are provided in [60]. The system model (represented as an uncertain linear system), in

MoULDyS, is represented with a numpy array and a dictionary. The unsafe set is represented with a Python list.

An example code of how to encode the system model and its unsafe specification can be found in the public

repository4. The log and the system behavior, on the other hand, is given as a file to MoULDyS (MoULDyS can

also generate random logs; discussed later). Logs can either be represented as zonotopes or intervals (an

example of the required file can be found in MoULDyS public repository5).

Both the online and offline monitoring algorithm (Block 1 and Block 2 of Fig. 3.3) have been imple-

mented in Python using standard libraries, namely numpy, scipy and mpmath. The reachable set computation

(Block 3 of Fig. 3.3) module implements the algorithm proposed in [18] in Python. Both the online and the

offline module require performing intersection checking of zonotopes, which has been implemented as an

optimization formulation using Gurobi. Gurobi has been further used to visualize the reachable sets.

Installation. While the virtual machine comes preinstalled with the required dependencies, setting up

MoULDyS on a local machine requires installing the following dependencies: numpy, scipy, mpmath, pandas,

Gurobi along with gurobipy (Gurobi requires an ad-hoc install but is free to use for academic purposes).

The detailed steps for installing MoULDyS are given in the installation guide [60].

User Guide. A tutorial on how to use several functionalities of MoULDyS, along with sample codes (encoding

a toy dynamics), is given in the user guide [61].

3.4.3 Software Functionalities

In this section, we discuss the core functionalities of MoULDyS:

Offline Monitoring. The offline monitoring requires the bounding model of the system (represented as an

uncertain linear system) to be given as input. Further, a log of the system behavior is required, which

can be achieved by the following ways:

3https://github.com/bineet-coderep/MoULDyS/releases/tag/v1.1

4https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOfflineMonitoring.py

5https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg 5 interval.mlog

86

https://github.com/bineet-coderep/MoULDyS/releases/tag/v1.1
https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOfflineMonitoring.py
https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg_5_interval.mlog

1. If the user already has a log to be monitored, it can be simply passed as an input to Block 1 of

Fig. 3.3.

2. Alternatively, MoULDyS can also generate a random (noisy and aperiodic) log of the system,

from a given initial set, using Block 1.A. The selection between the two possible choices is

facilitated by Block 1.B. Analyzing the log, the final output of the offline monitoring is either

safe (indicating the system behavior is certainly safe at all time steps), or possibly-unsafe

(indicating the system might have shown unsafe behavior). An example code snippet to perform

offline monitoring, on a toy example, can be found in its public repository.6

Online Monitoring. The online monitoring requires the bounding model of the system (represented as an

uncertain linear system) to be given as input, as well as the actual behavior of the system. The actual

behavior of the system is given as a file (with extension .mbeh) representing the values of the state

variables at every time step—an example of the expected file (with extension .mbeh), containing

valuation of the state variables at every time step, can be found in its public repository.7 The final

output of this feature is the safety status of the system (safe/possibly-unsafe), and a synthesized

log. An example code snippet to perform online monitoring, on a toy example, can be found in its

public repository8.

As a side functionality, MoULDyS also allows to generate random logs (using Block 1.A). While this is

not strictly speaking part of monitoring, it greatly helps to perform experiments using MoULDyS. Basically,

given a bounding model, MoULDyS can generate a random log following the bounding model.

3.5 Case Studies

Environment. All the experiments were performed on a Lenovo ThinkPad Mobile Workstation with i7-

8750H CPU with 2.20 GHz and 32 GiB memory on Ubuntu 20.04 LTS operating system (64 bit).

Implementation details vis-à-vis Algorithm 7 and Algorithm 8. The intersection checking between two

sets in Algorithm 7 and Algorithm 8 has been implemented as an optimization formulation in Gurobi. That

is, given two sets, our implementation of intersection check returns true iff the two sets intersect. In other

6https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOfflineMonitoring.py

7https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg 5 interval.mbeh

8https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOnlineMonitoring.py

87

https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOfflineMonitoring.py
https://www.github.com/bineet-coderep/MoULDyS/blob/main/data/toyEg_5_interval.mbeh
https://www.github.com/bineet-coderep/MoULDyS/blob/main/src/tutorial/TutorialOnlineMonitoring.py

words, our intersection check is exact. In contrast, computing the result of the intersection between two

sets adds an over-approximation in our implementation—given two sets, we compute a box hull of the two

sets and then compute intersection of the two box hulls. Therefore, the only over-approximate operation we

perform in Algorithm 7 and Algorithm 8—apart from overReach(·)—is Algorithm 7, line 9.

Generating scattered uncertain logs for offline monitoring. At each time step, the logging system may

take a snapshot of the system evolution at that time step; the logging occurs with a probability p (given). In

other words, at each time step, it records the evolution of the system with probability p. Clearly, due to the

probabilistic logging, this logger is not guaranteed to generate periodic samples. We also do not assume that

the samples logged by the logging system, at each time step, are accurate—the logging system, due to sensor

uncertainties, logs an over-approximate sample of the system at that time step. In our experiments, each log

was generated statically from our bounding model (the uncertain linear dynamical system) by simulating its

evolution from an uncertain initial set (i.e. not reduced to a point). In the end, we get an uncertain log.

Logging system for online monitoring When the logging system is triggered, at a time step, to generate a

sample, the logging system records the evolution of the system and sends it to the online monitoring algorithm.

Similar to the offline logging system, we do not assume that the samples logged by the logging system are

perfectly accurate—the logging system, due to sensor uncertainties, logs an over-approximate sample of the

system at that time step. That is, we use the same method—as the offline logging system—to generate logs

(statically), but unlike the offline algorithm, the online algorithm uses the samples only when required. For

both our case studies, all the generated logs are safe.

Research questions We consider the following research questions in our case studies:

1. Effect of logging probability (number of log samples) on the rate of false alarms raised by the offline

monitoring—inferring a behavior as “potentially unsafe” when the actual behavior is “safe”.

2. For offline monitoring, does the size of the samples (in other words, volume of the set obtained as

sample), gathered at each step, have an impact on the rate of false alarms? Put it differently, what is the

effect, vis-à-vis false alarms, of the amount of the uncertainty in the log?

3. For online monitoring, how frequent is the logging system triggered to generate a sample?

88

P
ro

b
ab

ili
ty

 o
f

Lo
gg

in
g

Size of the samples

Figure 3.6: Offline monitoring: We plot the change in concentration level of cp with time. The volume of the samples increase
from left to right, and the probability of logging increases from bottom to top. The blue regions are the reachable sets showing the
over-approximate reachable sets as computed by the offline monitoring, the black regions are the samples from the log given to the
offline monitoring algorithm, and the red dotted line represents safe distance level. Note that although the top-row plots and the
bottom left plots’ reachable sets seem to intersect with the red line (unsafe set), the refinement module infers them to be unreachable,
therefore concluding the system behavior as safe—unlike the bottom-right plot.

.

4. For the same execution, how do the outcome (in terms of verdict on safety by the monitoring algorithms)

and the efficiency (in terms of number of samples needed) of the offline and online monitoring

algorithms compare?

3.5.0.1 First benchmark: Anesthesia

We first demonstrate our approach on an automated anesthesia delivery model [10]. The anesthetic drug

considered in this model is propofol. Such safety critical systems are extremely important to be verified

formally before they are deployed, as under or overdose of the anesthetic drug can be fatal to the patient.

Model: The model as in [10] has two components:

1. Pharmacokinetics (PK): models the change in concentration of the drug as the body metabolizes it.

2. Pharmacodynamics (PD): models the effect of drug on the body.

The PK component is further divided into three compartments:

89

Figure 3.7: Online monitoring: We plot the change in concentration level of cp with time. The blue regions are the reachable sets
showing the over-approximate reachable sets as computed by the online monitoring, the black regions are the samples generated
when the logging system was triggered by the online monitoring algorithm, and the red dotted line represents safe concentration
levels. Left: We apply our online monitoring to the anesthesia model. Right: We compare our online and offline algorithms. The
green regions are the reachable sets showing the over-approximate reachable sets between two consecutive samples from the offline
logs, the magenta regions are the offline logs, given as an input to the offline monitoring algorithm, generated by the logging system,
and the red dotted line represents safe concentration levels. The blue regions are the reachable sets showing the over-approximate
reachable sets as computed by the online monitoring, the black regions are the samples generated when the logging system was
triggered by the online monitoring algorithm, and the red dotted line represents safe concentration levels.

.

1. first peripheral compartment c1,

2. second peripheral compartment c2,

3. plasma compartment cp.

The PD component has one compartment, called ce. The set of state variables of this system is
(

cp c1 c2 ce

)⊤
.

The input to the system is the infusion rate of the drug (propofol) u. The complete state-space model of this

system in given in [10, Equation 5].

Model parameters: The evolution of states—cp, c1, c2—is dependent on several parameters, such as:

the weight of the patient (weight), the first order rate constants between the compartments k10, k12, k13, k21

and k31. The evolution of the state ce is dependent on the parameter kd , the rate constant between plasma and

effect site.

Safety: The system is considered safe if the following concentration levels are maintained at all time

steps: cp ∈ [1,6], c1 ∈ [1,10], c2 ∈ [1,10], ce ∈ [1,8].

In this case study, we focus our attention on the effect of perturbation, in the weight of the patient

(weight), on the concentration level of plasma compartment cp. We assume that the weight of the patient

has an additive perturbation of ±0.8 kg in this case study—at each time step, the weight of the patient is

90

weight+ δw, δw ∈ [0,0.8]. With perturbation in the weight, we want to infer safety of this system using

monitoring.

Clearly, monitoring of this system vis-à-vis safety is crucial. It is not practical for a busy human doctor

or a practitioner to monitor each patient continuously at all time steps—monitoring, either offline or online,

provides them an efficient way to save their time and treat their patients without compromising their safety.

We now answer questions (1)-(4), using Figs. 3.6 and 3.7. In Fig. 3.6:

1. the plots in the bottom row have logging probability of 20%, and the plots in top row have a logging

probability of 40%;

2. the plots in left column and the right column have been simulated with an initial set of [[3,4] [3,4] [4,5] [3,4]]⊤,

u ∈ [2,5] and [[2,4] [3,6] [3,6] [2,4]]⊤, u ∈ [2,10] respectively.

That is, the volume of the samples increases from left to right. In Fig. 3.7, we simulated the trajectory with an

initial set [[3,4] [3,4] [4,5] [3,4]]⊤, u ∈ [2,5].

Following are the answers to questions (1)-(4) from Figs. 3.6 and 3.7:

Answer to Question 1. We answer this question by comparing two sets figures in the left column and

the right column of Fig. 3.6. For the left column, i.e. with smaller sample size: the bottom-left plot took

51.40 s and concluded the system to be safe. The analysis in this plot invoked the refinement module of the

offline algorithm. But increasing the probability of logging, i.e. more number of samples, as in the top-left

plot, resulted in not invoking the refinement module at all, thus taking 32.92 s. For the right column, i.e.

with larger sample size: this analysis, as shown in the bottom-right column, took 1.73 s to complete, and

concluded the system behavior to be unsafe. The behavior of the system, shown in top-right plot with 40%

probability of logging, results in inferring the behavior of the system as safe, by invoking the refinement

module several times. Overall, this analysis, as shown in the top-right plot, took 35.93 s to complete, and

concluded the system behavior to be safe.

Answer to Question 2. We answer this question by comparing two sets figures in the top row and the

bottom row of Fig. 3.6. For the bottom row, i.e. with smaller logging probability: Increasing the volume of

the samples results in inferring the behavior from safe (bottom-left plot) to unsafe (bottom-right plot), as

per the offline monitoring algorithm. For the top row, i.e. with higher logging probability: Increasing the

volume of the samples results in not invoking the refinement module (top-left plot) to invoking the refinement

module several times (top-right plot), as per the offline monitoring algorithm.

91

Answer to Question 4 The result is given in Fig. 3.7 (left). Using our online algorithm, we were able to

prove safety of the system in 109.04 s. The online algorithm triggered the logging system to generate samples

for 83 time steps—this is less than 5% of total time steps. We observe, as shown in Fig. 3.7 (left), that the

logging system is triggered more when the trajectory is closer to the unsafe region.

3.5.0.2 Second benchmark: Adaptive Cruise Control

We now apply the offline and online monitoring algorithms to an adaptive cruise control (ACC) model [9].

An adaptive cruise control (ACC) behaves like an ordinary cruise control when there is no car in the sight

of its sensor, and when there is a car in its sight, it maintains a safe distance.

An adaptive cruise control behaves like an ordinary cruise control when there is no car in the sight of its

sensor, and when there is a car in its sight, it maintains a safe distance.

Model The model as in [9] has the following state variables:

1. velocity of the vehicle v,

2. distance between the two vehicles h, and

3. velocity of the lead vehicle vL.

The state space of the system is given in [9, Equation 3]. The set of state variables of this system is(
v h vL

)⊤
.

Model parameters. The model is dependent on two parameters:

1. acceleration of the lead vehicle aL, and

2. breaking force and torque applied to the wheels as a lumped net force F .

Note that the model is dependent on acceleration of the vehicle aL, which is very hard to accurately measure

due to sensor uncertainties. Similarly the torque F applied to the wheels is also dependent of the coefficient

of friction of the ground. To reflect such uncertainties, we consider aL ∈ [−0.9,0.6] and F ∈ [−0.6,2.46].

Safety. The system is considered safe if the distance between vehicles h > 0.5.

Consider an event of a car crash, where the log stored by the car before the crash, is the only data available

to analyze the crash; such an analysis might benefit police, insurance companies, vehicle manufacturers,

92

P
ro

b
ab

ili
ty

 o
f

Lo
gg

in
g

Size of the samples

Figure 3.8: Offline monitoring (ACC): We plot the change in distance h between the vehicles with time. The volume of the samples
increase from left to right, and the probability of logging increases from bottom to top. The color coding is same as Fig. 3.6.

etc. Using our offline algorithm one can figure out if the car might have shown unsafe behavior or not.

Similarly, consider a vehicle on a highway with a lead vehicle in its sight. The ACC in such a case needs to

continuously read sensor values to track several parameters, such as acceleration of the lead vehicle, braking

force, etc.—this results in wastage of energy. Using our online monitoring algorithm, the car reads sensor

values only when there is a potential unsafe behavior. This intermittent behavior will result in saving energy

without compromising safety of the system.

With the aforementioned reasons for applying our offline and online monitoring, we apply our algorithms

on the ACC model and answer questions (1)-(4). We think that the answers to these questions will help the

car designers to design efficient ACC models without compromising safety. Again, the logs for this second

case study are uncertain “only” in the “valuation” dimension: that is, they are fixed timestamps uncertain

logs.

Next, we answer questions (1)-(4), using Figs. 3.8 and 3.9. In Fig. 3.8:

1. the plots in the bottom row have logging probability of 20%, and the plots in top row have a logging

probability of 40%;

93

Figure 3.9: Online monitoring (ACC): We plot the change in distance between two vehicle h with time. The color coding is same as
Fig. 3.7. Left: We apply our online monitoring to the ACC model. Right: We compare our online and offline algorithms.

.

2. the plots in left column and the right column have been simulated with an initial set of [[15,15.01] [3,3.03] [14.9,15]]⊤

and [[15,15.1] [3,3.5] [14.9,15.1]]⊤ respectively.

In Fig. 3.7, we simulated the trajectory with an initial set [[15,15.01] [3,3.03] [14.9,15]]⊤, u ∈ [2,5].

Answer to Question 1. We answer this question by comparing two sets figures in the left column and the

right column of Fig. 3.8. For the left column, i.e. with smaller sample size: the bottom-left plot took 19.08 s

and concluded the system to be safe. This analysis in this plot invoked the refinement module of the offline

algorithm. But increasing the probability of logging, i.e. more number of samples, as in the top-left plot,

resulted in not invoking the refinement module at all, thus taking 16.5 s. For the right column, i.e. with larger

sample size: The analysis is similar to that of the left column. The bottom-right plot invoked the refinement

module several times, thus taking 20.84 s, while the top-right plot took 17.5 s, as it invoked the refinement

module a smaller number of times.

Answer to Question 2. We answer this question by comparing two sets figures in the top row and the

bottom row of Fig. 3.8. For the bottom row, i.e. with smaller logging probability: Comparing the bottom-left

and bottom-right shows that increasing sample volume results in invoking the refinement module more

frequently. A very similar behavior is seen by comparing the top row (i.e. with higher logging probability).

Answer to Question 3. Using our online algorithm, we were able to prove safety of the system in

104.58 s. The online algorithm triggered the logging system to generate samples for 53 time steps—this is

less than 3% of total time steps. This is shown in Fig. 3.9 (left).

Answer to Question 4. We compare our offline and online algorithm, for 2000 time steps, on the same

trajectory. The result is given in Fig. 3.9 (right). Note that, using our online algorithm, we were able to prove

94

Figure 3.10: Planned Behavior of the Aircraft: The axis of the plot denotes the position of the aircraft in (x,y) plane (with a fixed
altitude). The ideal (planned) path of the aircraft, orbiting the object (black), is shown in green. The red dashed lines indicate the
safety constraint of the aircraft—these lines must not be crossed at any time step.

safety of the system in 124.46 s. The online algorithm triggered the logging system to generate samples only

50 times. In contrast, the offline algorithm, with a log size of 281 (14% logging probability) took 28.54 s to

infer that the system is safe.

3.5.0.3 Third benchmark: Aircraft Orbiting

Next, we apply our offline algorithm to an aircraft orbiting case study. Unlike the former two case studies,

we consider in this third benchmark not only uncertain valuations, but also uncertain timestamps. That is, logs

for this benchmark are uncertain logs. In this case study, an aircraft is orbiting an object to gather information

about the object—depicted in Fig. 3.10.

The aircraft orbits the object by controlling its angular velocity. Since the aircraft operates in an uncertain

environment, the angular velocity of the aircraft can have added noise. That is, the model of the aircraft used

in this case study can have uncertainties in its angular velocity. The axis of Fig. 3.10 denotes the position of

the aircraft in (x,y) plane (we assume a fixed altitude). The ideal (planned) path of the aircraft, orbiting the

object (black), is shown in green. The aircraft must always stay sufficiently close to the object for the data

collected about it to be considered reliable. One such bound is shown in the plot with red dashed lines—the

aircraft must not cross these lines at any time step. The aircraft transmits its positional data (the x,y values)

to the local station at aperiodic intervals. Since the data is transmitted over a shared, long-distance network,

a delay is experienced when the data reaches the local station. In other words, the timestamps of the log

(behavioral data) can have added noise. Additionally, the behavioral data can also have added noise due to

95

P
ro

b
 o

f
Lo

gg
in

g

Timing Delay

Figure 3.11: Offline monitoring (Aircraft Orbiting): We plot the position of the aircraft, along x axis, with time. The timing delay of
the samples increases from left to right, and the probability of logging increases from bottom to top. The color coding is same as
Fig. 3.6.

sensor uncertainties. Therefore, this case study becomes an ideal candidate to demonstrate the applicability

of our offline monitoring approach, with added noise in timestamps

Model The model as in [11] has the following state variables:

1. position of the aircraft in two dimensional plane (x1,x2),

2. and velocity (d1,d2).

The state space of the system is given in [11]. The set of state variables of this system is [x1 x2 d1 d2]⊤.

Model parameters. The model is dependent on the angular velocity ω of the aircraft. We assume

ω ∈ 1.5±1%.

Safety. The behavior of the aircraft is considered safe, under the presence of model uncertainties, if

x ∈ [−49.5,11].

All the plots in Fig. 3.11 have been generated with an initial set of [[1.1,1.11] [1.1,1.11] [20,20.1] [20,20.1]]⊤. In

Fig. 3.11, the plots in the bottom and top rows have a logging probability of 5% and 10% respectively, and

the plots in the left column and the right column have a timing delay of 2 units and 10 units respectively.

96

We now answer Questions (1) and (5) using Fig. 3.11.

Answer to Question 1. The observations vis-à-vis this question are very similar to previous two case studies.

We answer this question by comparing two sets figures in the left column and the right column of Fig. 3.11.

For the left column, i.e. with smaller timing delay: the bottom-left plot took 111.6 s and concluded the system

to be safe. The analysis in this plot invoked the refinement module of the offline algorithm. But increasing

the probability of logging, i.e. more number of samples, as in the top-left plot, resulted in not invoking

the refinement module at all, thus taking 31.61 s. For the right column, i.e. with larger timing delay: this

analysis, as shown in the bottom-right column, took 2.33 s to complete, and concluded the system behavior to

be unsafe. The behavior of the system, shown in top-right plot with 10% probability of logging, results in

inferring the behavior of the system as safe, by invoking the refinement module. Overall, this analysis, as

shown in the top-right plot, took 48.39 s to complete, and concluded the system behavior to be safe.

Answer to Question 5. We answer this question by comparing two sets figures in the top row and the bottom

row of Fig. 3.11. For the bottom row, i.e. with smaller logging probability: Increasing the timing delay of the

samples results in inferring the behavior from safe (bottom-left plot) to unsafe (bottom-right plot), as per the

offline monitoring algorithm. For the top row, i.e. with higher logging probability: Increasing the timing

delay the samples results in not invoking the refinement module (top-left plot) to invoking the refinement

module several times (top-right plot), as per the offline monitoring algorithm.

97

CHAPTER 4: SCHEDULING IN AUTONOMOUS SYSTEMS—HANDLING WORKLOADS SAFELY

Design and verification of autonomous system controllers is becoming increasingly challenging due to

the heterogeneous nature of the implementation platforms. Further, autonomous systems are required to run

several processes together on such platforms. Owing to all such difficulties, it is often hard or impossible to

schedule all the processes in a timely manner—as a result, several processes might miss its deadlines—even

though the controller has been designed with the requirement that all the deadlines are always met. However,

it is often the case that the safety properties of the controllers are not violated even if the deadlines are not

always met. This observation lets us develop a flexible design paradigm that is not overly conservative (i.e.,

the deadline is always met). In this chapter, we propose a framework to identify deadline miss patterns that

do not violate safety. Using such artifacts, one can propose correct-by-construction synthesis algorithm that

can generate such schedules.

About the chapter. The content of this chapter is taken from [1, 62, 63, 64, 65, 66].

4.1 Effect of Timing Uncertainties on Autonomous System Controllers

Providing verifiable assurances for autonomous systems is a challenge that has attracted considerable

scientific interest [67, 68, 69]. Traditionally, this involved designing suitable feedback control loops and

formally verifying their correctness. An emerging challenge in providing such assurances for current

generation autonomous systems is providing timing guarantees of the increasingly complex on-board hardware

platforms utilizing machine learning (ML) components. Presently, these consist of multiple multicore

processors and hardware accelerators like GPUs and FPGAs. As a result, the timing behavior of control

software [70] running on them can be highly variable because of complex interference patterns between

heterogeneous components. Analyzing the timing behavior of such software consists of two main steps:

1. Determining the worst-case execution time (WCET) of the code [71]

2. Using schedulability analysis to validate the timing constraints (or deadlines) assuming which the

feedback controllers have been designed

98

Unfortunately, there is now widespread consensus that on modern hardware platforms, safe WCET estimates

cannot be guaranteed without excessive pessimism [72, 73].

This situation is further aggravated by ML components for sensor (camera, radar, lidar) processing that

incur content-dependent processing times. Hence, unless very pessimistic WCET bounds are acceptable—

which makes designs highly over-provisioned and impractical—a certain non-determinism in the timing

behavior of software is unavoidable. Further, even with pessimistic WCET bounds, modern-day automobiles

are required to run several complex processes. Conventional approaches, which require strict adherence

to deadlines, have become increasingly impractical or require the adoption of costly high-performance

processors which can meet such hefty requirements. The method proposed in this paper, however, proposes

a strategy that can meet the safety and the performance requirements while efficiently using the limited

bandwidth of a processor by strategically missing some deadlines. These techniques can be further be used to

design schedulers of modern-day automobiles that can efficiently utilize the limited processing capacity of

a processor by strategically allowing certain processes to occasionally miss their deadlines. Further, usage

of statistical approaches help us in handling model complexity of the processes running on modern-day

automobiles.

This raises the question: “What performance guarantees can be provided for feedback control loops

subjected to certain non-deterministic timing behavior?” There are various incarnations of this question and

the one most widely studied, particularly within networked control systems, asks how to ensure stability in

the presence of uncertainties in network behavior such as delays and dropped packets [74, 75, 76, 77, 78].

Instead of a qualitative property like stability, in this chapter we ask whether quantitative properties, such as

safety specification over a bounded time horizon, hold in the presence of timing uncertainties.

F1Tenth Example. As an example, consider Fig. 4.1. It shows the trajectory of a lane-following controller

for an F1Tenth [79] model car. The car’s steering angle and velocity are computed by a feedback controller,

designed for the car to follow a predetermined path. Running the controller as designed, with no timing

uncertainty, results in the nominal trajectory shown in black. Around this trajectory, there is a safety envelope

shown in light blue, representing a safe space for the car to occupy without hitting any obstacles. Due to

timing uncertainties in the implementation platform, the software task that computes the control inputs can

miss the deadline imposed by the scheduler, resulting in deviation from the nominal trajectory. 100 such

trajectories where the control task missed its deadline are shown in the figure—the green trajectories are

99

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x position (meters)

0.5

0.0

0.5

1.0
y

po
sit

io
n

(m
et

er
s)

Safety envelope
Safe trajectories
Violating trajectory
Nominal trajectory

Figure 4.1: Deviation in the path of an F1Tenth car due to timing uncertainty.

safe, remaining within the safety envelope for the entire time horizon. However, the trajectory shown in

red deviates too far from the nominal trajectory, briefly leaving the safety envelope near x = 4, potentially

resulting in a collision with an obstacle. This illustrates the importance of bounding deviations of control

systems if timing variations in the control software may occur.

Contributions. Given an ideal system behavior (when the control task always meets its deadline), and a

pattern of deadline hits and misses, we want to estimate the maximum possible deviation from the ideal

behavior in the presence of the allowed patterns of deadline misses over a time horizon of length H. This

Small
number of
random runs

Compute dub

Hypothesizer

Formulate
H0 and H1
with dub

Generate
K random

runs

Hypothesis test

Is H1
accepted?

Verifier

Refine dub

Refiner

T ,x[0],τnom

dub

Initial
guess

No

Counterexample

Yes

Refined dub

Figure 4.2: Proposed statistical hypothesis testing approach.

100

involves reachability analysis of the states visited by the trajectories of the closed-loop system in the time

interval [0,H]. This is however not a scalable problem and the main contribution is a statistical hypothesis

testing (SHT) framework, as shown in Fig. 4.2. In particular, we use the Jeffreys’s Bayes factor test [80, 49]

to solve our problem.

In this setup, timing behaviors of interest are specified as patterns of hits (the deadline is met) and misses

(deadline is not met) and are assumed to constitute a regular language over the alphabet {hit,miss}. We

further assume a uniform distribution over these strings of length H (the time horizon of interest). This

enables us to implement an efficient sampling method based on the Recursive RGA algorithm [81]. However,

this method is applicable to other types of languages and distributions as well, provided the runs of the

system can be efficiently sampled. In the current setup, we are given a set of initial states of the system, a

mathematical model of its (discrete time) dynamics, and a regular language L of strings of length H over the

alphabet {hit,miss}. Our goal is to estimate an upper bound dub on the deviation of the trajectory induced

by any string in L from the nominal trajectory induced by the string consisting of only hits (the ideal timing

behavior).

Lastly, in this chapter, we investigate an approach to synthesize a scheduler for control tasks that

miss some deadlines without compromising any of the safety requirements. Given that the number of

possible schedules would increase combinatorially with the number of tasks involved, our scheduler synthesis

uses an efficient automata representation to search for the appropriate schedule. We incorporate statistical

verification techniques to construct this automaton and accelerate the search process. Statistical verification is

advantageous compared to deterministic verification in the synthesis process in two ways: first, it enables

us to synthesize schedules that would not be possible otherwise, and second, it drastically reduces the time

taken to synthesize such a schedule.

4.1.1 System Modeling

We study the state feedback control of discrete time-invariant linear dynamical systems of the form:

x[t +1] = Ax[t]+Bu[t], (4.1)

101

where A ∈ Rn×n, and B ∈ Rn×p. The control input u is computed by a periodic real-time task running on a

processor, and is assumed to be of the form:

u[t] = Kx[t−1], (4.2)

where K ∈ Rp×n. Here, Eq. (4.1) represents the plant—the system whose evolution needs to be controlled.

The controller, given in Eq. (4.2), issues control inputs to the plant to control the evolution of the system as

desired by the user. Internally, the plant receives the control inputs at some discrete time steps, and controls

the evolution of the system based on that input—this part of the system is often termed as the actuator.

The plant (Eq. (4.1)) and the controller (Eq. (4.2)) can alternately be represented using an augmented state

space [82] as z[t] =
[

x[t]T ua[t−1]T
]T

, giving the following model:

z[t +1] =

 A B

Kx Ku

z[t] (4.3)

Here, we denote the two blocks of the feedback gain matrix K providing feedback from each of the vectors x

and u as Kx ∈ Rp×n and Ku ∈ Rp×p, respectively. This augmented form permits standard controller design

techniques such as linear-quadratic regulator (LQR). Further, it allows the plant and controller to be

represented as a single dynamics matrix.

In order to model the system behavior under a sequence of deadline hits and misses, we use standard

techniques, similar to those in [8]. In this model, the logical execution time (LET) paradigm is followed, i.e.,

a sample of the system state at step t−1 is used to compute the control input at time t. A software job is

released when x[t−1] is read, and has its deadline as when x[t] is to be read. If the job completes on time, the

control input is computed. If the job misses its deadline, several different actions can be taken—described

below—both for generating the missing control input and for handling the task that has missed its deadline [8].

We specify the behavior of the scheduler as an automaton that maps the allowed patterns of hits and

misses to the accompanying plant dynamics and control inputs.

Definition 27. A transducer automaton T is a tuple ⟨L,A,T,µ, ℓint⟩, defined as follows:

• L = {ℓ1, ℓ2, . . . , ℓm}: Set of automaton states.

• A: Set of scheduler actions. A= {hit,miss}

102

ℓ0 ℓ1 ℓ2 ℓ3

hit/A1

miss/A2 miss/A3 miss/A4

hit/A5
hit/A6

hit/A7

Figure 4.3: Transducer automaton capturing 3 maximum consecutive misses.

• T : The transition function, where T : L×A→ L. Let T=
{

T (ℓi,a) = ℓ j
∣∣ℓi, ℓ j ∈ L,a ∈ A

}
denote the

set of all transitions of the automaton.

• µ: Associates a dynamics matrix with a transition. Formally, µ : T→ Rn×n, where n is the dimension

of the system under consideration.

• ℓint ∈ L: Initial state of the automaton.

We sometimes refer to transducer automata as Deterministic Finite Automata (DFA). An example of a

DFA, capturing all possible behaviors with at most 3 consecutive deadline misses, is shown in Fig. 4.3. The

labels are of the form ai/Ai, where ai ∈ A and Ai is the dynamics matrix associated to the label using the

function µ .

Several policies for handling deadline misses, both in terms of the control input to apply and how to

treat the job that has missed its deadline have been proposed in [8]. Many control input strategies can be

devised, but any such strategy must be simple enough to be implemented on an actuator. The two we consider

here are Zero, where a control input of 0 is applied, and Hold, where the current control input is used again

until a new one can be computed. As for the handling of jobs that have missed their deadlines, there are

again multiple ways to handle them. Here, we consider the Kill strategy, where the job is killed as soon as its

deadline is passed, and the Skip-Next strategy, where a job is allowed to run to completion past its deadline,

but no new job instance may be released until this happens. By combining a strategy for control input and

real-time job scheduling, we arrive at a single deadline miss strategy. The resulting combination of policies,

named Zero&Kill, Hold&Kill, Zero&Skip-Next, and Hold&Skip-Next in [8], will result in different closed

loop dynamics under deadline misses. However the nominal behaviors will be identical.

Let the plant states x[t] at time t be subsets of the metric space (Rn,dis), where dis is a metric on Rn. We

do not impose any assumption on dis (but use the Euclidean distance in this paper). We note that this metric

applies only to the plant state, not the augmented state vector used by a transducer automaton. Given T , a

103

possible behavior of the system is defined as a run consisting of an alternating sequence of locations and

actions:

τ = {ℓ1,a1, ℓ2, . . . ,aH−1, ℓH} (4.4)

where ℓ1 = ℓint, ai ∈ A, and H is the time bound. Let the set of all possible runs be τ̄ .

Next, the evolution of a run τ = {ℓ1,a1, ℓ2, . . . ,aH−1, ℓH}, with an initial set x[0] ⊂ Rn is denoted as

evol(τ), given by

evol(τ) =
{

x[0],x[1] = A1x[0],x[2] = A2x[1], . . . ,x[H] = AHx[H−1]
}
. (4.5)

Note that since the evolution starts from an initial set of states (x[0]⊂ Rn), the states reached at every time

step t (x[t]) is also a set.

Here, At = µ(at) and x[t] are the plant states reached at time step t. Given evolution of a run evol(τ), let

evol(τ)[t] = x[t], for 1≤ t ≤ H.

Note that we must consider distance between sets, not points, because we are now working with the

sequence of a set of states (trajectories)—such a concept of distance is Hausdorff. It is important to note that

the representation of the sets has a significant impact on the computational complexity of computing the

Hausdorff distance—from polytime to NP.

We now define the distance between two sets S,R⊂ Rn using the standard Hausdorff distance, which we

denote as

∆(S,R) = max
{

sup
s∈S

inf
r∈R

dis(s,r), sup
r∈R

inf
s∈S

dis(s,r)
}
.

Given two runs τ1,τ2 ∈ τ̄ , we define deviation between the two runs as the maximum Hausdorff distance

between the evolution of the two runs. Formally:

Definition 28 (Deviation). The deviation between two runs τ1 and τ2 is given by:

dev(τ1,τ2) = max
1≤t≤H

{
∆
(
evol(τ1)[t],evol(τ2)[t]

)}
. (4.6)

104

Finally, as mentioned in the introduction, we assume a probability distribution D over the set of runs τ̄ .

Accordingly, by a random run we shall mean a run drawn from τ̄ according to D. In the present setting, D is

the uniform distribution. However, our analysis method is applicable to any distribution D, provided one can

effectively draw samples from D.

4.2 The Problem Statement and a Deterministic Approach

The analysis problem we wish to solve is as follows.

Problem 1. Given a transducer automaton T , an initial set of plant states x[0] ⊂ Rn, and a nominal run

τnom ∈ τ̄ , compute the maximum deviation dmax, where:

dmax = max
{

dev(τ,τnom)|τ ∈ τ̄
}
. (4.7)

Assuming a time bound of H, where at each step a deadline can either be met or missed, computing

the exact maximum deviation dmax will require computing the deviation of 2H trajectories from the given

nominal trajectory. This becomes intractable for realistic values of H, so more efficient methods must be

used to instead approximate the value of dmax.

To this end, there are many reachability algorithms for linear dynamical systems that can be used to

safely overapproximate the maximum deviation. We propose one such approach here, which we call RS

(i.e., reachable set), as a baseline against which we will compare our statistical hypothesis testing approach

in our experiments.

The RS method begins by fixing a small number of time steps m. Given an axis-aligned n-dimensional

interval x[0] as an initial set, the algorithm proceeds iteratively, computing the reachable sets for each

successive span of m sampling periods. For the first iteration, all trajectories of length m starting from the

corners of the initial set x[0] are computed. We store the minimum bounding box of all such trajectories at

each time step, yielding our first m over-approximated reachable sets. At the end of each iteration, we group

the runs by their final locations in the automaton, and compute a bounding box for each location.

Using these boxes and their corresponding locations as initial conditions, we compute the over-approximated

reachable sets for the following m time steps. This procedure is iterated as many times as required to span

the time horizon H (i.e., ⌈H/m⌉ iterations). While the runtime of the RS algorithm is exponential in the

parameter m, it is linear in the number of iterations. Thus by running only a small number of time steps in

105

each iteration, we can compute a sound over-approximation of the reachable sets for large time horizons

efficiently. From these reachable sets, it is straightforward to compute a safe upper bound dub ≥ dmax.

Unfortunately, this simple reachability-based approach often produces bounds on the maximum deviation

that are either quite pessimistic, or require a large amount of execution time (due to a large number of steps

per iteration m). Thus, in the next section, we propose the main contribution of this chapter, a method to

estimate the value of dmax based on statistical hypothesis testing.

Proposed SHT framework. The statistical hypothesis testing framework, proposed in this chapter, formu-

lates two hypotheses, namely null hypothesis H0 and alternative hypothesis H1, to test if a given dub is an

upper bound for the maximum deviation. The null hypothesis H0 will assert that with at most probability c,

a randomly chosen trajectory will have a deviation bounded by dub. The alternative hypothesis H1 will

assert that with at least probability c, a randomly chosen run will have a deviation that is bounded by dub.

This is illustrated in Fig. 4.2. We then use the Jeffreys’s Bayes factor test to decide between these two

hypotheses [80]. An important consequence of our test is, when the samples we have drawn do not support

the alternative hypothesis, they will contain a counterexample with a deviation that exceeds the current value

of dub. We leverage this counterexample to generate new hypotheses, for the next iteration, based on a

new and larger dub. In this sense, our method is driven by a counterexample guided refinement strategy to

eventually accept the alternative hypothesis (see Fig. 4.2). In a statistical hypothesis frameworks, in addition

to the probabilistic guarantee c, we can also bound the so called type I and type II error rates. The type I error

rate is defined as the probability of inferring the alternative hypothesis when in fact the null hypothesis holds.

Similarly, the type II error rate is defined as the probability of inferring the null hypothesis when in fact the

alternate hypothesis holds. We choose the relevant parameters such that the type I error is kept significantly

low (as desired), while type II error [80] is not relevant in our setting.

Handling Initial Set of States and Environmental Disturbances. When a system starts its evolution form

a single initial state, the resulting trajectory is a sequence of states (or points) in time, as was the case in

the F1Tenth example. In [1], the estimation of deviation is computed when the system starts from a given

initial state. However, one might want to conduct the analysis for a set of states either because the initial

state is unknown or because the user would like to do a similar analysis for a large collection of initial states.

Moreover, for all practical purposes, it is impossible to locate the state from where evolution of the system

(such as a robot) starts its execution from. In such cases, one must consider an initial set of states to perform

106

Evolution of states through time

Figure 4.4: Evolution of states through time from an initial set of states. The figure depicts all the possible set of states that are
reachable when the system starts from a given initial set of states. The set of initial states is given in green, blue represents the set of
intermediate states, and purple represents the set of states reached at time t.

an analysis, as a single initial state is often useless in practice. We call the collection of all trajectories starting

from the (possibly infinite) initial set as pipes. We consider the example given in Fig. 4.4 that demonstrates

the evolution of the system from initial set of states (marked in green). The set of states reached at time t is

given in purple, and intermediate set of states is given in blue. The black lines in the figure demonstrates

two random trajectories of the system starting from two random states from the initial set of states. In this

chapter, we extend our previous approach [1] for computing upper bound from a specific initial state to an

initial set. This generalized analysis requires two main improvements. First, one has to choose an appropriate

representation for the reachable set. Second, one has to compute, not just distance between trajectories, but

rather compute distances between two (infinite) sets of trajectories. Certain representations can be useful to

compute the distance between sets, while computing evolution of the system being hard (and vice versa).

Thus, a representation must be chosen trading-off various factors [83, 84]. For the clarity of presentation, we

use trajectory to refer to pipes in this chapter hereon.

A system might also encounter environmental disturbances in its behavior at each time step in addition

to uncertainty in its initial state. That is, the system may encounter uncertainty due to environmental

disturbances at every time step resulting in a new set of possible system states. Although feedback controllers

are frequently used to manage these uncertainties, for computing tight estimates of deviation from nominal

trajectory, one has to account for such uncertainties. In this chapter, we further discuss how one can adapt

the proposed method to compute deviations under the presence of such uncertainties in the behavior of the

system.

107

Salient features of the proposed method. To conclude this section, we note that the intrinsic nature of

hypothesis testing ensures that the number of samples to be drawn depends only on the required strength of

the test and not on factors like the length of time horizon H, or the scheduling policy that results in deadline

hits and misses. Furthermore, while we characterize timing uncertainty using a language of deadline hit/miss

patterns, our scheme can be extended to other fine grained types of timing uncertainty as well such as task

completion times. It is worth pointing out that verifying quantitative safety properties for control systems is

harder than stability, a qualitative safety property. This is because stability analysis can lean on techniques

such as the existence of a Lyapunov function and on results from stability analysis of switched systems [77].

4.3 Quantitative Safety Analysis of Autonomous System Controllers in the Presence of Timing

Uncertainties: A Statistical Approach

In this section, we present a statistical hypothesis testing based approach to solve Problem 1. Specifically,

we propose a counterexample guided refinement method to compute an upper bound dub for dmax using

statistical hypothesis testing. Consequently, our estimate dub will be accompanied by a statistical guarantee.

We refer to dev(τ,τnom) as deviation of the run τ . The inputs to our algorithm that estimates dub are a DFA T

that models the behavior of scheduler, the initial set of plant states x[0], a time horizon H, and the nominal

behavior τnom. A network of three modules as illustrated in Fig. 4.2 will constitute our algorithm. Before we

describe each module in detail, we provide a brief overview of the modules constituting the main approach,

as follows.

Hypothesizer: Using the heuristics described in Section 4.3.0.1, we guess an initial dub. This is then sent to the

Verifier module.

Verifier: This module statistically verifies—using K randomly drawn sample runs—whether the given dub is

indeed an upper-bound with the required probability (say, ≥ 0.99). If dub is accepted, it is returned as

our final answer. If not, dub is sent to the Refiner module. The details of the Verifier module are

presented in Section 4.3.0.2.

Refiner: This module pads the deviation bound obtained from the counterexample with slack ε , it is set to be

the new dub and sent to the Verifier. This will initiate the next round of hypothesis testing.

108

4.3.0.1 Hypothesizer: Guessing an upper-bound on deviation

To guess an initial upper bound, we observed that a small set of randomly chosen samples can sometimes

provide a reasonably good representation of the actual distribution. Thus our initial guess consists of the

following steps, with R and ε being parameters supplied by the user:

1. Let S = {τ1,τ2, . . . ,τR} be a set of randomly generated runs sampled according to the given distribution

over the set of strings of length H specified by the DFA.

2. Let d′ub = maxτ∈S
{

dev(τ,τnom)
}

.

3. Return dub = d′ub + ε .

We will refer to this heuristic as SmallSample(·)[R,ε].

4.3.0.2 Verifier and Refiner: Validating and refining the bound on deviation

Here we describe how the hypothesis test is carried for a given value of dub and a parameter c ∈ (0,1)

representing the strength (probability) with which the user wishes to assert that dub is an upper bound.

We use Bayesian hypothesis testing based on Jeffreys’s Bayes factor [49]. Accordingly we first formulate

the null and alternative hypotheses:

H0 : Prob [T ,x[0],τnom,dub]< c (4.8)

H1 : Prob [T ,x[0],τnom,dub]≥ c (4.9)

Here Prob [T ,x[0],τnom,dub] denotes the probability that a randomly drawn sample has a deviation that

does not violate the upper bound dub. Our goal is to determine an upper bound for which the alternative

hypothesis is accepted.

First we fix a sufficiently high value (say 105) for the Bayes factor B which we will soon define.

Using the Bayes factor B and probability c we shall compute K, the number of samples needed to choose

between the null and alternative hypotheses, whose derivation we will detail below. We next draw K

samples X = {τ1,τ2, . . . ,τK} according to the distribution assumed over the set of executions. We then check

if every member of X satisfies the upper bound dub. If yes, we accept the alternative hypothesis and return dub

as the estimated upper bound. If not, we send the first counterexample encountered to the Refiner module.

109

Using this counterexample, the Refiner module will extract a new bound estimate d̂ (guaranteed to exceed

the current value of dub), set it to be dub (after adding a padding factor ε) and send it to the Verifier for the

next round of hypothesis testing.

We will illustrate the relationship between the Bayes factor B, confidence c, and the number of samples to

be generated K. Let X = {τ1,τ2, . . . ,τK} be a set of random runs, such that the maximum deviation exhibited

by each τi ∈ X is bounded by dub. The probability that dub is valid, given the null hypothesis, is

Pr [∀τ ∈ X : dev(τ,τnom)≤ dub |H0] =
∫ c

0
qK dq. (4.10)

Similarly, the probability that dub is valid, given the alternative hypothesis, is Similarly, the probability that

dub is valid, given the alternative hypothesis, is

Pr [∀τ ∈ X : dev(τ,τnom)≤ dub |H1] =
∫ 1

c
qK dq. (4.11)

The Bayes Factor is the ratio of the above two probabilities:

Pr [∀τ ∈ X : dev(τ,τnom)≤ dub |H1]

Pr [∀τ ∈ X : dev(τ,τnom)≤ dub |H0]
=

1− cK+1

cK+1 (4.12)

Bayes Factor is the strength of evidence favoring alternative hypothesis over null hypothesis. In Jeffreys’s

Bayes Factor test, we enforce that the ratio computed in Equation 4.12 is greater than the Bayes factor B

provided by the user. Thus a sufficiently high value of the Bayes Factor indicates that the evidence favors

the alternative hypothesis over the null hypothesis. Given B, we can now compute the required number of

samples K as:

1− cK+1

cK+1 > B ⇐⇒ K >− logc(B+1) (4.13)

We call this procedure VerifierB(H0,H1), where H0 and H1 are the null and alternative hypothesis,

respectively. The hypothesis testing procedure coupled to a counterexample guided refinement method is

listed in Algorithm 9.

110

Algorithm 9: Computing upper bound on the deviation as defined in Eq. (4.7)
input :A transducer automaton T , initial set x[0], nominal run τnom, time bound H ; // x[0]

represents initial set of states

output :Compute an upper bound dub for dmax

/* we assume parameters R, ε, B and c are provided by the user. */

1 d⊓⌊← SmallSample(T ,x[0],τnom)[R,ε]; // initial guess

2 H0←Prob [T ,x[0],τnom,dub]< c; // form H0 using Eq. (4.8)

3 H1←Prob [T ,x[0],τnom,dub]≥ c; // form H1 using Eq. (4.9)

4 res← VerifierB(H0,H1); // perform statistical verification

5 if res = True then
6 return dub;

7 while True do
8 dub← Refiner(res)ε ; // refine using the counter example

9 H0←Prob [T ,x[0],τnom,dub]< c; // refine H0 with new dub

10 H1←Prob [T ,x[0],τnom,dub]≥ c; // refine H1 with new dub

11 res← VerifierB(H0,H1); // re-perform statistical verification

12 if res = True then
13 return dub;

We conclude this subsection by bounding type I errors, i.e., where the alternative hypothesis accepted but

the null hypothesis actually holds. According to [49], the type I error rate is bounded by:

err(B,c) =
c

c+(1− c)B
.

We also note that our iterative procedure terminates only when the alternative hypothesis is accepted.

Hence, type II errors (where the null hypothesis is accepted when the the alternative hypothesis actually

holds) are not relevant.

4.4 Statistical Hypothesis Testing with Sets of Initial States

Computing maximum deviation under timing uncertainties (Problem 1), using our proposed Statistical

Hypothesis Testing Approach, requires computing several random trajectories, and computing deviation

between those trajectories with the given nominal trajectory. Here, it is worth recalling that trajectories are a

sequence of set of states (see Fig. 4.4), as the evolution starts from an initial set of states. To compute the

deviation between two such trajectories, we use Hausdorff distance at every time step (as defined in Eq. (4.6)).

Thus, the representation of sets must be chosen based on its impact on the computational complexity while

computing the trajectories and Hausdorff distance. Some representations, such as zonotopes [85] and

111

⟨𝒄, {𝒈𝟏, 𝒈𝟐}⟩

⟨𝒄′, {𝒈𝟏
′ , 𝒈𝟐

′ }⟩

𝒄′ = ෡𝑨𝒕 ⋅ 𝒄

𝒈𝟏
′ , 𝒈𝟐

′ = ෡𝑨𝒕 ⋅ {𝒈𝟏, 𝒈𝟐}

Reachable set at time 𝑡

𝑐
𝑔1

𝑔2

𝑔1
′

𝑔2
′

𝑐′

Figure 4.5: Reachability with zonotopes.

stars [39], can very efficiently compute trajectories, but computing Hausdorff distance is hard. While some

representations, such as V-Polytope [86, 84], can compute Hausdorff distance very efficiently, but computing

trajectories is hard. Unfortunately, there is no one representation that can compute both the trajectories and

the distance efficiently. Therefore, in this section, we discuss the following choices of representation and its

computational complexity vis-à-vis computing trajectories and distances. Further note that the techniques

mentioned in this section are also incorporated in Algorithm 9. In other words, Algorithm 9 can handle initial

set of states, not just a single state.

4.4.1 Representing Sets using Zonotopes

A zonotope is an affine transformation of an unit (hyper-)box, represented by its center (c) and a set of

generator vectors (G). Fig. 4.5 shows two zonotopes (in R2) in green and purple. A zonotope Z in Rn is

define formally as follows.

Definition 29 (Zonotopes [85]). A zonotope Z is tuple ⟨c,G⟩; where c ∈ Rn is the center, and G =

{g1,g2, · · · ,gm} is a set of m vectors in Rn called the generator vectors. The set of states represented

by the zonotope Z is given as

JZK = {x | x = c+
m

∑
i=1

αigi; such that, for all i, −1≤ αi ≤ 1}.

112

𝑣1 𝑣2

𝑣3𝑣4

𝑣4
′

𝑣1
′ 𝑣2

′

𝑣3
′

⟨𝒗𝟏, 𝒗𝟐, 𝒗𝟑, 𝒗𝟒⟩

⟨𝒗𝟏
′ , 𝒗𝟐

′ , 𝒗𝟑
′ , 𝒗𝟒

′ ⟩

𝒗𝒊
′ = 𝝃 𝒗𝒊, 𝒕 = ෡𝑨𝒕𝒗𝒊

Figure 4.6: Reachability with V-Polytopes.

Given a linear system, with dynamics matrix Â, the reachable set at time step t using V-Polytopes can be

computed as follows.

Definition 30 (Reachability using V-Polytopes). The reachable set at time step t, from an initial set repre-

sented using a V-Polytope V0, is given by V-Polytope Vt; where

Vt = Ât · V0 = ⟨Ât · v1, Ât · v2, · · · , Ât · vm⟩

This is also illustrated in Fig. 4.6, where V0 and Vt are illustrated in green and purple respectively.

Hausdorff distance between two V-Polytopes, V1 and V2, can be computed as follows.

Definition 31 (Hausdorff distance with V-Polytopes). Given two V-Polytopes, V1 = ⟨v1
1,v

1
1, · · · ,v1

p⟩ and

V2 = ⟨v2
1,v

2
1, · · · ,v2

q⟩, the Hausdorff distance between V1 and V2 can be computed as:

∆(V1,V2) = max
{

max
i

{
min

j

{
dis(v1

i ,v
2
j)
}}

,max
j

{
min

i

{
dis(v1

i ,v
2
j)
}}}

Advantage. Computing Hausdorff distance between two V-Polytopes, as given in Definition 31, is

straightforward and computationally very efficient.

Disadvantage. Enumerating all potential vertices is required to represent a polytope with its vertices,

and this process takes O(2n) time, where n is the system’s dimension. While it introduces computational

113

bottlenecks in high dimensional systems, this is not a significant problem in low dimensional control

applications. Therefore, using Definition 30, one can compute trajectories using evol(·), where each element

of the sequence is a V-Polytope, if x[0] is also represented using a V-Polytope.

V-Polytopes: Our choice of representation After considering the benefits and drawbacks of zonotopes and

V-Polytopes, we chose to use V-Polytopes in our experiments. However, we wish to note that one can adapt

their implementation to use any representation (such as zonotopes, stars, V-Polytopes) according to their

application—as our method poses no restriction on the choice of representation of sets.

1. Efficient implementation of Hausdorff distance. Since our method heavily relies on performing random

sampling of trajectories to compute its deviation from the nominal trajectory, an efficient computation

of Hausdorff distance between trajectories is critical. For a typical case study, a single iteration of our

algorithm requires computing deviation of over 1K trajectories, each up to a time bound of 150. Such

an iteration involves 150K calculations of the Hausdorff distance. Thus, V-Polytope is an obvious

choice in this regard.

2. Computing Random Trajectories. While zonotopes are more efficient at computing trajectories than

V-Polytopes, this is not a significant problem for low-dimensional control applications. Moreover,

given V-Polytopes’ advantage of computing Hausdorff distance, we chose to use V-Polytopes in our

experiments.

4.5 Handling Environmental Disturbances

So far we have only considered uncertainties in the initial set, resulting in initial set of states. We now

take a closer look at how our proposed approach can be used for systems whose environmental disturbances

produce additive noise in the set of states reached at each time step. Such a behavior can be modeled using

the following dynamics.

x[t +1] = Ax[t]+Bu[t]+Cs[t],

where u[t] = Kx[t−1], and s[t] encodes the environmental disturbances experienced by the system at every

time step.

114

Given s[t], for all t, the evolution of the system, therefore, changes as

êvol(τ) =
{

x[0],x[1] = A1x[0]⊕Cs[0],x[2] = A2x[1]⊕Cs[1],

. . . ,x[H] = AHx[H−1]⊕Cs[H−1]
}
,

(4.14)

where τ is a random run, and ⊕ denotes Minkowski sum between two sets.

We would like point out that the only change that occurs, as a result of environmental uncertainties, is in

the computation of trajectories (i.e. êvol), while the rest of the proposed method remains the same. Further

note that the only change in, computation of êvol, is the Minkowski sum of sets. Therefore, next we discuss

how to compute Minkowski sum when the sets are represented as zonotopes and V-Polytopes.

Definition 32 (Minkowski sum of zonotopes). Given zonotopes, Z1 = ⟨c1,G1⟩ and Z2 = ⟨c2,G2⟩, we can

compute the Minkowski sum, Z = Z1⊕Z2 as follows. Z = ⟨c,G⟩, where c = c1 + c2, and G is a list of

generator vectors obtained by joining the list of generator vectors G1 and G2.

Clearly, when the sets are represented as zonotopes, computing trajectories can be performed very easily

using Definition 32. However, note that every Minkowski sum results in adding more generator vectors

in the representation. In other words, every Minkowski sum increases the representational complexity of

zonotopes—which will have impact on the computation of Hausdorff distance too.

After discussing Minkowski sum of zonotopes, we now briefly discuss Minkowski sum of V-Polytopes.

Using the algorithm proposed in [86], one can perform Minkowski sum of V-Polytopes in polynomial time—

this further justifies our usage of V-Polytopes. In other words, zonotopes may experience computational

inefficiencies while computing Hausdorff distance, however employing V-Polytopes does not lead to any

significant computational bottleneck. One can easily incorporate these modifications in Algorithm 9.

4.6 Illustration of the Proposed Approach And Advantages of Jeffreys’s Bayes Factor

In this section, we demonstrate how the three modules described in Section 4.3, namely Hypothesizer,

Verifier, and Refiner, are used by Algorithm 9 to compute an upper bound on the deviation (dub) with a

probabilistic guarantee. This is to intuitively demonstrate our main approach on the following illustrative

115

Step 1: Guess the deviation bound

Guessed deviation bound

Step 2: Statistically verify the
guessed bound

A violating trajectory

Step 3: Refine the guessed bound

Padding with a fixed constant

Step 4: Statistically re-verify the
guessed bound

Step 5: Return the accepted bound

The Hypothesizer module
guesses the upper bound by
randomly generating few sample
trajectories.

The Verifier module verifies
the guessed bound by generating
K random trajectories. The red
trajectory shows a violation of
the guessed bound.

The Refiner pads the
deviation bound obtained
from the counterexample with
slack 𝝐

Figure 4.7: The steps performed by Algorithm 9 to compute a deviation bound with a desired confidence. The nominal trajectory is
shown in green, randomly generated trajectories are shown in black, and dub is shown in light blue.

116

example:

x[t +1] =

0.1 0.2

0.2 0.1

x[t]+

0.1

0.2

u[t]

u[t] =
[

0.05149186 0.4189839

]
x[t]

We will compute the maximum deviation from a nominal trajectory with no deadline misses, starting

from the initial state x[0] = ⟨[10 10]T ⟩ (represented as a V-Polytope). We assume that no more than two

consecutive deadline misses occur up to our time bound H = 5. Using the Hold&Skip-Next policy, we can

accordingly construct a transducer automaton representing this behavior of the scheduler and dynamical

system. Given these inputs, Algorithm 9 performs the following steps to compute the maximum deviation,

illustrated in Fig. 4.7.

1. The first module invoked by Algorithm 9 is the Hypothesizer, which guesses an upper bound dub to

be the maximum deviation. To do so, the module considers the following two random sequences of

deadline hit/miss: 01001, 00111 (0 indicates miss, 1 indicates hit). It computes the maximum deviation

from the two random samples, dub = 0.1462.

2. Next, the guessed upper bound dub = 0.1462 is verified by invoking the module Verifier. The

Verifier module, pre-tuned with B = 4.15×105 and c = 0.99, returns False, i.e., the upper bound

dub = 0.1462 is not verified to be correct with the desired probabilistic guarantees.

3. Since the guessed bound dub was not verified, Algorithm 9 next invokes the Refiner module with

the counterexample. Refiner updates the previous dub = 0.1462 to dub = 0.2262 (by padding a fixed

constant of 0.001 on top top of the deviation bound obtained from the counterexample).

4. The refined upper bound dub = 0.2262 is again sent to the Verifier module for re-checking. This time,

the Verifier module accepts the dub = 0.2262 as a valid upper bound up-to the desired probabilistic

guarantees.

5. The final dub = 0.2262 is returned as the maximum deviation (with the desired probabilistic guarantees).

Having illustrated the steps performed by our algorithm on a simple example, we argue in the following

subsection why we chose Jeffreys’s Bayes factor over other methods.

117

4.6.1 Reason for Choosing Jeffreys’s Bayes Factor

In theory, it is possible to use other hypothesis testing methods, such as sequential hypothesis testing.

However, for this work, Jeffreys’s Bayes factor enjoys several advantages.

1. Our method imposes no restriction on the distribution. It merely requires that samples can be drawn

from the distribution at random.

2. In sequential hypothesis testing, unlike our method, the number of required samples cannot be fixed a

priori.

3. Multiple counterexamples can be encountered during random sampling in a round of sequential

hypothesis testing, allowing known counterexamples to be explored. In our setting a counterexample

represent a violation of a safety property estimate and accordingly Jeffreys’s Bayes factor does not

allow such known counter examples.

4. Similar to sequential hypothesis testing, our method is independent of the sample space size once the

desired confidence (on the answer) is provided by the user.

4.7 Experimental Evaluation

The tool, StatDev1, is available both in Python2 and Juila3.

For dis(·) we use the 2-norm. As mentioned in the introduction, to generate uniform random samples for

a given transducer automaton, we implemented the Recursive RGA algorithm [81, 87]. We demonstrate the

applicability of the method given in Algorithm 9, extended to handle initial set of states as per Section 4.4, on

four standard examples: an RC network [88], an electric steering application [8], an unstable second-order

system [8] and a F1Tenth car model [79]. For these examples we investigate the following questions.

Q1: What impact do the different scheduling policies have on on the computed deviations?

Q2: What effect does the probabilistic guarantee c have on the computed deviation?

1sites.google.com/view/statdev

2https://github.com/bineet-coderep/StatJitteryScheduler

3https://github.com/Ratfink/ControlTimingSafety.jl

118

sites.google.com/view/statdev
https://github.com/bineet-coderep/StatJitteryScheduler
https://github.com/Ratfink/ControlTimingSafety.jl

Table 4.1: Results Comparing Our Proposed Statistical Method to the RS Method on Four Examples

Example Statistic Hold&Kill Zero&Kill Hold&Skip-Next Zero&Skip-Next

RC
network

dub (Algorithm 9) 2.277 (0) 2.277 (0) 2.277 (0) 2.277 (0)
dub (RS) 2.277 2.277 2.277 2.277
Time Taken (Algorithm 9) 1.745 s 1.774 s 1.878 s 1.831 s
Time Taken (RS) 0.918 s 1.040 s 0.943 s 1.012 s

Electric
Steering

dub (Algorithm 9) 4.568 (0) 9.297 (0.28) 4.573 (0.027) 9.168 (0.28)
dub (RS) 4.795 10.226 8.882 10.625
Time Taken (Algorithm 9) 1.74 s 2.90 s 1.79 s 2.90 s
Time Taken (RS) 1.569 s 47.43 s 178.0 s 182.8 s

Unstable
second-
order

dub (Algorithm 9) 3.959 (0) 14.969 (1.17) 4.632 (0) 12.767 (1.06)
dub (RS) 4.269 — 5.162 —
Time Taken (Algorithm 9) 1.50 s 2.46 s 1.99 s 2.97 s
Time Taken (RS) 1.068 s timed out (> 1 h) 3.837 s timed out (> 1 h)

F1Tenth

dub (Algorithm 9) 10.42 (0) 19.08 (0.83) 18.53 (1.34) 18.90 (0.74)
dub (RS) 10.425 — — —
Time Taken (Algorithm 9) 1.81 s 2.87 s 3.07 s 2.76 s
Time Taken (RS) 171.1 s timed out (> 1 h) timed out (> 1 h) timed out (> 1 h)

Q3: How do our statistically computed deviations compare to the results obtained using the RS method?

Recall that RS refers to the deterministic reachable set based method described in Section 4.2.

The following parameters were used in the experiments: R = 50, ε = 10−3, B = 4.15×105, an initial

state of ⟨[10 10]T , [12 10]T , [12 12]T , [10 12]T ⟩ (represented as a V-Polytope). and time bound H = 150.

For Fig. 4.9, we use a single initial state [10 10]T , with rest of the parameters same. Since Algorithm 9

is stochastic, we execute it over several trials (50 in this case) and report the mean and the standard deviation

(SD) of the obtained dub values. For instance, 5 (0.3) means that the mean value of dub = 5 with SD 0.3, and

the reported computation time is the average computation time taken.

The DFAs we consider enforce constraints of the form “at most k consecutive misses.” But any other

form of constraints, as long as they are regular, could also be used. We denote these DFAs as {Tk} with k

ranging over {1,2,3}. For most of the experiments, the DFA T3 was used.

The main results are summarized in Table 4.1; the statistical method always computes tighter bounds

than RS. For unstable systems and and F1tenth, RS seems to have an exponential increase in computation

time, whereas our statistical method scales much better (note that RS fails to compute a bound within an

hour).

119

(a) RC network (b) Electric steering

(c) Unstable second-order (d) F1Tenth

Figure 4.8: Violin and box plots of computed dub values over varying probabilistic guarantee c on the computed bound. All boxes in
Fig. 4.8a are single values.

120

x0

0 2 4 6 8 10

x 1

0
2

4
6

8
10

time

0
20
40
60
80
100
120
140

Random trajectories
Nominal trajectory
Safety envelope

(a) RC Network

x0

0 2 4 6 8 10 12

x 1

2
0

2
4

6
8

10

time

0
25
50
75
100
125
150

Random trajectories
Violating trajectories
Nominal trajectory
Safety envelope
Violating enevelope

(b) Electric steering

x0

5
0

5
10

x 1

5
0

5
10

time

0
25
50
75
100
125
150

Random trajectories
Violating trajectories
Nominal trajectory
Safety envelope
Violating enevelope

(c) Unstable second-order

x0

10 5 0
5

10
15

x 1

20
15

10
5
0

5
10

time

0
25
50
75
100
125
150

Random trajectories
Violating trajectories
Nominal trajectory
Safety envelope
Violating enevelope

(d) F1Tenth

Figure 4.9: System behavior with a single initial state [1]. Safety envelopes at a distance of dub from the nominal trajectory, with
random trajectories with one extra consecutive deadline miss.

121

x0

2 0 2 4 6 8 10 12

x 1

0
2

4
6

8
10

12

time

0
20
40
60
80
100
120
140

Nominal Trajectory
Random Trajectories
Violating Trajectory

(a) RC network

x0

2 0 2 4 6 8 10 12

x 1

2.5
0.0

2.5
5.0

7.5
10.0

12.5

time

0
20
40
60
80
100
120
140

Nominal Trajectory
Random Trajectories
Violating Trajectory

(b) Electric steering

x0

5
0

5
10

x 1

10
5

0
5

10

time

0
20
40
60
80
100
120
140

Nominal Trajectory
Random Trajectories
Violating Trajectory

(c) Unstable second-order

x0

15 10 5 0 5 10 15

x 1

20
15

10
5
0

5
10

time

0
20
40
60
80
100
120
140

Nominal Trajectory
Random Trajectories
Violating Trajectory

(d) F1Tenth

Figure 4.10: System behavior with random trajectories (green) that are within dub distance from the nominal trajectory (black), and
one violating trajectory (red) with one extra consecutive deadline miss—this trajectory deviates more than dub from the nominal
trajectory.

122

4.7.1 Benchmarks

4.7.1.1 RC network

The RC network is given by the following state space equations.

x[t +1] =

 0.5495 0.07240

0.01448 0.9332

x[t]+

 0.3781

0.05234

u[t] (4.15)

Assuming nominal timing behavior of the control software, the feedback controller computed using LQR is

u[t] =
[

0.09772 0.2504 0.07805

]x[t−1]

u[t−1]

 . (4.16)

Using the matrices from Eqs. (4.15) and (4.16), we construct a transducer automaton for different

deadline miss strategies. We used T3 to specify the scheduler.

4.7.1.2 Electric steering

The electric steering example is given by the following state space equations.

x[t +1] =

 0.996 0.075

−0.052 0.996

x[t]+

 0.100 0.003

−0.003 0.083

u[t]. (4.17)

Optimal feedback controller for this system under nominal timing behavior computed using LQR is:

u[t] =

 0.9067 0.07384 0 0

0.01041 0.9685 0 0


x[t−1]

u[t−1]

 . (4.18)

As before, using the matrices from Eqs. (4.17) and (4.18), we construct a transducer automaton for

different deadline miss strategies. We used T3 to specify the scheduler.

123

4.7.1.3 Unstable second-order system

The unstable second-order system example is given by the following state space equations.

x[t +1] =

 1.1053 0

−0.0209 0.99

x[t]+

0.0526 0.0105

0.0393 0.0994

u[t] (4.19)

The control input u[t] is computed as

u[t] =

 4.7393 −0.2430

−0.2277 0.8620

x[t−1]. (4.20)

Using the matrices from Eqs. (4.19) and (4.20), we construct a transducer automaton T1 to specify the

scheduler.

4.7.1.4 F1Tenth

The model of an F1Tenth car [79] was linearized and the following state space equations were obtained.

x[t +1] =

1 0.13

0 1

x[t]+

0.02559

0.3937

u[t] (4.21)

The control input u[t] is computed as

u[t] =
[

0.2935 0.4403

]
x[t−1]. (4.22)

Using the matrices from Eqs. (4.21) and (4.22), we construct a transducer automaton T3 to specify the

scheduler.

4.7.2 Results

The main results addressing (Q1) and (Q3) are summarized in Table 4.1. For the RC network, electric

steering and F1Tenth, T3 (i.e., the constraint “at most 3 consecutive misses”) was used with c = 0.99. Since

the third system is an unstable open loop system, missing too many deadlines would cause the deviation

124

bound to increase drastically; therefore, we only consider T1 (i.e., the constraint “at most 1 deadline miss

consecutively”).

To address (Q2), we fixed R = 10 and using T3 for RC network, electric steering, F1tenth, and T1 for

the unstable second order system, we varied c (the probabilistic guarantee) from 0.9 to 0.9999. We used the

Hold&Skip-Next strategy for these experiments. The resulting values of dub are shown by boxplots and mean

values in Fig. 4.8. Below we discuss the results in detail for all the examples.

4.7.2.1 RC network

We now discuss the results obtained for the RC network example.

Q1: Considering at most 3 consecutive deadline misses allowed, we computed the maximum deviation

dub to be 2.278 (0) for all the scheduling policies. The details are given in Table 4.1. The system

behavior is shown in Figs. 4.9a and 4.10a, using the Hold&Skip-Next policy, and c = 0.99. Fig. 4.9a

shows the system behavior with a single initial state, whereas Fig. 4.10a shows the system behavior

with an initial set of states. Thus, we see trajectories as a series of points in Fig. 4.9a, and a series of

polytopes in Fig. 4.10a. We plot Fig. 4.9a primarily to illustrate the role of safety envelopes, and how

trajectories might violate it. The trajectories of the system from a single initial state will have safety

envelopes plotted as a circles of radius dub (cyan) from the nominal behavior (black), as show in all the

subplots of Fig. 4.9. However, this is not the case when the trajectories are resulting from an initial set

of states. Thus, we indicate the violating trajectory—one that deviates more the dub from the nominal

trajectory—in red, with the maximum and minimum violating time steps marked with arrows. The red

trajectory shows safety violation (i.e. deviates more than dub from the nominal trajectory) by increasing

the consecutive deadline from 3 to 4. The red arrow shows the point at which the system violates the

safety. That is, at this point, the trajectory deviates more than dub from the nominal trajectory. Note

that we did not find any safety violation with a single initial state (Fig. 4.9a).

Q2: Considering at most 3 consecutive deadline misses allowed and R = 10, we gradually varied c from 0.9

to 0.9999. We observe that the mean dub does not change with any further increase in c from c = 0.9.

This is shown in Fig. 4.8a.

Q3: The results show (see Table 4.1) that the stochastic method returns similar bounds as the RS method.

However, the computation time is higher but not significantly high, i.e, under 2 s.

125

4.7.2.2 Electric steering

We now discuss the results obtained for the electric steering example.

Q1: Similar to our previous example, considering at most 3 consecutive deadline misses allowed, we

computed the maximum deviation dub, with the scheduling policies (detailed results in Table 4.1). The

system behavior is shown in Figs. 4.9b and 4.10b, using the Hold&Skip-Next policy, and c = 0.99.

Further, the figures also show a possible safety violation that might occur when the number of

consecutive deadline misses just increases by 1, i.e., considering at most 4 consecutive deadline misses.

The red trajectories in Figs. 4.9b and 4.10b show a safety violation that might occur if the consecutive

deadline misses increases by 1. The red dotted line in Fig. 4.9b shows the safety violation (with the

existing safety envelope) that might occur if the consecutive deadline misses increases by 1. The safety

envelope highlighted in red shows the violating envelope. The behavior would have been safe if the

trajectory (in red) was within the highlighted safety envelope (red), whereas it actually stretches outside

to the point marked in ‘×’ (red). In Fig. 4.10b, we indicate the maximum and minimum violating time

steps marked with arrows (red).

Q2: Considering at most 3 consecutive deadline misses allowed and R = 10, we gradually varied c from

0.9 to 0.9999. The result is given in Fig. 4.8b. We observe that the mean dub increases with increase in

c, as expected. However, higher outlier deviation values are sometimes returned, unlike in the previous

example. Also, note that with low values of c, we witness a wide range, which narrows as c increases.

Q3: As given in Table 4.1, we compute tighter values of dub. The computation time for the stochastic

method is lower for all strategies, except for Hold&Kill where it is slightly higher (≈ 0.2 s).

4.7.2.3 Unstable second-order system

We now discuss the results obtained for the unstable second-order system example.

Q1: Unlike our previous examples, Since the third system is an unstable open loop system, missing too

many deadlines would cause the deviation bound to increase drastically; therefore, we only consider T1

(i.e. the constraint “at most 1 deadline miss consecutively”). We computed the maximum deviation dub

with the scheduling policies (see Table 4.1). The system behavior is shown in Figs. 4.9c and 4.10c,

using the Hold&Skip-Next policy, along with a violating trajectory when the constraint changes to T2.

126

Q2: Considering at most 1 consecutive deadline miss allowed and R = 10, we gradually varied c from 0.9

to 0.9999. The result is given in Fig. 4.8c. We observe that the mean dub increases with increase in c,

as expected. Also, note that with low values of c, we witness a wide range, which narrows (to zero) as

c increases—dub seems to stabilizing at c = 0.995.

Q3: As given in Table 4.1, we compute tighter values of dub in less computation time for all the scheduling

policies. Moreover, the RS method times out (> 1 h) for Zero&Kill and Zero&Skip-Next policies.

4.7.2.4 F1Tenth

We now discuss the results obtained for the F1tenth example.

Q1: Similar to the first two examples, we computed the maximum deviation dub with the scheduling

policies, considering at most 3 consecutive deadline misses. The safety envelope is shown in Figs. 4.9d

and 4.10d, using the Hold&Skip-Next policy, and c = 0.99. Further, the figures also show a possible

safety violation that might occur when the number of consecutive deadline misses increases by 1 (at

most 4 consecutive deadline misses).

Q2: Unlike other examples, where the width of the distribution decreases sharply, in the F1Tenth example

the decrease is not as drastic. This is shown in Fig. 4.8d. However, following the method of [8], we

computed an upper-bound on the joint spectral radius and found the system with at most three deadline

consecutive misses is stable. This suggests that even though the overall behavior of the system is stable,

the system possibly behaves erratically prior to obtaining stability—that is, the variance of the deviation

obtained for various behaviors (w.r.t. deadline hits and misses) is very high. To put it differently, the

deviation obtained from two different sequences of deadline hits and misses can be very different.

Q3: The RS method, except for Hold&Kill was not able to compute a reasonable bound on the deviation.

Whereas our proposed method computed reasonable bound, for all policies, under 3.5 s.

4.7.3 General Observations

In this subsection, we draw general observations from our experiments that might help the users to tune

this method according to their application. In other words, the following observations are drawn to provide a

rule of thumb to choose the parameters and gather insights:

127

1. Revisit (Q1).

2. Revisit (Q2): The parameter c (confidence on the deviation).

3. Revisit (Q3): When to use a traditional method (RS) over our statistical method.

4. How to choose the parameter R.

Revisit (Q1). We observe (from Table 4.1) that there is no one scheduling policy that performs consistently

well (in terms of smaller deviation bounds) across all the benchmarks. This suggests that the choice of

scheduling policy should be made according to the given application.

Revisit (Q2): Choice of c. A good strategy is to use a high value of c, so that the standard deviation is low

and further increases in c will have minimal effect. We note, however, that the unstable second-order

and the F1Tenth example with at most 3 consecutive deadline misses fail to achieve a low standard

deviation even with c = 0.99.

Revisit (Q3): Choice of method to be used. For small dimensional stable systems, like the RC network,

traditional methods might work well. However, for unstable systems they are likely to perform poorly

due to coarse over-approximations. Note that our statistical method was able to computer tighter

bounds, compared to the RS method, for all the examples. Next, we discuss why the RS method timed

out in most cases. By segmenting the time horizon into manageable chunks, the RS technique computes

the reachable set by computing all possible trajectories for each segment. It is possible to compute

all possible trajectories when each of these parts is small enough. By dividing the time horizon into

smaller chunks, we were able to get useful deviation bounds for some of the benchmarks, but not for

the majority of them. As a result, we had to increase the number of segments by which we break

the time horizon, which made it impossible to compute every possible trajectory in that segment and

caused a timeout.

Choice of R. As our method is stochastic, for smaller values of R (and highly chaotic systems), the initial

dub guess can vary greatly (for different trials). And when such an initial guess is being verified with a

low probability c, the chances of the initial guess being accepted is very high. Therefore the SD for

low values of c is also high, and the obtained bound dub is not guaranteed to be monotonic.

128

Comments on Fig. 4.8 and Fig. 4.10 Further, we make general comments on Fig. 4.8 and Fig. 4.10 as

follows.

Varying the value of c (Fig. 4.8). We observe that for lower values of c, the mean values of dub are lower

but the distributions are wider, however, as c increases the mean values of dub increase whereas the

width of the distribution decreases sharply, except for F1Tenth where the decrease is not as drastic

as other examples. For F1Tenth, the computed joint spectral radius showed the system with at most

three deadline consecutive misses to be stable, suggesting the system behavior is possibly erratic prior

to obtaining stability. At lower values of c, the distribution is wider, therefore the variance on the

computed bound is much higher at lower values of c. The computed bound is however observed to be

stabilizing with the distribution narrowing at only higher values of c, except for the F1Tenth example.

Again, the value of c at which the computed mean bound stabilizes is application specific. For instance,

in case of electric steering the value of c at which the bound stabilizes is much higher than the one

required for unstable second-order system.

System Behavior (Fig. 4.10). In this figure, we show the behavior of the system using the Hold&Skip-Next

and c = 0.99. For RC network, electric steering and F1Tenth, all the trajectories satisfying the T3

constraint will be within dub from the nominal trajectory (with a probabilistic guarantee). Similarly,

for the unstable second order system we used the constraint T1. We observe that for the electric RC

network example, the violating trajectory is closer to the random trajectories, compared the other three

examples—this might be due to that fact that RC network behaves less erratically than the other three

examples. Further, we evaluated the robustness of the system w.r.t the computed dub, by changing

the constraint from T3 to T4 for RC network, electric steering and F1Tenth, and from T1 to T2 for

the unstable second order system. The violating trajectory is shown in red, and the arrows mark the

minimum and maximum violating time steps.

Using Fig. 4.8 to compute Fig. 4.10. Note that Fig. 4.8 suggests a heuristic to choose a value for c (at which

the mean stabilizes with a narrow distribution). Once such a c is chosen, the safety envelope should be

computed, as in Fig. 4.10, using that value of c.

129

4.8 Synthesizing Schedulers in the Presence of Timing Uncertainties

Correctness of control implementations has relied on real-time guarantees that all control tasks would

finish execution by the prescribed deadline. However, with increased complexity and heterogeneity in

hardware, the worst-case execution time estimates are becoming very conservative. Thus, for efficient

usage of hardware resources, some control tasks would have to miss some deadlines. As previous sections

argued, a system can still abide by its safety requirements even after missing some of its deadlines. This

section briefly discusses an approach to synthesize a scheduler for control tasks that miss some deadlines

without compromising any of the safety requirements. Given that the number of possible schedules would

increase combinatorially with the number of tasks involved, our scheduler synthesis uses an efficient automata

representation to search for the appropriate schedule. We can incorporate statistical verification techniques to

construct this automaton and accelerate the search process. Statistical verification is advantageous compared

to deterministic verification in the synthesis process in two ways: first, it enables us to synthesize schedules

that would not be possible otherwise, and second, it drastically reduces the time taken to synthesize such a

schedule.

The main contribution of this section is to discuss a technique for automatically synthesizing such

schedules from a collection of feedback controllers and their associated safety properties. Instead of the

safety property being stability—where our proposed technique may also be applied—we focus on a more

general safety property defined by the maximum deviation from a nominal behavior. Given an initial state of

the system (plant + controller) we define the nominal behavior as the trajectory in the state space where all

the controller inputs meet their deadlines (i.e., all the feedback control inputs are applied before the end of the

sampling period). If some of the control inputs cannot be computed (and hence applied) within the sampling

period (i.e., there is a deadline miss) then the trajectory followed by the system will deviate from this nominal

trajectory. As long as the deviation is not more than a specified bound, the behavior of the system is deemed

to be safe. This notion of safe behaviors is a natural one. For instance, the nominal trajectory might represent

the pre-determined path that an autonomous vehicle should follow and safe behaviors will denote the paths

the vehicle can take, without hitting any obstacles.

The proposed schedule synthesis scheme is illustrated in Fig. 4.11. Given a plant + controller and a

desired safety property (i.e., the maximum allowed deviation from its nominal behavior), we first derive

the pattern of allowed deadline hits and misses. This is captured as a weakly-hard constraint that specifies

130

Schedule
Synthesis

Constraint
Synthesis

Safe
Weakly-Hard
Constraints

Scheduler
Automaton

Safe
Schedule

Constraint
Synthesis

Safe
Weakly-Hard
Constraints

No Safe
Schedule

Plant 1 with
Safety Margin 1

Plant N with
Safety Margin N

Figure 4.11: Outline of the proposed scheme.

how many deadlines m must be met within any window of k consecutive samples. Note that there could be

multiple such weakly-hard constraints that satisfy the safety property of a controller. This done by using the

statistical hypothesis testing based framework proposed in previous sections. Given a set of controllers and

a set of weakly-hard constraints derived for each controller, we develop an automata-theoretic technique

to compute a schedule for them. Such a schedule specifies which controllers should be run in each period

(and hence meet their deadlines) and which cannot be run (i.e., they miss their deadlines). It is important to

note that such schedules may not be captured using standard scheduling policies like earliest deadline first or

fixed priority. The proposed approach in [64] outlines the specifics of the automata theoretic method. It is

important to note that the synthesized scheduler is represented as an automaton, with its runs representing

different possible schedules. To handle the weakly hard constraints generated through statistical methods, we

generate a random run of the automaton and verify if that particular schedule (i.e. the run of the automaton)

satisfies the safety constraints. For more information, please refer to [66].

131

CHAPTER 5: DESIGNING AUTONOMOUS SYSTEMS—UNLOCKING PERFORMANCE PER-
FECTION BY SMART RESOURCE UTILIZATION

Imagine a scenario where a factory robot is required to perform safe navigation in a busy warehouse floor.

To perform the navigation, the robot is equipped with a plethora of perception models that trades-off control

cost and accuracy. Without loss of generality, such perception models can reside on the robot, or in a central

server (“Cloud”) which can be invoked over a shared network. In such scenarios, a desired strategy should be

to use the high perception cost models, to ensure minimum control cost, only when the robot is required to

make tricky maneuvers. In such settings, robots can invoke heterogeneous computation resources such as

CPUs, perception models, cloud GPU servers, or even human computation for achieving a high-level goal.

The problem of invoking an appropriate computation model, at every time step, so that it will successfully

complete a task while keeping its compute and energy costs within a budget is called the model selection

problem. We further break down the problem of model selection in two parts. Firstly, we propose an optimal

solution to the model selection problem with two compute models in Section 5.1. Secondly, we propose an

optimal model selection, balancing control cost and perception cost, with N perception models in Section 5.2.

About the chapter. The content of this chapter is taken from [47, 89].

5.1 Choosing Between Two Compute Models

Ideally, robotic computation should possess high levels of accuracy, responsiveness, and speed, while

also being efficient in terms of compute and power usage. This is crucial for enabling agile and autonomous

operation. However, in modern robotics, there is a challenge of choosing the most suitable compute resource

from a range of heterogeneous options, each with its own trade-off between accuracy and compute cost. For

instance, when faced with a decision, should a factory robot rely on the perception results generated by an

on-board deep neural network (DNN), or should it seek assistance from a busy human supervisor? Similarly,

should a small drone calculate its motion plan locally or wait for a more detailed plan from a remote server?

Fundamentally, these scenarios represent instances of a compute model selection problem. In such cases, a

132

Input
!

Robot

"#$%&

'(#$%&
)

*

"%+,-

"%+,-

'(%+,-
Model

Accuracy
Correlation

.(Δ1#$%&2%+,-) "%+,-

Figure 5.1: The Compute Model Selection Problem: A robot must balance task accuracy and compute cost, such as energy
or latency, when choosing between heterogeneous compute resources. Our interpretable model selection policy π leverages the
statistical correlation between fast and slow compute models ffast and fslow to dynamically decide which model to invoke.

robot must skillfully balance the level of accuracy required for the task with factors such as compute time,

power consumption, network availability, and potential delays in human processing.

Figure 5.1 illustrates the model selection problem addressed in this chapter. Given the sensor observations

x at each time step, a robot’s model selection policy π must dynamically invoke either a fast, compute-and-

power-efficient model (ffast) or a slower, more accurate model (fslow) based on a high-level task’s required

accuracy. Variants of this problem have been studied for perception tasks in cloud robotics [90, 91] and

human-robot collaboration [92, 93, 94]. However, existing works either offer specialized point-solutions (e.g.

for perception [95, 96]) that do not readily generalize to other domains, use hand-engineered heuristics, or

employ uninterpretable, learning-based algorithms [90, 97]. The key contribution of this section is to provide

a unified, interpretable, and theoretically-grounded framework for compute model selection in robotics.

The fundamental principle behind selecting an appropriate compute model is to perform a cost-benefit

analysis. The key insight, behind the solution proposed in this section, is that a robot’s model selection

algorithm can leverage the statistical, and often analytical, correlation between the accuracy of the fast and

the slow compute models. This correlation can enable us to perform reliable and interpretable cost-benefit

analysis between compute cost and gain in accuracy for the different models. Crucially, such correlations

between fast and slow models are now possible even for state-of-the-art DNNs, due to recent advances that

compress large DNNs with provable approximation guarantees [98, 99].

133

Contributions. Given prior literature, the contributions of this section are three-fold. First, an interpretable

model selection algorithm which leverages analytical correlations between fast and slow model performance

to dynamically decide which model to invoke. Second, we show how this algorithm can naturally leverage

recent advances that compress large DNNs with provable approximation guarantees that relate fast and slow

models. Third, we show strong experimental performance of this algorithm on diverse domains ranging from

robotic perception to sampling-based reachability analysis for a simulated rover navigating Martian terrain

data.

5.1.1 The Compute Model Selection Problem with Two Compute Models: A Formal Definition

In this section, we formally define the problem of model selection depicted in Fig. 5.1 by introducing

compute models, an accuracy metric, and a performance criterion.

Compute Model Input: The input to the compute model, at time t, is denoted by xt ∈ Rn. We denote the

input data distribution by X , that is, xt ∼ X . In practice, xt could represent a depth-camera image or laser

scan.

Compute Models: The compute models are denoted by fi : Rn → Rm, where i ∈ {fast,slow}. Given

an input xt , the output is denoted by yt
i = fi(xt). The cost associated with fi is given by ci ∈ R+. The

cost is context-dependent, such as battery consumption, compute inference latency, or even communication

latency for cloud robotics tasks. For example, the compute models could be a DNN, with image input xt and

corresponding segmentation yt . The distribution of outputs is denoted by Y , that is, yt
i ∼ Y . The ground-truth

output associated with input xt is denoted by yt
oracle.

Loss Function: Let L(yt
1,y

t
2) : Rm×Rm→ R≥0 be the loss function, that formally quantifies the quality

of the output yt
1 returned by a compute model compared to the ground-truth result of yt

2. A lower value of L(·)

indicates a more accurate output. In practice, the loss function is context-dependent, such as the cross-entropy

loss for image classification.

Model Selection Policy: Given an input xt , the model selection policy decides whether to use the slow

compute model fslow, or the fast model ffast. We assume that the policy has access to the results of the fast

model (without this information, the policy would be purely random). Therefore, the problem of model

selection is to infer whether or not to additionally invoke the slow model to enhance task accuracy if the fast

model results are insufficient for a robot’s high-level goal. The challenge is that the robot only has access to

134

the input xt and the fast model output yt
fast and thus must estimate the accuracy benefit of the slow model

before invoking it.

Formally, we define the model selection policy as π : Rn×Rm→{0,1}. Given input xt and fast model

prediction yt
fast, we define the action as at = π(xt ,yt

fast). The action at = 0 indicates selecting the fast model

ffast, and at = 1 indicates selecting the slow model fslow. We define the cost associated with each action as

cost(at):

cost(at) =


cfast if at = 0

cfast + cslow if at = 1
.

Reward: To simultaneously achieve high task accuracy while minimizing the cost of compute, we

introduce a per-timestep reward. Given input xt , the output of the fast model yt
fast, and model selection at , the

corresponding reward is:

Rt(at) =


−αL(yt

fast,y
t
oracle)−βcost(0) if at = 0

−αL(yt
slow,y

t
oracle)−βcost(1) if at = 1

(5.1)

where α , β ∈ R+ are user-defined weights to balance the emphasis on accuracy and cost. These can be

flexibly set by a roboticist given the unique requirements of a high-level task. For example, a fleet of

low-power, compute-limited warehouse robots that rarely interact with humans might have a higher emphasis

β on cost to minimize how many times they query a shared central server or remote human supervisor.

Conversely, robots that operate in safety-critical scenarios will have a much higher emphasis on accuracy

given by α .

5.1.1.1 Formal Problem Definition

Given a stream of N inputs, {x1,x2, · · · ,xN}, our goal is to propose an optimal model selection policy π∗,

that provably maximizes the expected cumulative reward:

E
N

∑
t=0

Rt(
π
∗(xt ,yt

fast)
)

Intuitively, π∗ achieves the optimal balance between the cost and accuracy over the given period of N time

steps. We now formally define the model selection problem.

135

Problem 2 (Model Selection for Inference). Given fast model ffast, slow model fslow, loss function L(·),

and model selection cost cost(·), find the optimal model selection policy π∗, which maximizes the reward

(Equation 5.1) over a finite horizon N:

π
∗ = argmax

π

E
N

∑
t=0

Rt(at = π(xt ,yt
fast)
)
.

Section 5.1.2 provides our solution to Problem 2.

5.1.1.2 Discussion on the Problem Definition

The model selection problem is broadly applicable in robotics since it is agnostic to the nature of the

compute models, the loss function, or even costs. For example, the models could represent small quantized

and large, compute-intensive DNNs or even small and large databases or random forests. Further, the costs

could represent battery consumption or communication delay or model inference time.

The main challenge of this problem is the limited information available to the selection policy, namely

the input xt , fast model output yt
fast, and the cost function cost(·). The key challenge is to estimate the

accuracy of the slow model, fslow, before even invoking it, which motivates our key technical approach to

statistically relate both models’ accuracy.

5.1.2 An Algorithmic Approach To Model Selection

In this section, we provide an optimal solution to the model selection problem (Problem 2). First, we

make the following practically-motivated assumption.

Assumption 1 (Action and State Independence). Given a model input xt at any time t, the model selection at

of policy π does not affect the next robot measurement xt+1.

Assumption 1 is practical in many robotics scenarios, since at is simply a choice of a compute model

to process inputs, not a physical actuation decision. For example, a robot can run a fast perception DNN

on images xt at every timestep and its choice to optionally consult a slower DNN at does not affect the new

image observation xt+1, which is instead largely affected by its ego-motion and surroundings. Our assumption

136

will not hold for fast-moving robots whose control decisions are heavily dependent on the perception model

they invoke, which we discuss in our future work.

Theorem 20. The optimal model selection policy that solves Problem 2 is of the form:

π
∗(xt ,yt

fast) = 1
(

β

α
cslow < E

(
L(yt

fast,y
t
oracle)−L(yt

slow,y
t
oracle)

)
︸ ︷︷ ︸

task accuracy gain

Proof. By Assumption 1, the action at at every time does not affect the next state xt+1. Thus, given any input

xt , the actions at are independent, so to maximize the cumulative reward it suffices to maximize the reward at

every time-step independently. Recall from Equation 5.1 that the reward depends on two choices of at , that is,

at ∈ {0,1}. Therefore, Problem 2 can be rewritten as:

π
∗(xt ,yt

fast) = argmax
at∈{0,1}

E(Rt(at))

Substituting in the reward definition (Equation 5.1), we see that we should choose the slow model only when

the associated reward is higher than continuing with the fast model. Thus, we choose at = 1 only when:

−αE
(
L(yt

oracle,y
t
slow)

)
−β (cslow + cfast)>

−αE
(
L(yt

oracle,y
t
fast)
)
−βcfast

Simplifying, we arrive at the desired result:

π
∗(st) = 1

(
β

α
cslow︸︷︷︸

extra compute cost

< (5.2)

E
(
L(yt

oracle,y
t
fast)−L(yt

oracle,y
t
slow)︸ ︷︷ ︸

task accuracy benefit

)
.

Theorem 20 suggests a simple model selection policy, which estimates the model accuracy gap ∆L=

E
(
L(yt

oracle,y
t
fast)−L(yt

oracle,y
t
slow)

)
, and only chooses the slow model if the gap is greater than a threshold

that depends on the relative compute costs and weights of accuracy via α,β . However, the key challenge is

that calculating ∆L requires querying the slow model and knowledge of the ground-truth value yt
oracle. We

now transition to two practical approaches to directly instantiate the guarantees from Theorem 20 in practice.

137

First, we note that in many practical deployment scenarios, the ground-truth oracle values are not present.

In such practical settings, the more accurate slow model simply serves as the ground-truth, such as when

a slow human supervisor makes ground-truth decisions. In the absence of human annotations, a large,

compute-intensive DNN can serve as the slow model and ground-truth. Thus, we present the following

lemma of Theorem 20.

Lemma 14. The optimal model selection policy that solves Problem 2, when yt
oracle = yt

slow at all times t is:

π
∗(xt ,yt

fast) = 1
(

β

α
cslow < E

[
L(yt

fast,y
t
slow)

])

Proof. The proof is the same as Theorem 20, where we note that E
(
L(yt

oracle,y
t
slow)

)
= 0 when the oracle

and slow models are identical.

For evaluation, one can use Lemma 14 as this model selection policy best reflects practical autonomous

deployments. The key challenge to directly applying Theorem 20 and Lemma 14 is to accurately estimate the

loss between fast and slow models solely using predictions from the fast model. However, we now show one

can indeed compute the expected accuracy benefit for a broad class of fast and slow models that are related

by provable approximation guarantees. Specifically, in Section 5.1.2.1, we instantiate the guarantees of

Lemma 14 to provide a closed-form, analytic model selection policy for linear regression problems. Crucially,

we then extend this analysis to DNN inference in Section 5.1.2.2.

Lemma 14 provides a general framework for model selection. For a novel setting, it can be instantiated

by selecting the: (i) compute models, (ii) loss function, (iii) compute model cost, and (iv) characterizing

the statistical relationship between compute models to derive the selection policy. Section 5.1.2.1 and

Section 5.1.2.2 instantiate Lemma 14 for specific cases of Linear Regression and DNN inference.

5.1.2.1 Analytical Results for Linear Regression

We now apply the guarantees from Lemma 14 to an illustrative warm-up example of high-dimensional

linear regression. Recall that our challenge is to estimate the expected value of yt
slow from the information

available to the selection policy, namely input xt and fast model prediction yt
fast. To overcome this challenge,

we apply results to approximate linear regression models using coresets [100], which are importance-ranked

138

subsets of a large training dataset. Importantly, a model trained on just the coreset will provably approximate

the predictions of one trained on the full dataset. For example, a fast model could be trained on only a core-set

of local data on-board a robot while a large one could be trained on multiple robots’ data in the cloud.

Compute Models: Let the fast and slow compute models fi be linear regression models fi(x) = Aix+bi,

where i ∈ {fast,slow}, Ai ∈ Rm×n, and bi ∈ Rm×1. We assume the slow model fslow is learned on a full set of

training samples from a joint distribution on X ×Y , while the fast model is only trained on a core-set of the

original data.

Loss Function: Let the loss function be the standard L2 norm loss: L(yt
1,y

t
2) = ||yt

1− yt
2||22; where

yt
1,y

t
2 ∈ Rm. The following coreset guarantees follow from [100]:

Property 1 (Relation between fast and slow models [100]). For all t, given input xt , denote the compute

model outputs as yt
fast = ffast(xt) and yt

slow = fslow(xt). Then, there exists an ε > 0 such that:

yt
fast ∈

[
yt

slow,(1+ ε)yt
slow
]
, (5.3)

where X and Y are the input and output distributions, meaning xt ∼X , and yt
slow,y

t
fast ∼ Y . [100] provides

the approximation factor ε based on the relative size of the core-set compared to the full training set.

Property 1 allows us to relate the fast and slow model predictions as:

yt
slow ≤ yt

fast ≤ (1+ ε)yt
slow

or, yt
slow ∈

[
yt

fast
1+ ε

,yt
fast

]
(5.4)

Thus, the loss function can be upper bounded as:

L(yt
fast,y

t
slow)≤

ε2 · (yt
fast)

2

(1+ ε)2 . (5.5)

Finally, we can use Eq. (5.5) and Lemma 14 to provide a closed-form model selection policy for Problem 2

in the linear regression setting:

π(xt ,yt
fast) = 1

(
β

α
cslow <

ε2 · (yt
fast)

2

(1+ ε)2

)
. (5.6)

139

Note that Lemma 14 provides the optimal solution and the above solution is an approximation since we

upper-bound the loss function between fast and slow models. However, our subsequent experiments show

this is a very tight bound and implementing Section 5.1.2.1 yields very close performance to an unrealizable

oracle solution that has perfect knowledge of the fast and slow model predictions.

5.1.2.2 Analytical Results for Deep Neural Networks (DNNs)

We now provide a similar analysis to the linear regression scenario for the important case when a robotic

perception DNN has been compressed using recently developed coreset guarantees [98, 99]. Specifically,

[98] compresses fully connected DNNs with ReLU activations by targetedly removing weights with low

relative importance via coresets. [99] extends this work to convolutional neural networks (CNNs) by using

coresets to remove convolutional filters that a prediction is least sensitive to, which enables a compressed

DNN to provably approximate its original counterpart.

Compute Models: Let the models fi: Rn → Rm, where i ∈ {fast,slow} be DNNs. Both models are

trained on a set of samples drawn from a joint data distribution on X ×Y .

Loss Function: As for linear regression, the loss function is an L2 norm loss, such as for depth estimation

from a perception CNN.

We now use the following guarantees for DNNs.

Property 2 (Relation between fast and slow models). For all t, given xt , yt
fast = ffast(xt), and yt

slow = fslow(xt),

there exist an ε,δ > 0, such that the following holds [98, 99]:

P
(

yt
fast ∈

[
(1− ε)yt

slow,(1+ ε)yt
slow
])
≥ 1−δ , (5.7)

P
(

yt
fast ∈

[
yt

slow−
M
2
,yt

slow +
M
2

])
≤ δ , (5.8)

where M ≥ 0 is an upper bound on the error described below. ε and δ depend on the extent of DNN

compression. Further, input xt ∼X and outputs yt
slow,y

t
fast ∼ Y .

Eq. (5.8) and bound M arise from the observation that in practical engineering scenarios, the outputs of

a neural network and thus the loss will be bounded since they have physical meaning. For example, for a

regression loss with perception, M ≥ 0 could be derived from the largest depth-reading a depth sensor can

140

register. Likewise, for classification, M is naturally bounded by 1 since the outputs y are softmax scores from

a cross-entropy loss.

We now use the core-set relationship to analyze Lemma 14 for DNN inference as follows:

yt
slow ∈


[

yt
fast

1+ε
,

yt
fast

1−ε

]
with prob. ≥ 1−δ[

yt
fast−

M
2 ,y

t
fast +

M
2

]
with prob. ≤ δ .

(5.9)

Thus, using Eq. (5.9), the loss can be upper bounded as:

L(yt
fast,y

t
slow)≤


ε2·(yt

fast)
2

(1−ε)2 with probability (1−δ)

M with probability δ .

(5.10)

Therefore, the expectation of the loss function is:

E
[
L(yt

fast,y
t
slow)

]
≤ δM+(1−δ)

(
ε2 · (yt

fast)
2

(1− ε)2

)
. (5.11)

Finally, we can apply Equation 5.11 and Lemma 14 to provide a closed-form model selection policy for

Problem 2 in the DNN setting:

π (xt ,yt
fast) = 1

(
β

α
cslow < δM+(1−δ)

ε2 · (yt
fast)

2

(1− ε)2

)
(5.12)

As for linear regression, we emphasize Lemma 1 is optimal and Eq. 5.12 is an approximation since we

are bounding the expectation using the core-set guarantee. However, our experiments show that implementing

Eq. 5.12 as a proxy for Lemma 1 works well in practice. More broadly, we emphasize that core-set guarantees

are simply one way to instantiate the general policy provided in Lemma 1. For example, a roboticist could

also use other practically-relevant models such as random forests or even approximate databases if they can

reliably relate fast and slow model accuracy.

141

5.1.3 Application Scenarios

We now describe example application scenarios of high-dimensional linear regression, DNN inference,

and reachable set computation for a simulated Mars Rover to demonstrate the theoretical guarantees from

Section 5.1.2.

5.1.3.1 Linear Regression

Using the analytical results from Section 5.1.2.1, we demonstrate our model selection policy by simulating

it on a toy example of linear regression. Let fslow : R4→ R4
[0,1] be any general-purpose linear regression

model. The amount of time fslow takes to generate an output is 2.5 seconds. Using coresets, we compress

the linear regression model fslow, to a faster linear regression model ffast. The fslow model takes 1 second to

generate an output. The compression is such that the relation in Equation 5.3 holds with ε = 0.1.

We chose α = 1 and β = 0.003 to emphasize accuracy over compute efficiency in the simulations,

although α,β can be flexibly set by a user. We implement the model selection policy as in Section 5.1.2.1,

and demonstrate its performance in Section 5.1.4 against benchmark policy selection algorithms (discussed

in Section 5.1.3.4).

5.1.3.2 Compute Efficient Robotic Perception

We now stress-test our algorithm on a scenario, inspired by [101], where an aircraft must autonomously

track a runway center-line using a wing-mounted camera for state estimation. This scenario, henceforth

referred to as the TaxiNet scenario as per [101], uses a DNN to map from camera images to an estimate of the

aircraft’s lateral distance from the runway center-line d and heading angle θ , which are linearly combined to

create the aicraft’s steering control. We chose the TaxiNet scenario since the central idea is broadly applicable

to resource-constrained robotics, such as low-power drones that use efficient vision models to estimate their

real-time pose relative to a landing site.

ResNet-18 DNN [102] was trained to serve as the slow perception model fslow using over 50K images

from the standard X-Plane simulator [103] using a publicly-available dataset [104]. The ResNet-18 achieved

a low MSE loss of 0.038 on an independent test dataset of 18,372 images, where each image took 0.17

seconds for inference on a CPU. fslow was compressed to yield a quantized ResNet-18 as ffast, which was

47.21% faster but had a 64% higher loss, illustrating a clear need for model selection.

142

For the TaxiNet scenario, we chose the model costs of cslow = 0.017 and cfast = 0 based on their relative

inference times and α = 1, β = 3× 10−4 to emphasize safety (low loss) over compute costs. Our model

selection results are demonstrated in Section 5.1.4 along with example DNN predictions from aircraft images

in Fig. 5.4 (Right).

5.1.3.3 Reachable Set Computation

In this section, we apply the model selection policy to safety assessment for robot navigation. Consider

a robot, such as a Mars rover, navigating an unexplored environment. The robot has to assess whether its

maneuvers are safe while considering environment uncertainties such as the coefficient of friction, wind

disturbances, etc.. This is done by computing a reachable set, a set that contains all the states a rover can

potentially reach. The robot can make the maneuver safely if the reachable set does not overlap with any

obstacles. The reachable set computed by the fast compute model has confidence that is an order of magnitude

lesser than the reachable set computed by the slow model.

We assume that the closed loop dynamics of the robot is given as a nonlinear system. For computing the

reachable sets, we approximate the nonlinear dynamics locally as an uncertain linear system (see Chapter 2),

where the coefficients in the dynamics belong to a bounded range.

Recently, a statistical approximation of the reachable set has been presented in [19]. The confidence of the

statistical approximation can be tuned by the user according to her performance and accuracy requirements.

Leveraging the flexibility of this statistical approach, we generate a fast compute model which has medium

confidence and slow model that has high confidence over the computed reachable sets. Given the various

constraints on robot resources, the model selection policy should invoke the appropriate compute model to

guarantee safety while minimizing the cost.

Formally, consider a linear dynamical system with uncertainties, represented as x+ =Λx, where Λ⊂Rn×n

is an uncertain dynamical matrix. The reachable set of the current state x up to a time horizon t, is

denoted as RS(Λ,x, t). Though the dynamics is given as x+ = Λx, it can encompass the open loop behavior

x+ = ΛAx+ΛBu (where ΛA,ΛB are uncertain matrices), if a control sequence u is provided. In such cases,

the uncertain matrices ΛA,ΛB are combined together to Λ by concatenating the state and open-loop control.

143

A system is unsafe if the reachable set intersects with the unsafe set, such as obstacles. That is, given an

unsafe set U ⊂ Rn, a system is unsafe if and only if RS(Λ,x, t)∩U ̸= /0. Given µ > 0 and a set S⊆ Rn, we

denote the uniform expansion (bloating) of set S by µ as Bµ(S).

We now formally present the model selection problem for safety assessment of robot navigation.

Computation Models: The compute models i ∈ {fast,slow}, denoted as RSi(Λ,x, t), compute approxi-

mations of the reachable set of an uncertain linear system defined by Λ [19]. The statistical guarantee Gi

associated with RSi is as follows:

Gi : for any A ∈ Λ, P
(
RSi(A,x, t)⊆ RSi(Λ,x, t)

)
≥ pi

Gi has a type I error of δi. Here, the confidence pi ∈ R[0,1] and allowable type I error δi are user-given

parameters to the models. Intuitively, Gi means the probability that the reachable set of any sample dynamics is

contained within the reachable set RSi(·) is at least probability pi. Computing high-confidence approximations

of the reachable set requires more statistical samples and therefore a higher computational time and cost. In

particular, the required confidence pi set by a user for statistical guarantee Gi is directly proportional to the

required number of samples. Thus, we set the slow model to be a high-confidence reachable set and the fast

model to be a lower-confidence approximation, so pslow > pfast, δslow ≤ δfast, and therefore cslow > cfast. We

denote the outputs of the fast and slow models as yt
fast = RSfast(Λ,x, t) and yt

slow = RSslow(Λ,x, t).

The crux of our selection policy is that we can relate the reachable sets returned by both models by a

factor of ε:

Property 3 (Relationship between fast and slow models). Given Λ and θ , for all t, there exists an ε such

that:

B1−ε

(
RSslow(Λ,x, t)

)
⊆ RS f ast(Λ,x, t) (5.13)

or, RSslow(Λ,x, t)⊆ B 1
1−ε

(
RSfast(Λ,x, t)

)
. (5.14)

In a calibration dataset, we can compute the fast and slow model reachable sets for all time steps. Then,

we can set ε to be the minimum factor to bloat the robot’s set such that the bloated version over-approximates

the slow model’s reachable set at all times. Thus, a robot can quickly run the fast model, bloat it by 1
1−ε

, and

continue planning if the bloated set does not intersect an unsafe region, as formalized below.

144

Loss Function: Given the safety-critical nature of navigation, the loss is 0 when the reachable set doesn’t

intersect an unsafe set and ∞ otherwise. Defining the reachable sets used to compute intersections with

obstacles as Θfast = B 1
1−ε

(yt
fast) and Θslow = yt

slow = RSslow(Λ,x, t), the loss for any model i ∈ {fast,slow} is:

L(Θi) =

0 Θi∩U = /0

∞ otherwise.
(5.15)

Finally, using Property 3 and Lemma 14, the model selection policy that solves Problem 2 for safety

assessment during robot navigation is:

π
∗(yt

fast) = 1

(
B 1

1−ε

(yt
fast)∩U ̸= /0

)
. (5.16)

Intuitively, the above policy exploits the relationship between fast and slow models by first bloating the

fast model’s reachable set by a factor of 1
1−ε

to create a guaranteed over-approximation of the slow model’s

reachability computation. If the over-approximation does not intersect obstacles, we are guaranteed safety

and simply proceed. If not, we need to invoke the slow model to assess its higher-fidelity reachable set

and re-plan a trajectory if it indicates unsafety. While we implemented our policy with α = 0.7,β = 0.3 to

prioritize safety, safety is also heavily emphasized in the loss function (Eq. 5.15) since the penalty is ∞ for

collisions.

5.1.3.4 Benchmark Algorithm

We evaluate the performance of our model selection policy against the following benchmark policies:

Fast: This policy always uses the fast model with prediction yt
fast for all t.

Slow: This policy always uses the slow model with prediction yt
slow for all t.

Random: The robot randomly chooses between the fast and slow model with equal probability.

Our Selector: This represents our model selection policy from Section 5.1.2.1, Eq. (5.12), and Sec-

tion 5.1.3.3.

Oracle: This strategy assumes that the slow model’s output is available to the model selection function at

the time of inference. Thus, this strategy only selects the slow model when that decision has a better reward

145

than using the fast model. The oracle is an upper-bound, unrealizable strategy since it assumes privileged

knowledge of the slow model.

5.1.4 Evaluation

The principal objective of our evaluation is to show that our model selection policies from Lemma 14

and Section 5.1.2.1, Eq. (5.12), and Section 5.1.3.3 achieve a significantly higher reward than benchmark

model selection policies. Further, we show how thus policy achieves better accuracy with a lower cost

than competing benchmarks on simulations of linear regression, aircraft taxiing with state-of-the-art DNN

perception models, and rover navigation with real Martian terrain data. All the code (in Python) and models

are publicly available at [105].

Figure 5.2: Rewards. (Left: Linear Regression, Center: DNN, Right: Mars Rover Reachable Set). We illustrate the cumulative
rewards (Eq. 5.1) gathered by various policies on the Linear Regression, DNN perception (TaxiNet), and Mars Reachable Set
scenarios, respectively. Clearly, our policy (Our Selector) achieves the maximum reward compared to other realizable benchmarks
and is close to the oracle in all cases.

Figure 5.3: DNN Cost vs. Accuracy. (Left: Linear Regression, Center: DNN, Right: Mars Rover Reachable Set). Cost vs. Loss
trade-off achieved by various model selection policies on all scenarios. In all cases, we observe that the Fast policy has low cost
but low accuracy, Slow has high accuracy but high cost, and Random lies sub-optimally in the middle (with a high variance). Only
the selection policy proposed in this paper (Our Selector) achieves a delicate balance by exploiting the statistical relationship
between models to intelligently consult the slow model.

146

Figure 5.4: Left: (Safe Navigation of a Mars Rover). We consider navigation of a simulated rover on real Mars HiRise terrain data
[2], where the red point clouds are obstacles indicating regions of high elevation, as processed in [3]. First two images: We show
the reachable sets of two different possible routes taken by the Mars Rover. The reachable set in green is computed by the slow
model, whereas the one in blue comes from the fast model. Path safety is determined by assessing if the reachable set (accounting for
uncertainties), intersects red obstacles. Clearly, our model selection policy uses the slow model only when the rover makes tricky
maneuvers. Otherwise, when the rover is far from obstacles, the fast model is sufficient to determine safety, allowing us to maintain
high safety with a lower compute time. Third image: We show the relationship beween reachable sets computed by the fast model (in
blue) and the slow model (in black). Crucially, our policy uses the over-approximated reachable set of the slow model as computed
by the fast model (in cyan), that is, B 1

1−ε

(yt
fast). Clearly, our model selection policy only consults the slow model when it suspects

a possible collision when the set represented in cyan intersects with a red obstacle. Our policy always led to safe, collision-free,
efficient navigation by exploiting the relationship between fast and slow models. Right: (Aircraft TaxiNet DNN Output). The
output of the fast and slow DNN models for a ResNet-18 TaxiNet model. Given an image, the final output shown is the rudder
control.

5.1.4.1 Linear Regression Results

We now evaluate our selection policy for linear regression, as described in Section 5.1.2.1 and Sec-

tion 5.1.3.1. The key highlight is that our policy achieves 245.4% higher reward than benchmarks in 100

trials, each of duration N = 105 timesteps with stochastic Gaussian inputs xt . Fig. 5.2 (Left) and Fig. 5.3

(Left) show the cumulative rewards and trade-off between accuracy and cost, respectively, of all algorithms.

5.1.4.2 Deep Neural Networks (DNN)

We now evaluate the model selection policy for the TaxiNet aircraft taxiing scenario from Section 5.1.3.2.

The key result on 18,372 test images is shown in Figure 5.2 (Center), where the proposed policy (Our

Selector) achieves 22.22% higher reward than competing benchmarks and is within 10.18% the performance

of an upper-bound Oracle. Moreover, Fig. 5.3 (Center) shows that our model selection policy achieves low

loss with low cost unlike competing policies. This is because our policy leverages the statistical correlation

between models to mostly rely on the fast model to reduce cost, but also opportunistically queries the slow

model for higher accuracy. However, the proposed policy is careful to only invoke the slow, accurate model

when there is a substantial accuracy gain, leading it to be queried only 68.6% of the time.

147

5.1.4.3 Reachable Set Computation

We now demonstrate the performance of the model selection policy (Section 5.1.3.3) to determine the

safety of a simulated Mars Rover navigating steep obstacles on terrain from NASA’s HiRise Dataset [2, 3]. A

low-power rover must always be safe, but also fast and compute-and-power-efficient while accounting for

reachable sets while planning.

The rover is assumed to follow a linearized bicycle model with bounded perturbations in the dynamics

matrix for yaw angle. Given an intended path, we use the model selection policy (Section 5.1.3.3) to determine

safety given uncertain dynamics while minimizing compute time. Specifically, given a start set, desired

goal, and a set of way-points, a reference trajectory is computed using a cubic spline planner, which is

followed using Model Predictive Control (MPC). Using the planned states x and controls u at every time, our

model selection policy must determine the trajectory’s safety by invoking either a fast or slow reachable set

computation model as described in Section 5.1.3.3.

Fig. 5.4 (Left, first two images) shows how the proposed policy (Section 5.1.3.3) safely, but efficiently,

follows two different paths near a red obstacle indicating an unsafe terrain gradient above 20 degrees. The

key benefit of the proposed approach is that the robot mostly uses the fast reachable set computation (blue)

for high-efficiency and only intelligently consults the higher-fidelity slower model during tricky turns close

to an obstacle. Indeed, Fig. 5.4 (Left, third image) precisely shows how the proposed policy (Equation

5.16) exploits the relationship between fast and slow models to selectively query the slow model only when

required during key turns. The fast model’s reachable set result is in blue, the slow model’s result is in black,

and the over-approximation from bloating the fast model’s result by B 1
1−ε

(yt
fast) is in cyan.

Clearly, even the over-approximation rarely intersects unsafe obstacles and it is only necessary to consult

a fine-grained result from the slow model (black) when the over-approximation is too conservative and

needs to be refined. In all scenarios, we rigorously verified the simulated rover is safe and never hits an

obstacle despite dynamics uncertainties. Fig. 5.2 (Right) and 5.3 (Right) quantitatively illustrates the superior

efficiency and accuracy (safety) of our policy, since it achieves the highest reward, never hits an obstacle, and

efficiently only queries the slow model on-demand near critical obstacles.

148

Invoke 𝑴𝟎

Input

𝑥

Robot

Model selection
policy

Invoke 𝑴𝟏

Invoke 𝑴𝟐

Invoke 𝑴𝑲

Output

𝑦

Communicating with the
perception models

Model Output

𝑴𝟎 𝑴𝟏 𝑴𝟐 𝑴𝑲

Input to the
models

Se
rv

e
r Increasing cost and accuracy

Figure 5.5: Model Selection Problem: In a setting where a robot has access to a plethora of models (namely M0 to MK)—with
varying cost and accuracy—the goal of the robot is to perform a control task such that it strikes an optimal balance between compute
cost and control cost.

5.2 Decision Making in Perception-Based Robots: Selecting from a Variety of Perception Models

A resource constrained robot, required to perform a desired control task, is generally equipped with a

low accuracy and computationally fast perception model (local model). However, today different perception

models with accuracy and latency trade-offs are being trained. For example, the EfficientNet [106] suite of

vision models provides 8 model variants, namely EfficientNet 0 to EfficientNet 7, that trade-off accuracy with

model size and latency (ResNet [102] suite is yet another such example). These models increase inference

latency and energy consumption, requiring a robot to gracefully balance control cost with perception cost, as

shown in Fig. 5.13a. The key desideratum for the robot in a multi-step control task is to leverage the available

models to perform the task efficiently. In other words, the robot should accomplish the task by optimally

balancing the perception time and control cost. In the rest of the chapter, we refer to perception time as

perception cost since it can represent various metrics (such as number of bit-operations performed, time taken

to run on a device, etc.).

149

With recent advancements in model training (with accuracy and latency trade-off), a model selection

strategy that can accomplish a task by optimally balancing the perception cost and control cost is a necessity

in modern day robotic applications. Imagine a scenario where a factory robot is required to perform safe

navigation in a busy warehouse floor. To perform the navigation, the robot is equipped with a plethora of

perception models that trades-off control cost and accuracy. Without loss of generality, such perception

models can reside on the robot, or in a central server (“Cloud”) which can be invoked over a shared network.

In such scenarios, a desired strategy should be to use the high perception cost models, to ensure minimum

control cost, only when the robot is required to make tricky maneuvers.

The solution we proposed in this section provably realizes such a policy. Consider a solution using the

computationally fastest perception model among all the available models (say EfficientNet 0) at all time

steps: this will lead to a solution that takes minimum possible perception cost but results in worst possible

control cost (as decisions based on a low-accuracy model might lead to states far away from the optimal

states vis-à-vis control cost). Similarly, a solution using the most computationally expensive perception

model (say EfficientNet 7) can result in a least control cost solution but maximum perception cost. Clearly,

for any practical scenario, such simple solutions do not work. A desired solution, on the other hand, uses

computationally expensive perception models only when computationally faster models fail to produce the

desired result. Further, the relationship, with respect to compute cost and accuracy, between the available

plethora of models is highly nonlinear [106]. We refer to this as the model selection problem, illustrated in

Fig. 5.5.

Adding to the challenges, the choice of perception model at the current step impacts the future states

reached by the robot. In other words, selecting a particular perception model at this step may cause the

robot to reach a state from which, regardless of the perception model choices made in the future, all states

the robot reaches will have a high control cost—resulting in a sub-optimal outcome. Clearly, a greedy

approach that only considers the information available at the current step (as in [107]) does not result in an

optimal solution in a general setting; a setting considered in this section. We note that obtaining information

about the future states would require information about the future environment states (i.e., inputs to the

perception models). While obtaining information about the exact future environment is impossible, in a

practical setting, an empirical observation of the past data can however give us some idea of the future

environment states. Formally, a probability distribution of the future environment states can be obtained using

empirical evidence (such as historical data). Note that provable optimality cannot be guaranteed in a general

150

setting that assumes zero-knowledge of future environment states (unless assumptions are imposed). In this

section, we propose a provable optimal solution that outperforms current model selection approaches and

achieves a performance that is very close to the (unrealistic) theoretical bound, assuming only the knowledge

of probability distribution (i.e. mean and variance) of the future environment states.

Most optimal control only penalizes control cost and tracking error, while remaining oblivious to the

perception cost. The key idea behind our solution is to compute the sensitivity of control cost to perception

errors, which in turn guides which model to invoke since we not only care about conventional control cost but

also perception latency. In particular, we provide a provably optimal solution to the model selection problem

with a plethora of perception models (any number of models) with varying control cost and perception cost.

That is, we compute a sequence of models that should be invoked, at each time step, to achieve optimality

with respect to control cost and perception cost. This is achieved by encoding the model selection sequence

as a Mixed Integer Quadratic Program (MIQP) that minimizes a linear combination of the control cost and

the perception cost, leveraging results from [108]. Intuitively, the integer variables, in the MIQP formulation,

model the discrete available choices of the perception models, and the objective function is quadratic primarily

due to the control cost being a quadratic function of the robot states. Further, we prove a polynomial time

complexity for our proposed solution for special subcases. The solution also indicates the importance of

variance (not just mean accuracy) of the perception models when considering a multi-step decision problem;

where in contrast, most works on model latency accuracy trade-offs largely look at the single step vision tasks

and report mean accuracy.

We demonstrate the proposed solution on a drone landing sequence, using visual navigation, simulated

on a photo-realistic simulator named AirSim [109]. In the experiments, the drone is equipped with all the

EfficientNet models to compute the altitude of the drone from the helipad. These models have associated

perception errors (in estimating the altitude) due to uncertainty in DNNs. The drone landing controller issues

input based on the altitude computed by the given EfficientNet model (where the model, at a given time step,

is selected as per the policy). The experiments have shown that we can achieve 38.04% lower control cost in

79.1% less perception time than other available policies. For the rest of the section, we refer to perception

models simply as models.

Contributions: Given prior works, mainly [90, 107], the contributions proposed in this section are as

follows:

151

1. Prior works have only considered the model selection problem with only two models. [90] uses an RL

based approach, and [107] (discussed in Section 5.1) provides an interpretable solution when some

restrictive assumptions hold true. In contrast, this section provides a provable optimal solution to the

model selection problem, with any number of perception models, for multistep decision making to

achieve a desired a control task, even when the input to the perception models are not independent and

identically distributed.

2. [90] uses RL based approach, and [107] uses statistical correlation between the models primarily using

model compression. In contrast, our solution is fundamentally different from both these approaches.

Leveraging recent results from [108], we cast the model selection problem as an optimization problem

(MIQP), and provide a provable optimal solution.

3. This solution indicates the importance of variance, not just mean accuracy of the models. Further,

our work also allows the user to use a plethora of compute models, such as EfficientNets [106] and

ResNets [102], to achieve a goal in an optimal fashion.

4. We show that a special sub-case of the model selection problem has polynomial time complexity.

5. We illustrate this approach on a photo-realistic drone landing sequence simulated in AirSim. The

results of our experiments clearly show how our approach outperforms other policies.

5.2.1 Problem Statment

In this section, we define the problem statement formally. Consider the following dynamics:

xt+1 = Axt +But +Cst , (5.17)

where, at time step t, xt denotes the state reached by the robot, ut denotes the controller input to the

robot, and st denotes the perception input. We note that, in the dynamics given in Eq. (5.17), the state of

the robot xt is therefore dependent on the perception inputs to the robot at previous time steps. Though a

linear dynamics, as in Eq. (5.17), is restrictive, but it provides a good first step especially with linearized

robot dynamics for common robots. Further, the additive Cst term can seem restrictive but indeed practical,

especially while encoding exogenous sensor measurements. Imagine a drone landing sequence that relies

on a DNN based perception model to compute the altitude of the drone which is used by the controller to

issue control inputs to the drone. The DNN estimates the altitude of the drone with some error due to the

152

inherent uncertainties of the model. In such cases, the Cst term is used to model the measurement errors from

the DNN. It is also worth noting that since the states of the robots are dependent on the perception inputs, it

is extremely important to choose perception models that estimates the inputs appropriately. An improper

estimation of the current perception input might lead the system to a state from which all the states reached

by the system, regardless of the choices of future perception inputs, will have a very high control cost.

Robot State: Given the dynamics as in Eq. (5.17), the set of states reached by the robot from an initial set

x0 ∈ Rn at time step t is given by xt ∈ Rn, where A ∈ Rn×n.

Perception Input: The perception input to the robot at time step t is given by st ∈Rp, where C∈Rn×p. Let

s∈RpH×1 denote the vector of all perception inputs up-to time step H−1; that is: s=
[

s0 s1 . . . sH−1

]⊤
.

Controller Input: Given a perception input vector s, the controller input to the robot at time step t is

given by ut = π
(
xt ,st:H−1,θc

)
, where π is the policy providing the control inputs, with the given parameter

θc (such as dynamics matrix, feedback matrix etc.) [108]. Let u = µ(s) denote the vector of all control inputs,

for a given perception input vector s, up-to time step H− 1; that is: u = µ(s) =
[

u0 u1 . . . uH−1

]⊤
,

where ut = π
(
xt ,st:H−1,θc

)
. We note that the control input ut is dependent on the current state (xt) and the

future perception inputs (st:H−1 = {st ,st+1, · · · ,sH−1}). To be able to compute the control inputs that would

make the system stable, it needs the information about what it sees as perception input in the future as well.

The closed form expression for this can be found in [108].

5.2.1.1 Perception Model

The true perception input to the robot, at time step t, is given as st . But obtaining the true perception

input st is practically impossible, therefore we use practically implementable perception models to estimate

st as ŝt . The loss between the true perception input st and the estimated perception input is given by L(st , ŝt).

Consider a drone landing sequence where the true perception is the true altitude of the drone (st). Since it is

impossible to obtain the true altitude of the drone, one can use DNN that takes the image of the helipad from

the drone and estimates the altitude (ŝt); this is denotes the estimation of the true altitude. The perception

input, at time step t, to the robot comes from the perception model gper : Z[0,W−1]×Z≥0→ Rp, where W is

the total number of perception models available. Intuitively, the perception model gper(w, t) selects one of

the available models 0≤ w≤W −1, and returns its estimated perception at time step t. The cost incurred

to the robot for invoking the perception model is given by costper : Z[0,W−1]→ R. We note that our cost is

153

dependent only on the model selected, and not on time step. That is, the perception input at time step t is

given by ŝt = gper(w, t) for a given choice of the model w, and the cost for invoking the model is given by

costper(w). Intuitively, the model choice w represents the desired quality of output by the user. For example,

higher value w incurs a higher cost
(
i.e. higher value of costper(w)

)
and better quality of perception input

(
i.e.

lower value of L(gper(w, t),st)
)
. Note that the indices of the model, 0≤ w≤W −1, are not arbitrary; they

are sorted in a non-decreasing order of their costs. That is, model wi will have a lower cost than model w j, if

and only if wi < w j.

We note that ŝt is used to represent the perception input at time step t; where ŝt = gper(w, t) means the

perception input is chosen from the wth perception model as per the function gper(w, t). However, the function

gper(·), for all t and all w ∈ Z[0,W−1], is defined independent of st as follows:

gper(w, t) = Γ
w
t , (5.18)

costper(w) = w ·ϒ, (5.19)

where w ∈ Z[0,W−1] represents the model choice variable, ϒ ∈ R>0, and Γw
t ∈ Rp. The constant ϒ represents

the ratio by which the perception cost of the models rises with an increase in index; the value of the constant

therefore depends on the application. Though we assume a linear dependence of the perception cost of a

model to its index, our results will hold true for any convex quadratic cost function. However, for the sake

of simplicity, and since it also models most real-world scenarios, we will be using a linear cost function.

Intuitively, Γ0
t represents the lowest-quality perception input

(
i.e. highest value of L(Γ0

t ,st)
)

with minimum

perception cost 0 (at time step t), and Γ
W−1
t represents the highest-quality perception input with maximum

perception cost costper(W −1) = (W −1) ·ϒ (at time step t). We note that the cost of invoking the model is

not merely restricted to its computation cost (i.e., the time it takes to generate the output). The cost can be

determined by the application, such as the cost of invoking the server or the bandwidth demand it imposes etc.

Consider a drone landing scenario that needs to estimate its altitude from the available choices of models that

reside in a remote server. In such a case, the cost of invoking a model need not be restricted to its compute

cost, it can also mean the amount of data that needs to be sent over the network, or the value assigned to the

server depending on its demand, or a rental server, etc. In order to maintain the generality of the problem,

with regards to it compute cost, we assume that the perception cost has no impact on the control frequency,

154

and therefore the control performance. While it is worth considering a setup where the perception cost is

specifically the compute cost, and thus impacts the control frequency, we are not considering such a setup in

our current version due to the following challenges. A recent result that offers a closed form solution of the

sensitivity of control cost to perception errors is used in our work [90]. However, no such results exist that

considers the sensitivity of control cost to perception errors while taking into account the impact on control

frequency. It is also worthwhile to note that if such a closed form can be found, our solution can be readily

modified to accommodate such a configuration. Due to the aforementioned problems, we shall defer it for the

time being and leave it as a future work.

Let C be the set of all possible choices. Let c =
{

w0,w1, · · · ,wH−1
}
∈ C be a set of choices up-to time

step H−1. Intuitively, C represents the decision variables in the optimization problem encoding the choice

of the models at every time step. For instance, an optimal solution copt ∈ C to the optimization problem with

wt = M implies model M (where 0≤M ≤W −1) should be invoked at time step t. Let the perception input

vector, corresponding to c, be given as follows ŝc =

[
sc

0 sc
1 . . . sc

H−1

]⊤
, where sc

t = gper(wt , t), and the

corresponding control vector is given as ûc = µ(sc). The optimal control vector u∗ = µ(s). Intuitively, ŝc

denotes the (estimated) perception inputs corresponding to the model choices c up to time step H−1. The

control vector ûc is the set of control inputs to be applied to the system that is computed using the perception

inputs ŝc, while u∗ denotes the optimal control inputs (that would have been applied if the true perceptions

inputs were known).

5.2.1.2 Perception Cost and Control Cost

Given a set of choices c =
{

w0,w1, · · · ,wH−1
}

, and an initial set x0, the control cost J ctrl(c) is given as

[108]:

J ctrl(c) = Jc(ûc,s,x0) = cH−1(xH−1)+
H−1

∑
t=0

c(xt , ût), (5.20)

where c(·) is the stage cost and cH−1(xH−1) is the terminal cost. Further, we define the perception cost

J per(c) as follows:

J per(c) =
H−1

∑
t=0

costper(wt). (5.21)

Given a set of (model) choices c, J ctrl(c) (Eq. (5.20)) denotes the cumulative control costs of the states

traversed by the system due to the model choices c, while the J per(c) (Eq. (5.21)) is the cumulative cost

155

incurred by the system for invoking the models as per c. Intuitively, α and β denotes the user’s priority on

control cost and perception cost as per the application. If the application prioritizes control cost more than

perception cost, α and β will be chosen such that α > β (say, α = 0.8 and β = 0.2). In other words, J tot(c)

represents the weighted sum of the cumulative control cost and the cumulative perception cost as per the

model choices c.

5.2.1.3 Model Selection Problem

Using the aforementioned artifacts, we now formally state the model selection problem as follows:

Problem 3 (Model Selection Problem). Given a system with dynamics as in Eq. (5.17), and perception model

gper(·) with cost costper(·), compute a set of choices copt for H time steps, such that, for a given α,β and

x0 ∈ Rn:

copt = argminc ∈ C
{
J tot(c)

}
. (5.22)

Intuitively, we want to find a set of choices, copt, such that the total cost J tot (an weighted sum of the

control cost and the perception cost) is minimized.

Reformulating Problem 3. Now we reformulate Problem 3 using results from [108]. The reason to

reformulate Problem 3 is three-fold:

1. In Problem 3, the solution is tied to an initial set x0. In this reformulation, we propose a formulation

that is independent of the initial state.

2. Leveraging prior results, we will propose a solution that can be formulated as an optimization problem.

Such a formulation helps us in computing the optimal model selection sequence efficiently using the

off the self optimization solvers.

3. We will further show that for special cases we can solve the problem in polynomial time complexity.

A re-formulation of Problem 3 can be given as follows:

min
c∈C

α ·J ctrl(c)+β ·J per(c) (5.23)

⇐⇒ min
c∈C

α ·
(
Jc(ûc,s,x0)

)︸ ︷︷ ︸
control term

+ β ·J per(c)︸ ︷︷ ︸
perception cost term

(5.24)

156

The minimum possible control cost is achieved when the control inputs are computed with the true perception

input s. In other words, the control term in Eq. (5.24) is minimal when ŝ = s (therefore, ûc = u∗). Since it

is impossible to know the true perception inputs (s), we want to estimate them (ŝ) as closely as feasible to

the control cost that corresponds to the true perception inputs. Formally, for any set of choices c ∈ C, the

following relation is assumed to hold: Jc
(
u∗,s,x0

)
< Jc(ûc,s,x0). Therefore, the re-formulation given in

Eq. (5.23) can be further rewritten as:

min
c∈C

α ·
(

Jc(ûc,s,x0)− Jc(u∗,s,x0
))

+β ·J per(c) (5.25)

Intuitively, we can rewrite Eq. (5.24) as Eq. (5.25) due to the following reasons. Note that, the control cost

is minimum when the optimal set of control inputs u∗ is used. Therefore, in this optimization formulation,

instead of finding a set of models (c) that minimizes the control cost directly (corresponding to c), we rewrite

it to find a set of models such that the difference between the control cost pertaining to the optimal control and

the control cost pertaining to the models (c) is minimized. Clearly, Eq. (5.24) and Eq. (5.25) are equivalent.

The reason for this algebraic manipulation is, however, to be able to use a recent result that provides a closed

form of the manipulated term—this shall be discussed next.

Given an arbitrary perception input vector ŝ, [108] provides a closed form solution to Jc
(
µ(ŝ),s,x0

)
−

Jc
(
u∗,s,x0

)
. More specially, [108] provides a closed form expression for Jc

(
µ(ŝ),s,x0

)
− Jc

(
u∗,s,x0

)
in

terms of ŝ and s (as a quadratic function of the difference between ŝ and s, i.e., a quadratic function of ŝ− s):

Jc(
µ(ŝ),s,x0

)
− Jc(u∗,s,x0

)
= (ŝ− s)⊤×Ψ× (ŝ− s), (5.26)

where Ψ = L⊤K−1L is a positive semi-definite matrix. [108] provides closed form solutions to compute the

matrices L,K, where L and K are only dependent on the dynamics (matrices A, B and C) and cost matrices Q

and R. We note that the above term (Eq. (5.26)) is independent of x0, using this we propose a reformulation

of Problem 4 that is independent of the initial set x0 in the rest this section. Given a set of choices, c ∈ C,

recall that the perception input vector corresponding to c is ŝc. Using Eq. (5.26), the optimization formulation

in Eq. (5.25) can be equivalently rewritten as:

157

Problem 4 (Model Selection Problem). Given a system with dynamics as in Eq. (5.17), and perception model

gper(·) with cost costper(·), compute a set of choices copt for H time steps, such that, for a given α,β :

min
c∈C

α ·
(
(ŝc− s)⊤×Ψ× (ŝc− s)

)
+β ·J per(c). (5.27)

Theorem 21 (Equivalence). Problem 3 and Problem 4 are equivalent. [Proof in Section 5.2.6.1]

Note that the reformulation in Problem 4 is independent of the initial set x0. That is, the set of optimal

choices copt , as computed by the solution, is independent of x0. It is worthwhile to mention that a model

selection sequence, that is independent of the initial state, enables an engineer/practitioner to compute the

model selection sequence just once and use it anywhere regardless of its initial set. In most practical scenarios,

where the initial state cannot be known apriori, our solution is extremely effective as the model selection

sequence need not be solved from scratch when the initial state changes.

5.2.2 Model Selection Problem When All the Perception Outputs are Known

Note that Problem 4 assumes that the difference between the perception model’s output gper(·) and the

true perception is known. But in practice, this might not hold true for many cases. In such cases, one can

only know a distribution, not the exact difference between the true and perception models’ output. In this

section, we will propose an exact solution to Problem 4 (assuming the true difference is known), but in

subsequent sections we will relax this assumption to handle practical scenarios. Since the solution to the

problem is based on an optimization formulation, before we put forward the solution to Problem 4, we wish

to layout the model selection encoding. That is, how the perception ŝt and the cost costt , at a time step t, can

be encoded using binary variables. Recall, that the final output of the model selection problem, encoded as an

optimization problem in Eq. (5.27), is the set of model choices (c) such that the total cost (a weighted sum of

the control cost and the perception cost) is minimized. To encode the model choices, among 0 to W −1 many

models, up to time step H−1, we will use W ×H many binary variables. For each time step t ∈ [0,H−1],

we will use W many binary variables, denoted as bt
i , where i ∈ [0,W −1]. If at a given time step t, bw = 1, it

implied that model w should be used at time step t. Note that, the encoding will ensure that only one model is

chosen at a given time step t, i.e., all other bw = 0, where i ̸= w. This is illustrated in Fig. 5.6a, and formally

described next.

158

𝑏0
0

𝑏1
0

𝑏2
0

𝑏𝑊−1
0

𝑏0
1

𝑏1
2

𝑏2
2

𝑏𝑊−1
2

𝑏0
𝐻−1

𝑏1
𝐻−1

𝑏2
𝐻−1

𝑏𝑊−1
𝐻−1M

o
d

e
l c

h
o

ic
es

 𝟎
to

 𝑾
−
𝟏

Time Steps 𝟎 to 𝑯− 𝟏

Indicates 𝟎

Indicates 𝟏

(a) Encoding Binary Variables. The model
choices are encoded using W ×H many binary
variables, where H− 1 is time horizon and W
is the number of models. For each time step t,
W many binary variables are used. At any time
step t, if a binary variable bt

w = 1, then model w
should be selected at time step t.

𝒄

𝟎 𝟏𝟎. 𝟓

𝑐 = 1; runs all the layers𝑐 = 0; runs only the first layer

(b) Approximating Early-Exit DNN. Approx-
imating the output of an early exit DNN with
a continuous variable c that acts as a proxy to
represent the number of layers to be run of the
DNN.

1 2 3 4 5 6

Parameters 1e7

0

100

200

300

400

M
SE

EfficientNet Model (Parameters vs. Loss)

b0

b1
b2

b3

b4 b5 b6
b7

(c) Accuracy of All the Trained EfficientNet
Models. The x and the y axis represents number
of parameters in the DNN and the MSE accu-
racy respectively. This plot shows the average
accuracy and 95% confidence interval of all the
trained EfficientNet models.

Figure 5.6: Model Selection Encoding and DNN Training

ŝt =
W−1

∑
i=0

bt
i ·gper(i, t), (5.28)

costt =
W−1

∑
i=0

bt
i ·ϒ, (5.29)

such that
W−1
∑

i=0
bt

i = 1, where ∀bt
i∈Z[0,1]

. Intuitively, if bt
w = 1 (and rest all 0), it implies that the model 0≤

w≤W −1 has been selected at time step t; i.e., ŝt = gper(w, t) with costt = costper(w). Let b denote the set of

Boolean variables required to encode the model choices up-to time step H. b= {b0
0,b

0
1, . . . ,b

0
W−1,b

1
0, . . .b

1
W−1,

. . . , bH−1
W−1}. Note that, clearly, c and b are equivalent (Section 5.2.6.2). Using this idea, one can encode ŝc as

follows (simply by replacing the elements ŝt in ŝc):

ŝc =
[

W−1
∑

i=0
b0

i ·gper(i,0) ···
W−1
∑

i=0
bt

i ·gper(i,t) ···
W−1
∑

i=0
bH−1

i ·gper(i,H−1)
]⊤

. (5.30)

Therefore, ŝc− s can encoded and rewritten, in terms of b, as follows:

ŝc− s = V(b) =

[
W−1

∑
i=0

b0
i ·gper(i,0)− s0 . . .

W−1

∑
i=0

bt
i ·gper(i, t)− st . . .

W−1

∑
i=0

bH−1
i ·gper(i,H−1)− sH−1

]⊤
(5.31)

159

such that ∀0≤t≤H−1
W−1
∑

i=0
bt

i = 1. Similarly, J per(c) can be encoded and overloaded with b as follows:

J per(c) = J per(b) =
H−1

∑
t=0

(
W−1

∑
i=0

bt
i · i ·ϒ

)
. (5.32)

Therefore, using Eq. (5.31) and Eq. (5.32), we provide an optimal solution to Problem 4 in Solution 1 using a

Boolean optimization problem.

Solution 1 (Solution to Problem 4). The following Boolean optimization problem provides an optimal solution

to Problem 4.

min
b

α ·
(
V(b)⊤×Ψ×V(b)

)
+β ·J per(b)

s.t. ∀t

W−1

∑
i=0

bt
i = 1

∧
∀t,ibt

i ∈ Z[0,1].

(5.33)

The Boolean optimization formulation in Solution 1, using H ·W Boolean variables, is NP-Hard.

[110, 111]

Though the proposed solution is in general NP-Hard, but for most practical cases, using off the shelf tools,

one can solve such optimization problems very efficiently using several heuristics. In particular, optimization

based solutions have been effectively used in embedded hybrid model predictive control [112], optimal

coordination of vehicles at intersections [113] etc. The same will also been witnessed in our experiments.

5.2.3 An expectation based approach to the Model Selection Problem

Consider a drone landing scenario, where the drone is expected to land in minimal control cost and

perception cost using the perception models available to the drone. The perception models take an image

of the helipad as an input and estimates the altitude form that image—this represents the perception input.

Though it is impossible to know the exact altitude estimated by a model, at a given time, a probability

distribution of the estimated-altitude (i.e., the expected estimated-altitude and the variance by a model) can

still be empirically calculated (using past data and dynamics of the drone). In other words, though we cannot

know the exact estimated-altitude of the drone by a model, at a certain time, we can still empirically compute

the expected estimated-altitude (and the variance) after the landing has been initiated, using past data and the

dynamics of the drone. It is worth recalling that provable optimality cannot be ensured in a general scenario,

that assumes zero knowledge of future environment states, without imposing any assumption. However, in

this paper, we provide a provably optimal solution to the model selection problem that outperforms current

160

model selection techniques and achieves performance that is very close to the (unrealistic) theoretical bound

utilizing only the information from distribution of perception models. The technique will be described in

detail in the rest of the section.

In Section 5.2.2 we proposed a solution to Problem 4 assuming that (ŝc−s) is known. However, in reality,

this assumption might not always hold true, for reasons such as unavailability of perception models
(
gper(·)

in Eq. (5.18)
)

or true perception input s. Whereas, a probabilistic distribution of (ŝc− s) can still be known

[114, 115, 116]. In other words, instead of various perception models
(
as in Eq. (5.18)

)
, we have various

distributions available to us at varying model costs. Formally, we assume the knowledge of the following:

(
gper(w, t)− st

)
∼ T w

t , (5.34)

costper(w) = w ·ϒ, (5.35)

where w ∈ Z[0,W−1] represents the model choice variable, ϒ ∈ R>0, and T w
t is a probability distribution

represented with the random variable Dw
t . Intuitively, D0

t represents the lowest-quality perception input

distribution (i.e. high variance and mean farther away from 0) with minimum perception cost costper(ct) = 0

(at time step t). DW−1
t represents the highest-quality perception input distribution (i.e. low variance and mean

closer to 0) with maximum perception cost costper(W −1) = (W −1) ·ϒ (at time step t). Note that we do not

impose any assumption on the distributions. However, in practice, the distributions are generally uniform

or normal as the models estimate the target variable fairly well for most of the inputs, while performing

relatively poor for some outlier cases. Given a random variable Dw
t , let the expected value be given as E [Dw

t],

and variance as Var (Dw
t). For a given choice of model w, we define the following functions:

gexp(w, t) = E [Dw
t] , (5.36)

gvar(w, t) =Var (Dw
t) . (5.37)

Informally, given a model choice w, Eq. (5.36) returns the expected difference between output of the

perception model and the true output
(
i.e. E

[
gper(w, t)− st

])
, and Eq. (5.37) returns the variance

(
i.e.

Var
(
gper(w, t)− st

))
. Similarly, we extend the operator E [·] and Var (·) to the vector (ŝc− s) in the obvious

manner, denoted as E [ŝc− s] and Var (ŝc− s) respectively (Section 5.2.6.3). Naturally, in the setting described

161

above, Problem 4 recasts itself from minimizing true total loss (see Problem 3) to minimizing expected total

loss. We formally state the problem as follows:

Problem 5 (Model Selection Problem). Given a system with dynamics as in Eq. (5.17), and perception model

distribution
(
gexp(·) and gvar(·)

)
with cost costper(·), compute a set of choices copt for H time steps, such that,

for a given α,β :

min
c∈C

E
[
α ·
(
(ŝc− s)⊤×Ψ× (ŝc− s)

)
+β ·J per(c)

]
. (5.38)

Given E [ŝc− s] = E [V(b)] and Var (ŝc− s) = Var (V(b)), Problem 5 can be solved by the following

optimization problem, proposed in Solution 2

Solution 2 (Solution to Problem 5). The following Boolean optimization problem provides an optimal solution

to Problem 5.

min
b

α ·
(
E [V(b])⊤×Ψ×E [V(b)]

)
+

α ·V ·Var (V(b))+β ·J per(b)

s.t. ∀t

W−1

∑
i=0

bt
i = 1

∧
∀t,ibt

i ∈ Z[0,1],

(5.39)

where V=

[
Ψ[0,0] Ψ[1,1] . . . Ψ[K−1,K−1]

]
, where K = p ·H is the dimension of Ψ.

Intuitively, the only difference between Eq. (5.33) (Solution 1) and Eq. (5.39) (Solution 2) is that, instead

of minimizing the total cost, it minimizes the expected total cost. Since it uses the expectation operator (E [·])

on the random variables, the extra term with variance (V) arises in Eq. (5.39) after algebraic manipulations of

random variables with the expectation operator.

Theorem 22. Solution 2 solves Problem 5, assuming the random variables Dw
t , for all t and w, are indepen-

dent. [The proof, detailed in Section 5.2.6.4, is by algebraic manipulation of Eq. (5.38)]

The Boolean optimization formulation in Solution 2, using H ·W Boolean variables, is NP-Hard.

[110, 111] We note that the proposed solution is NP-Hard; we do not not claim that the problem is NP-Hard.

The complexity class of the model selection problem is currently unknown, and is left as a future work.

Note that though we consider a more general version in Problem 5 than Problem 4, we still do not introduce

any additional variables to the optimization formulation. The only additional term is added in the objective

function, which is again linear.

162

5.2.4 A Special Subcase: Model Selection in Polynomial Time Complexity

The models that we have been considering so far were discrete, i.e., the choice of the model w in Eq. (5.18)

and Eq. (5.19) in Solution 1, are given by integer choices w ∈ Z[0,W−1]. Similarly the probabilistic models,

given in Eq. (5.34) and Eq. (5.35), in Solution 2 consider discrete choices of models, i.e., w ∈ Z[0,W−1]. In this

section, contrary to our models in Eq. (5.36), Eq. (5.37) and Eq. (5.35), we consider models in a continuous

setting. That is, we consider a continuous set of models to solve Problem 5 in polynomial time. Formally, we

consider the following models.

gc
exp(c, t) = (1− c) ·E

[
D0

t
]
+ c ·E

[
DW−1

t
]
, (5.40)

gc
var(c, t) = (1− c) ·Var

(
D0

t
)
+ c ·Var

(
DW−1

t
)
, (5.41)

where c∈R[0,1],D0
t andDW−1

t are random variables representing the least and the most accurate distributions,

as mentioned before. The cost model is given as: costc
per(c) = c ·ϒ. Intuitively, this setting assumes a linear

combination of the best and the worst possible models are available. In other words, with c = 1, we get the

best possible output
(
i.e. E

[
D0

t
]

and Var
(
D0

t
)

closer to 0
)

with cost ϒ, and vice-versa with c = 0. Despite

the fact that there are no continuous set of models available for performing perception, this approach can be

useful for approximating early-exit DNN [117, 118] and perform model selection on the resulting DNN. In

other words, we now have a DNN with N layers instead of N perception models from which to perform model

selection. Running higher number of layers would increase accuracy (at a greater cost) and vice versa. Clearly,

such a setting can also be used in model selection. Consider a scenario in which we use a linear function

to approximate the output of an early-exit DNN, with the input being a continuous variable (say, c ∈ [0,1])

that serves as a proxy for the number of layers to be run (i.e., the higher the value of c, the more layers

are run) and the output being the DNN’s output after running the number of layers indicated by the proxy

variable. By choosing the input variable appropriately, one may empirically obtain such functions—this is

also illustrated in Fig. 5.6b. Though no such provable approximation techniques exist, this can however make

the problem of model selection computationally very efficient. The computational complexity, for instance,

will be exponential in the number of layers times the time horizon when performing model selection using an

early-exit DNN with 1000 layers, however applying the aforementioned approach as a rough approximation

will decrease the complexity to polynomial time.

163

Next, we restate Problem 5 in this setting and propose a polynomial time solution. But before we proceed

to restating Problem 5, we are required to put forward the necessary artifacts. Let Cc be the set of all possible

choices. Let c =
{

c0,c1, · · · ,cH−1
}
∈ Cc be a set of choices up-to time step H−1, where ci ∈ R[0,1]. Using

this, we rewrite E [ŝc− s] by replacing the H ·W binary variables with H real variables as follows:

E [ŝc− s] = E [V(c)] =

[
(1− c0) ·E

[
D0

0
]
+ c0 ·E

[
DW−1

0

]
. . . (1− ct) ·E

[
D0

t
]
+ ct ·E

[
DW−1

0

]
. . . (1− cH−1) ·E

[
D0

H−1
]
+ cH−1 ·E

[
DW−1

H−1

]]⊤
(5.42)

Now we restate Problem 5 in a continuous setting as follows:

Problem 6 (Model Selection with Continuous Choices). Given a system with dynamics as in Eq. (5.17), and

perception model distribution
(
gc

exp(·) and gc
var(·)

)
with cost costc

per(·), compute a set of choices copt for H

time steps, such that, for a given α,β :

min
c∈C

E
[
α ·
(
(ŝc− s)⊤×Ψ× (ŝc− s)

)
+β ·J per(c)

]
(5.43)

Given E [ŝc− s] = E [V(c)] and Var (ŝc− s) = Var (V(c)), Problem 6 can be solved by the following

optimization problem, proposed in Solution 3. Intuitively, Problem 6 is very similar to Problem 5, except

that Problem 6 uses continuous set of perception models instead of a discrete set of perception models as in

Problem 5.

Solution 3 (Solution to Problem 5). The following Boolean optimization problem provides an optimal solution

to Problem 6.

min
c∈Cc

α ·
(
E [V(c])⊤×Ψ×E [V(c)]

)
+α ·V ·Var (V(c))

+β ·J per(c)

s.t. ∀tct ∈ R[0,1],

(5.44)

where V=

[
Ψ[0,0] Ψ[1,1] . . . Ψ[K−1,K−1],

]
K = p ·H is the dimension of Ψ.

164

Solution 3 is again very similar to Solution 2; it replaces the W ×H binary variables (where W is the

number of models and H is the time horizon) with H continuous variables, where each continuous variable

(between 0 to 1) represents the desired perception model at a given time step.

Theorem 23. The quadratic optimization formulation in Solution 3, using H real variables, can be solved

in polynomial time. [The proof hinges on casting the quadratic optimization problem in Solution 3 to a

semidefinite program [119]. The details of the proof is given in Section 5.2.6.5]

5.2.5 Experiments

We evaluate this approach on a photo-realistic drone landing model using visual navigation, where the

state variables are altitude, rate of change of altitude, pitch angle, and the rate of change of pitch angle, with

the input being the elevator angle. The control task is to land the aircraft using LQR control as in [108]. We

consider the model for our drone landing as in [120]. Next, we discretize the given model, in [120], and

rewrite it in form of Eq. (5.17) where the Cst part denotes the estimation error in altitude. Note that the state

of drone obtained from the mathematical model is almost never accurate, which could be due to various

uncertainties, such as wind, the motion of the landing pad (say in a water-body). Note that the difference

in state, obtained from the mathematical model and reality, is encoded by the Cst part of the dynamics as

in Eq. (5.17). To be able to estimate the true altitude (perception input) of the drone, one can use various

perception models. In the following set of experiments, we will evaluate our proposed solution to the model

selection problem. Recall that information of future perception inputs (i.e., the distributions) is necessary

since our technique guarantees provable optimality. This information in our experiments is the discrepancy

between the true altitude and the estimated altitude (as determined by the perception models) at a given

time step. The dynamics of the drone and historical data is used to experimentally determine the mean

difference and the variance at a particular time step of the perception models, even though it is impossible

to determine the precise difference (which is also not required in our setup). We follow this idea in our

subsequent experiments. A choice of perception model to be invoked, at a given step, obtained using our

proposed approach strikes an optimal balance between the control cost and the perception cost, whereas other

benchmark policies fail. To this end, we will perform the following two experiments to evaluate or proposed

optimal solution to the model selection problem:

165

1. Simulate the availability of a plethora of perception models that can estimate the true altitude of the

drone, with varying compute cost and accuracy, and evaluate our optimal model selection algorithm

(Problem 5).

2. Similar to the above case, instead of simulating the perception models, we use AirSim [109] to gather

dataset of drone landing to train EfficientNet models b0 to b7 [106] to accurately estimate the altitude

of the drone. Once we train the models, similar to above experimental setup, we use our proposed

optimal model selection solution to land the drone by balancing control cost and perception cost.

We recall that the main purpose of this experiment is to evaluate the proposed solution to check if it indeed

strikes the optimal balance between control cost and perception cost, against the following benchmarks:

1. All Small: The model with the least accuracy and compute cost is used at all time steps.

2. All Large: The model with the highest accuracy and compute cost is used at all time steps.

3. Random: At a given time step, a random model is chosen to perform the task.

4. Optimal: Our proposed model selection policy.

5. Oracle: A strategy that assumes the results of all the models are known a priori, even without invoking

the model. Note that this is an infeasible policy, we use this policy just to benchmark our proposed

policy—this also serves as a theoretical best case bound.

Using the proposed model selection policy, we want to reduce the total control cost for landing the drone

with minimal perception cost.

5.2.5.1 Drone Landing Simulation

In this subsection, we solve Problem 5 on an drone landing simulation. We perform a numerical

simulation of a drone landing from a height of 1000 meters. In addition, we numerically simulate eight

perception models that estimate the altitude of the drone. The expected accuracy of the models are numerically

simulated to follow a sigmoidal pattern as in Fig. 5.13a. In particular, we simulate distributions of perception

models as in Eq. (5.34). Note that, we train real perception models and use its distribution instead of numerical

simulation in the subsequent experiment.

166

0 20 40 60 80 100 120 140

Time

0

1

2

3

4

5

6
M

od
el

s

(a) Model Selection Sequence. The x and the
y axis represents time steps and the perception
models invoked respectively. That is, this plot
shows the perception models to be invoked at a
every time step, up-to 150 time steps.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Perception Cost 1e17

0

1

2

3

4

5

Co
nt

ro
l C

os
t

1e17

Oracle

All Small

All Large
Optimal

Random

(b) Perception Model Cost vs. Control Cost.
The control cost and perception model cost for
all the policies are shown. Clearly, our proposed
policy (Optimal) achieves an optimal balance
between control cost and perception model cost
compared to other policies.

Oracle Optimal Random All Large All Small

Policies

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Re
w

ar
ds

1e17

(c) Rewards. Total reward obtained by var-
ious policies. Clearly, our proposed strategy
(Optimal) obtains highest reward, and very
close to the infeasible Oracle policy.

Figure 5.7: Results evaluating our proposed model selection strategy (Optimal) on a numerical aircraft landing simulation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Perception Cost 1e17

0

1

2

3

4

5

Co
nt

ro
l C

os
t

1e17
Optimal
Oracle
Random
All Large
All Small

Oracle

Random

All Small

All Large

Figure 5.8: Pareto (Numerical Simulation). This plot shows how the behavior of our optimal policy changes with varying values
of α and β . Recall, higher values of α implies the model selection sequence should prioritize control cost over perception and model
cost. Whereas higher values of β implies the model selection sequence should prioritize perception model cost over control cost.

0 20 40 60 80 100 120 140

Time

0

200

400

600

800

1000

h

Oracle
Optimal
Random
All Large
All Small

Figure 5.9: Landing Trajectories (Numerical Simulation). Plot showing the change altitude happening, for landing the aircraft,
with time for various policies.

167

Once the required information is gathered, we solve Problem 5, and obtain the model selection sequence

given in Fig. 5.7a, for 150 time steps, taking 2.88 s. Note that, in this instance, model b7 was never

invoked. Since this is a safety-critical scenario of drone landing, we adjusted the parameters in a way that the

synthesized model selection sequence prioritizes the control cost above the perception cost. In order to avoid

compromising on control cost, the method assigns a large budget of perception cost (i.e., computationally

costly and accurate models may be called more frequently). In particular, we set α = 0.8 and β = 0.2, which

suggests that the control cost should receive 80% of the overall effort and the perception cost should receive

the remaining 20%. Additionally, we selected ϒ = 1e14, which stands for the factor that determines how

much the perception cost increases as the model index grows.

Now recall that this model selection sequence maximizes the reward in expectation. Therefore, to

evaluate the obtained model selection sequence, we instantiated the distribution, for all the perception models,

for 100 trials. In other words, we assign concrete values to the measurement errors according to the assumed

distribution. Once concrete values to the measurement errors are assigned, for all perception models, we

evaluate our model selection sequence for the following.

• Total perception cost and total control cost for all the polices are given in Fig. 5.7b. We clearly observe

that our model selection strategy (Optimal) outperforms all other policies, achieving low control and

perception cost. In particular, using our policy one can achieve 567.18% lower control cost in 80.72%

less perception cost than the Random policy.

• Total reward gathered by all the polices is given in Fig. 5.7c. Our policy achieves 53.26% better reward

than the second best policy (All Large), and 77% far from the infeasible Oracle policy—which also

indicates a theoretical best case bound.

• Fig. 5.8 shows the perception cost vs. control cost obtained by various policies with varying values of

α and β . Recall, a higher value of α implies the model selection sequence should prioritize control

cost over perception cost. Whereas higher values of β implies the model selection sequence should

prioritize perception model cost over control cost. In other words, the costs indicated by the orange

curve (Optimal) on the bottom-right part of Fig. 5.8 indicates a very high priority is assigned to the

control cost (tends to invoke expensive models frequently, ensuring low control cost), while the top-left

part of the plot indicates costs with higher priority on the perception cost.

168

• Finally, the trajectories of landing (change in altitude with time) obtained using various policies are

given in Fig. 5.9.

5.2.5.2 Photo-realistic Drone Landing Simulation in AirSim

Similar to the previous set of experiments, except for numerically-simulating the distribution of the

perception models, we simulate a photo-realistic drone landing sequence in AirSim using visual navigation.

Contrary to our previous set of experiments (Section 5.2.5.2), we simulate the drone landing in AirSim and

gather a dataset to train EfficientNet models b0 to b7. Our dataset contains the images captured from the

camera attached to the drone and the altitude of the drone with respect to the helipad. Further, we compute the

distribution, as in Eq. (5.34), of the trained EfficientNet models using a different dataset (than the one used

for training). Once the distribution is computed, we perform same steps as our previous experiments to solve

Problem 5 and the evaluate the solution. Next, we perform the following steps to compute the distribution of

the perception models using AirSim.

1. We setup an aircraft landing environment using a drone simulation. The drone is expected to land on a

helipad. Moreover, the environment is cluttered, there are moving objects near the helipad that might

make the perception difficult. The setup environment is shown in Fig. 5.12b (Appendix).

2. Using this setup, we gathered 2093 images as our training dataset, and 897 images as our testing

dataset, by equipping the drone with a camera. See Fig. 5.12a for an example image.

3. We then trained EfficientNet b0 to b7 on the training dataset to predict the difference in height of the

drone to the helipad. See Fig. 5.13b for training accuracy plot of EfficientNet b7. The average accuracy

of all the trained models, along with their 95% confidence interval, is given in Fig. 5.6c.

4. Once all the models are trained, we use the testing dataset to compute the distribution, as in Eq. (5.34),

for all the models. An example distribution of b7 can be found in Fig. 5.13c.

Once the distributions are obtained, we perform similar steps as before. We now solve Problem 5, and

obtain the model selection sequence given in Fig. 5.10a, for 150 time steps, taking 4.16 s. Similar to our

previous experiment, the parameters were adjusted to assign more priority to the control cost than perception

cost. In particular, we set α = 0.6, β = 0.4 (suggests that the control cost receives 60% of the overall effort

169

0 20 40 60 80 100 120 140

Time

0

1

2

3

4

5

6

7

M
od

el
s

(a) Model Selection Sequence. The x and the
y axis represents time steps and the perception
models invoked respectively. That is, this plot
shows the perception models to be invoked at a
every time step, up-to 150 time steps.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Perception Cost 1e13

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Co
nt

ro
l C

os
t

1e16

Oracle

All Small

Random

Optimal

All Large

(b) Perception Model Cost vs. Control Cost.
The control cost and perception model cost for
all the policies are shown. Clearly, our proposed
policy (Optimal) achieves an optimal balance
between control cost and perception model cost
compared to other policies.

Oracle Optimal Random All Large All Small

Policies
1.2

1.0

0.8

0.6

0.4

Re
w

ar
ds

1e16

(c) Rewards. Total reward obtained by var-
ious policies. Clearly, our proposed strategy
(Optimal) obtains highest reward, and very
close to the infeasible Oracle policy.

Figure 5.10: Results evaluating our proposed model selection strategy (Optimal) on an aircraft landing simulation in AirSim.

0 20 40 60 80 100 120 140

Time

0

200

400

600

800

1000

h

Oracle
Optimal
Random
All Large
All Small

Figure 5.11: Landing Trajectories (AirSim Simulation). Plot showing the change altitude happening, for landing the aircraft, with
time for various policies.

170

and the remaining by the perception cost), and ϒ = 1e10. Similar to our previous experiments we now

evaluate our model selection sequence over 100 trials, and observe the following:

• Total perception cost and total control cost for all the polices are given in Fig. 5.10b. We clearly observe

that our model selection strategy (Optimal) outperforms all other policies, achieving low control and

perception cost. In particular, using our policy one can achieve 38.04% lower control cost in 79.1%

less perception model cost than the Random policy.

• Total reward gathered by all the polices is given in Fig. 5.10c. Our policy achieves 13.97% better reward

than the second best policy (All Large), and just 0.3% far from the infeasible Oracle policy—it

demonstrates that the performance of our suggested optimal strategy is extremely close to the theoretical

best case bound.

• Finally, the trajectory of landing, change in altitude with time, obtained using various policies is given

in Fig. 5.11.

Limitations: In our formulation, the dynamics of the system is considered to be linear with additive

uncertainties. In our future work, we wish to extend our techniques to non-linear dynamics with more intricate

uncertainties. We note that such an extension is not straightforward (one needs to extended the closed loop

control cost formulation and encode the optimization problem in a manner that is easy for the solvers to solve

efficiently). Further, we have currently focused on LQR control using some analytical results on LQR from a

previous work. We wish to extend our technique to more control cost formulation, taking motivation from

several robotic control applications. Advancing the multiple step decision problem to swarm robotics is also

on our agenda (A scenario, where instead of a single robot, a network of robots each having access to the

same models). In a such a setup, how to allocate perception models to the robots such that optimality is

ensured. Finally, we also intend to deploy the synthesized model selection policy on a real robots in a factory

floor.

5.2.6 Detailed Analysis

5.2.6.1 Proof of Equivalence

In this section we provide a proof of Theorem 21

171

(a) Dataset. The dataset is gathered by equipping the drone
with a camera in the given environment.

Drone

Helipad

Moving Objects

(b) AirSim Environment. The environment emulates a drone landing on a helipad,
where the environment also has a lot of other fixed and moving objects.

Figure 5.12: AirSim environment and data gathering.

Proof. Problem 3 is stated as the following minimization problem:

min
c∈C

J tot(c). (5.45)

The above equation can be equivalently restated as:

min
c∈C

α ·J ctrl(c)+β ·J per(c). (5.46)

That is, copt ∈ C minimizing the above optimization problem is a solution to Problem 4.

Next, we show that minimization problem in Eq. (5.27) is equivalent to the minimization problem in

Eq. (5.46).

Consider the following equivalent formulations:

min
c∈C

α ·
(
(ŝc− s)⊤×Ψ× (ŝc− s)

)
+

β ·J per(c)
(5.47)

⇐⇒
min
c∈C

α ·
(

Jc(
µ(ŝ),s,x0

)
− Jc(u∗,s,x0

))
+

β ·J per(c) [∵ Eq. (5.26)]
(5.48)

⇐⇒
min
c∈C

α ·
(
J ctrl(c)− Jc(u∗,s,x0

))
+

β ·J per(c)
(5.49)

172

1 2 3 4 5 6
Parameters 1e7

77

78

79

80

81

82

83

84

To
p

1
Ac

cu
ra

cy

EfficientNet Suite

b0

b1

b2

b3

b4
b5

b6
b7

(a) EfficientNet Suite. (The data is taken
from [106]). What model should we dynam-
ically invoke based on a robot’s real-time
operating context?

(b) EfficientNet b7 Training Loss. The x axis
represents the epoch, and the y axis represents
the MSE loss at that epoch.

0 20 40 60 80 100 120
h (altitude)

30

20

10

0

10

pr
ed

ic
te

d
- a

ct
ua

l

Timewise Distribution of the Model b7

(c) EfficientNet b7 Distribution. The x axis
represents the altitude of the drone, and the y
axis represents the altitude, and the shaded area
(in blue) represents the corresponding distribu-
tion at that altitude.

(d) Data Gathering using AirSim

Figure 5.13: Left. EfficientNet suite accuracy trend. Right. Data Gathering using AirSim

⇐⇒

min
c∈C

α ·J ctrl(c)+β ·J per(c)︸ ︷︷ ︸
Eq. (5.46)

−

α · Jc(u∗,s,x0
)︸ ︷︷ ︸

Oracle control cost

.

(5.50)

The term α · Jc
(
u∗,s,x0

)
encoding the oracle control cost is a constant term in the objective function

of the above optimization problem, as it is independent of the optimization variable c. Note that the

objective function of the optimization formulation, in Eq. (5.50), is obtained by subtracting the constant term

α · Jc
(
u∗,s,x0

)
from the objective function of the optimization problem in Eq. (5.46). Therefore, copt ∈ C

minimizing the objective function in Eq. (5.46) also minimizes the objective function in Eq. (5.50).

5.2.6.2 Encoding with Binary Variables

In this section we show that c and b are equivalent.

Given a set of choices c=
{

w0,w1, · · · ,wH−1
}

, one can represent c using b= {b0
0,b

0
1, . . . ,b

0
W−1,b

1
0, . . .b

1
W−1, . . .b

H−1
W−1},

such that, ∀0≤t≤H−1bt
wt
= 1, and ∀0≤t≤H−1

W−1
∑

i=0
bt

i = 1.

5.2.6.3 Expectation and Variance of the Difference Vector

In this section we provide the expectation and variance of (ŝc− s)

173

E [ŝc− s] = E [V(b)] =



W−1
∑

i=0
b0

i ·E[gper(i,0)−s0]

...
W−1
∑

i=0
bt

i ·E[gper(i,t)−st]

...
W−1
∑

i=0
bH−1

i ·E[gper(i,H−1)−sH−1]


. (5.51)

Var (ŝc− s) =Var (V(b)) =

W−1
∑

i=0
b0

i ·Var(gper(i,0)−s0)

...
W−1
∑

i=0
bt

i ·Var(gper(i,t)−st)

...
W−1
∑

i=0
bH−1

i ·Var(gper(i,H−1)−sH−1)


. (5.52)

5.2.6.4 Minimizing Expectation

If the random variables areDw
t (for all t and w) are independent, the objective function given in Eq. (5.38)

can be rewritten as (see Section 5.2.6.4):

E
[
α ·
(
(ŝc− s)⊤×Ψ× (ŝc− s)

)
+β ·J per(c)

]
=

α ·
(
E [(ŝc− s)]⊤×Ψ×E [(ŝc− s)]

)
+

α ·V ·Var ((ŝc− s))+β ·J per(c).

Since ŝc− s = V(b), with constraints ∀t
W−1
∑

i=0
bt

i = 1 and ∀t,ibt
i ∈ Z[0,1], the above equation evaluates to the

following:

(
E [V(b])⊤×Ψ×E [V(b)]

)
+

α ·V ·Var (V(b))+β ·J per(b).

Finally the optimization in Eq. (5.39) is formulated by replacing the objective function with the above

equivalent function, and the added constraints.

174

Reformulation

ŝc− s =



ŝ0− s0

ŝ1− s1

...

ŝH−1− sH−1


. (5.53)

Note that each element in the vector given in Eq. (5.53) is a vector of p dimension. Therefore, the vector

(ŝc− s) can be rewritten as follows:

ŝc− s =


ŝ0[0]−s0[0]

...
ŝ0[p−1]−s0[p−1]

ŝ1[0]−s1[0]
...

ŝH−1[p−1]−sH−1[p−1]

 , (5.54)

where the r-th (0≤ r≤ p−1) element of the vector ŝt is given as ŝt [r]. As mentioned in Section 5.2.3, each

element in the vector Eq. (5.54) comes from a probability distribution; let the random variable corresponding

to ŝt [r]− st [r] be denoted as dpt+r, for given choice of model w. Therefore Eq. (5.54) can be further rewritten

as

ŝc− s =


ŝ0[0]−s0[0]

...
ŝ0[p−1]−s0[p−1]

ŝ1[0]−s1[0]
...

ŝH−1[p−1]−sH−1[p−1]

 =

 d0
d1
...

dp·H−1

= d. (5.55)

Assumption 2. Given any two random variable di, d j, for 0≤ i, j ≤ p ·H−1, they are independent.

E
[
α ·
(
(ŝc− s)⊤×Ψ× (ŝc− s)

)
+β ·J per(c)

]
(5.56)

= E
[
α ·
(

d⊤×Ψ×d
)]

+β ·J per(c) (5.57)

= α ·
p·H−1

∑
j=0

E

[
p·H−1

∑
i=0

d j ·di ·Ψ[i][j]

]
+β ·J per(c) (5.58)

For any j in the first summation, using Assumption 2, we have:

175

E

[
p·H−1

∑
i=0

d j ·di ·Ψ[i][j]

]
=

p·H−1

∑
i=0

E [d j]E [di]+Var (d j) ·Ψ[j][j]. (5.59)

Using Eq. (5.59), we rewrite Eq. (5.58) as follows:

α ·
p·H−1

∑
j=0

E

[
p·H−1

∑
i=0

d j ·di ·Ψ[i][j]

]
+β ·J per(c) (5.60)

= ∑
j
∑

i
Ψ[i][j] ·E [d j] ·E [di]+

∑
i

Ψ[i][j] ·Var (d j)+

β ·J per(c) (5.61)

= α ·
(
E [(ŝc− s)]⊤×Ψ×E [(ŝc− s)]

)
+

α ·Var ((ŝc− s))+

β ·J per(c). (5.62)

5.2.6.5 Polynomial Time Proof

Note that each element in the vector E [V(c)] is a p dimensional vector. Therefore, the vector E [V(c)]

can be unwrapped and rewritten with equivalent choice variables

c′ =
[

c′0 c′1 . . . c′p·H−1,

]⊤
(5.63)

where ∀H−1
t=0 ct = c′p·t = · · ·= c′p·t−1. Let E [V(c)] = E [V(c′)] (see Section 5.2.6.6 for details). Further,

we rewrite J per(c)
(
Eq. (5.21)

)
in terms of c′ as ℑc′; where ℑ ∈ R1×p·H can be computed easily s.t.

J per(c) = ℑc′.

176

Using the above idea, we rewrite the optimization problem in Eq. (5.44) as follows:

min
c∈Cc

α ·
(
E
[
V(c′)

]⊤×Ψ×E
[
V(c′)

])
+α ·V ·Var

(
V(c′)

)
+β ·J per(c′)

s.t. ∀0≤t≤H−1∀1≤r≤p−1 W⊤t,rc
′ = 0

∀0≤t≤H−1 0≤ E⊤t c′ ≤ 1,

(5.64)

where: Wt,r is column matrix of size pH with all zeros, except Wt,r[pt+(r−1)] = 1 and Wt,r[pt+r] =−1;

Et is column matrix of size pH with all zeros, except Et [t] = 1. Intuitively, the first constraint encodes ∀H−1
t=0

c′p·t = · · ·= c′p·t−1, and the second constraint ensures that choice variables are in R[0,1].

Note that for a given t, E
[
D0

t
]

and E
[
DW−1

t
]

are also a p dimensional vector. Let the r-th element of

these vectors be denoted as E
[
D0

t
]
[r] and E

[
DW−1

t
]
[r]. Let E

[
D0

t
]
[r] = Γ0

pt+r and E
[
DW−1

t
]
[r] = Γ1

pt+r.

Now we can rewrite E [V(c)] with c′ as follows:

E [ŝc− s] = E
[
V(c′)

]
=


(1−c′0)·Γ0

0+c′0·Γ1
0

...
(1−c′pt+r)·Γ0

pt+r+c′t ·Γ1
pt+r

...
(1−c′pH−1)·Γ0

pH−1+c′pH−1·Γ1
pH−1

 .

Note that the term, α ·
(
E [V(c′)])⊤×Ψ×E [V(c′)]

)
, in Eq. (5.64), has quadratic, linear and constant

terms in c′. Following simple algebraic steps to separate the quadratic, linear and constant terms, we can

restate the optimization formulation in Eq. (5.64), in its canonical form, as follows (the steps are provided in

Section 5.2.6.7):

min
c′

c′⊤Ψ
′c′+(L+R+β ·ℑ)c′+K+K2

s.t. ∀0≤t≤H−1∀0≤r≤p−1 W⊤t,rc
′ = 0

∀0≤t≤H−1 0≤ E⊤t c′ ≤ 1,
(5.65)

where Ψ′ is a matrix with elements: Ψ′[i][j] = α ·
(
Γ0

i Γ0
j +Γ0

i Γ1
j +Γ1

i Γ0
j +Γ1

i Γ1
j
)
·Ψ[i][j]. L is the linear

term (in variables c′) after evaluating the term α ·
(
E [V(c′])⊤×Ψ×E [V(c′)]

)
, and K is the constant term.

177

Let α ·V ·Var (V(c′)) =R· c′+K2. Note that, we only evaluated the quadratic terms Ψ′ (and not the linear

and constant terms) because the complexity of a quadratic programming is dependent on the quadratic term

[119, 110, 111].

Theorem 24. Ψ′ is a positive semidefine matrix.

Proof. Let, Ψ′ = Φ ◦Ψ, where Φ[i][j] = Γ0
i Γ0

j +Γ0
i Γ1

j +Γ1
i Γ0

j +Γ1
i Γ1

j , and A ◦B denotes the Hadamard

product of the two matrices A and B.

We note that Ψ is a positive semi-definite matrix [108]. Further, Ψ′ is obtained by multiplying each

element of the matrix Ψ with a factor constituting of terms from from the perception model. Imposing some

practical assumptions of Φ (formally stated in Section 5.2.6.8), we observe that Ψ′ does not differ sufficiently

from Ψ′ to lose its semi-definite property. That is, when the factors, coming from the perception model, are

multiplied with the elements of Ψ it does not lose its semi-definite property.

In other words, imposing some practical assumptions on Φ (formally stated in Section 5.2.6.8), using

perturbation theory, we get Φ to be a positive semi-definite matrix. Therefore, using Schur Product Theorem

[121, p. 479, Theorem 7.5.3], if Φ and Ψ are positive semi-definite matrices, Ψ′ = Φ◦Ψ is also positive

semi-definite.

Since Ψ′ is a positive semidefinite matrix (from Theorem 24), the optimization problem
(
as in Eq. (5.65)

)
cannot be solved in (weakly) polynomial time [122](using the well-known ellipsoid method), and thus we

propose a different technique to solve the optimization problem in polynomial time in the rest of the section.

Let Ψ′ = M⊤M [from Theorem 24]. Next, we convert the quadratic programming in Eq. (5.65) to a

semidefinite programming [123], therefore be able to solve it in polynomial time.

We rewrite the optimization problem in Eq. (5.65) as follows (Detailed steps in Section 5.2.6.9):

178

min
c′,θ

θ

s.t. ∀0≤t≤H−1∀1≤r≤p−1

[
1 0
0 −W⊤t,rc′

]
⪰ 0

∀0≤t≤H−1∀1≤r≤p−1

[
1 0
0 W⊤t,rc′

]
⪰ 0

∀0≤i≤pH

[
1 0
0 −1−E⊤t c′

]
⪰ 0

∀0≤i≤pH

[
I 0
0 E⊤t c′

]
⪰ 0[

I Mc′
c′⊤M⊤ −(K+K2)−(L+R+β ·ℑ)c′+θ

]
⪰ 0,

(5.66)

where, R⪰ 0 means R is a positive semidefinite matrix.

The above semidefinite programming, Eq. (5.66), can be solved in polynomial time (worst case) [119].

This concludes our polynomial time proof.

5.2.6.6 Transformation of Choice Variables

Let Cc be the set of all possible choices. Let c =
{

c0,c1, · · · ,cH−1
}
∈ Cc be a set of choices up-to time

step H−1, where ci ∈ R[0,1].

E [ŝc− s] = E [V(c)] =


(1−c0)·E[D0

0]+c0·E[DW−1
0]

...
(1−ct)·E[D0

t]+ct ·E[DW−1
0]

...
(1−cH−1)·E[D0

H−1]+cH−1·E[DW−1
H−1]

 . (5.67)

Note that for a given t, E
[
D0

t
]

and E
[
DW−1

t
]

are also a p dimensional vector. Let the r-th element of

these vectors be denoted as E
[
D0

t
]
[r] and E

[
DW−1

t
]
[r]. Let E

[
D0

t
]
[r] = Γ0

pt+r and E
[
DW−1

t
]
[r] = Γ1

pt+r.

Now we can rewrite Eq. (5.67) with c′ as follows:

E [ŝc− s] = E [V(c)] =



(1−c0)·Γ0
0+c0·Γ1

0
...

(1−c0)·Γ0
p−1+c0·Γ1

p−1

...
(1−cH−1)·Γ0

p(H−1)+cH−1·Γ1
p(H−1)

...
(1−cH−1)·Γ0

pH−1+cH−1·Γ1
pH−1


. (5.68)

We further note that a choice scalar variable ct (Or, 1− ct) is multiplied with the vector Γk
t in Eq. (5.68).

Similar to the above process, we can create copies of the scalar variable ct as follows:

179

ct ·Γk
t =

[
ct ·Γk

t ct ·Γk
t+1 · · · ct ·Γk

t+p−1

]⊤
(5.69)

=

[
c′t ·Γk

t c′t+1 ·Γk
t+1 · · · c′t+p−1 ·Γk

t+p−1

]⊤
, (5.70)

where ct = c′t = · · ·= c′t+p−1. Using this process of unwrapping of vectors Γk
t and ct to scalars, we rewrite

Eq. (5.68) as follows:

E [ŝc− s] = E [V(c)] =


(1−c′0)·Γ0

0+c′0·Γ1
0

...
(1−c′pt+r)·Γ0

pt+r+c′t ·Γ1
pt+r

...
(1−c′pH−1)·Γ0

pH−1+c′pH−1·Γ1
pH−1

 , (5.71)

where ∀H−1
t=0 c′p·t = · · ·= c′p·t−1, and ∀tc′t ∈ R[0,1].

5.2.6.7 Canonical Form

The objective function in Eq. (5.64) formulation can be rewritten as:

α ·
(
E
[
V(c′)

]⊤×Ψ×E
[
V(c′)

])
+

α ·V ·Var
(
V(c′)

)
+β ·J per(c′) = (5.72)

α ·
(
E
[
V(c′)

]⊤×Ψ×E
[
V(c′)

])
+

R· c′+K2 +β ·ℑc′ = (5.73)(
pH

∑
i=0

pH

∑
j=0

E
[
V(c′)

]
[i] ·E

[
V(c′)

]
[j] ·α ·Ψ[i][j]︸ ︷︷ ︸

c-term

)

+R· c′+K2 +β ·ℑc′, (5.74)

where α ·V ·Var (V(c′)) = R · c′+K2, and J per(c) = ℑc′. Note that, the c-term in Eq. (5.74) has

quadratic, linear and constant terms in variables c′. Therefore, we rewrite Eq. (5.74) as follows:

180

(
pH

∑
i=0

pH

∑
j=0

c′i · c′j ·α ·
(
Γ

0
i Γ

0
j +Γ

0
i Γ

1
j +Γ

1
i Γ

0
j +Γ

1
i Γ

1
j
)
·Ψ[i][j]

)

+Lc′+K+R· c′+K2 +β ·ℑc′, (5.75)

where Lc′ is the linear term (in variables c′) after evaluating the c-term in Eq. (5.74), and K is the

constant term. Note that we only evaluated the quadratic terms (and not the linear and constant term) because

the complexity of a quadratic programming is dependent on the quadratic term [119, 111, 110].

5.2.6.8 The Quadratic Matrix is a Positive Semidefinite

Let, Φ ∈ Rp·H×p·H be as follows:

Φ[i][j] = Γ
0
i Γ

0
j +Γ

0
i Γ

1
j +Γ

1
i Γ

0
j +Γ

1
i Γ

1
j . (5.76)

Therefore, Ψ′ = Φ◦Ψ, where A◦B, denotes the Hadamard product of two matrices A and B.

Let δ = meani, j
{

Φ[i][j]
}

. We define a matrix, ∆ ∈ Rp·H×p·H , of same element, i.e., ∀i, j∆[i][i] = δ .

Therefore, we write Φ as follows:

Φ = ε̃I +∆︸ ︷︷ ︸
Φc

+



ε0,0− ε̃ ε1,1 · · · ε0,p·H−1

ε1,0 ε1,1− ε̃ · · · ε1,p·H−1

...
...

. . .
...

εp·H−1,0 εp·H−1,1 · · · εp·H−1,p·H−1− ε̃


︸ ︷︷ ︸

Φδ

, (5.77)

where I ∈ Rp·H×p·H is an identity matrix, ε̃ > 0, εi, j =
(
Γ0

i Γ0
j +Γ′0i Γ1

j +Γ1
i Γ′0j +Γ1

i Γ1
j
)
−δ .

Note that ∆ is singular but Φc is non-singular; this being the main reason to include the term ε̃I in

Eq. (5.77), as it will be used in our further proofs.

We assume the following on the perception model:

Assumption 3.
||Φδ ||2
||Φc||2

≤ 1
κ(Φc)

(5.78)

181

Where κ(Φc) is defined as the condition number of a matrix, κ(Φc) = ||Φc||2 · ||Φ−1
c ||2.

If the assumption in Assumption 3 is satisfied, we get Φ to be a positive semi-definite matrix, from

perturbation theory.

5.2.6.9 Casting to a Semidefinite Program

The optimization formulation given in Eq. (5.65) can be rewritten as:

min
c′,θ

θ

s.t. ∀0≤t≤H−1∀1≤r≤p−1 W⊤t,rc
′ = 0

∀0≤t≤H−1 0≤ E⊤t c′ ≤ 1

c′⊤Ψ
′c′+(L+R+β ·ℑ)c′+K+K2−θ ≤ 0.

(5.79)

We further rewrite the above optimization as follows:

min
c′,θ

θ

s.t. ∀0≤t≤H−1∀1≤r≤p−1 W⊤t,rc
′ ≤ 0

∀0≤t≤H−1∀1≤r≤p−1 −W⊤t,rc
′ ≤ 0,

∀0≤t≤H−1 E⊤t c′−1≤ 0

∀0≤t≤H−1 −E⊤t c′ ≤ 0

c′⊤Ψ
′c′+(L+R+β ·ℑ)c′+K+K2−θ ≤ 0.

(5.80)

Let Ψ′ = M⊤M [∵ Theorem 24].

Next, we express the optimization formulation in Eq. (5.80) as a standard semidefinite programming

[123].

182

min
c′,θ

θ

s.t. ∀0≤t≤H−1∀1≤r≤p−1

[
1 0
0 −W⊤t,rc′

]
⪰ 0

∀0≤t≤H−1∀1≤r≤p−1

[
1 0
0 W⊤t,rc′

]
⪰ 0

∀0≤i≤pH

[
1 0
0 −1−E⊤t c′

]
⪰ 0

∀0≤i≤pH

[
I 0
0 E⊤t c′

]
⪰ 0[

I Mc′
c′⊤M⊤ −(K+K2)−(L+R+β ·ℑ)c′+θ

]
⪰ 0,

(5.81)

where, R⪰ 0 means R is a positive semidefinite matrix.

183

Bibliography

Bineet Ghosh, Clara Hobbs, Shengjie Xu, Parasara Sridhar Duggirala, James H. Anderson, P. S. Thiagarajan,

and Samarjit Chakraborty. Statistical hypothesis testing of controller implementations under timing

uncertainties. In 2022 IEEE 28th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), pages 11–20, 2022.

Gary Doran, Steven Lu, Lukas Mandrake, and Kiri Wagstaff. Mars orbital image (HiRISE) labeled data set

version 3, 2019.

Manabu Nakanoya, Sandeep Chinchali, Alexandros Anemogiannis, Akul Datta, Sachin Katti, and Marco

Pavone. Task-relevant representation learning for networked robotic perception. CoRR, abs/2011.03216,

2020.

Naghmeh Niknejad, Waidah Binti Ismail, Abbas Mardani, Huchang Liao, and Imran Ghani. A comprehensive

overview of smart wearables: The state of the art literature, recent advances, and future challenges. Eng.

Appl. Artif. Intell., 90(C), 2020.

Veton Këpuska and Gamal Bohouta. Next-generation of virtual personal assistants (microsoft cortana, apple

siri, amazon alexa and google home). In IEEE 8th Annual Computing and Communication Workshop

and Conference (CCWC), 2018.

Mengyu Fu, Alan Kuntz, Robert J. Webster, and Ron Alterovitz. Safe motion planning for steerable needles

using cost maps automatically extracted from pulmonary images. In 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2018.

Clara Hobbs, Debayan Roy, Parasara Sridhar Duggirala, F. Donelson Smith, Soheil Samii, James H. Anderson,

and Samarjit Chakraborty. Perception computing-aware controller synthesis for autonomous systems.

In Design, Automation Test in Europe Conference Exhibition (DATE), 2021.

M. Maggio et al. Control-System Stability Under Consecutive Deadline Misses Constraints. In 32nd

Euromicro Conference on Real-Time Systems (ECRTS), 2020.

184

Petter Nilsson, Omar Hussien, Ayca Balkan, Yuxiao Chen, Aaron D. Ames, Jessy W. Grizzle, Necmiye Ozay,

Huei Peng, and Paulo Tabuada. Correct-by-construction adaptive cruise control: Two approaches. IEEE

Transactions on Control Systems Technology, 24(4):1294–1307, 2016.

Victor Gan, Guy Albert Dumont, and Ian Mitchell. Benchmark problem: A PK/PD model and safety

constraints for anesthesia delivery. In ARCH@CPSWeek, volume 34 of EPiC Series in Computing,

pages 1–8. EasyChair, 2014.

Ratan Lal and Pavithra Prabhakar. Bounded error flowpipe computation of parameterized linear systems. In

Alain Girault and Nan Guan, editors, Proceedings of the 2015 International Conference on Embedded

Software (EMSOFT 2015), pages 237–246. IEEE, 2015.

Masaki Waga, Étienne André, and Ichiro Hasuo. Model-bounded monitoring of hybrid systems. ACM

Transactions on Cyber-Physical Systems, 6(4):30:1–30:26, November 2022.

Antoine Girard. Reachability of uncertain linear systems using zonotopes. In Proceedings of the 8th

International Conference on Hybrid Systems: Computation and Control, HSCC’05, page 291–305,

Berlin, Heidelberg, 2005. Springer-Verlag.

Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In Manfred Morari and Lothar

Thiele, editors, Hybrid Systems: Computation and Control, pages 258–273, Berlin, Heidelberg, 2005.

Springer Berlin Heidelberg.

Stanley Bak and Parasara Sridhar Duggirala. Hylaa: A tool for computing simulation-equivalent reachability

for linear systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation

and Control, HSCC ’17, page 173–178, New York, NY, USA, 2017. Association for Computing

Machinery.

Colas Guernic and Antoine Girard. Reachability analysis of linear systems using support functions. Nonlinear

Analysis: Hybrid Systems, 4, 05 2010.

Bineet Ghosh and Parasara Sridhar Duggirala. Robust reachable set: Accounting for uncertainties in linear

dynamical systems. ACM Trans. Embed. Comput. Syst., 18(5s), oct 2019.

Bineet Ghosh and Parasara Sridhar Duggirala. Robustness of safety for linear dynamical systems: Symbolic

and numerical approaches. Technical Report 2109.07632, arXiv, 2021.

185

Bineet Ghosh and Parasara Sridhar Duggirala. Reachability of linear uncertain systems: Sampling based

approaches, 2021.

Raena Farhadsefat, Jirı Rohn, and Taher Lotfi. Norms of interval matrices. 2011.

Matthias Althoff, Colas Le Guernic, and Bruce H Krogh. Reachable set computation for uncertain time-

varying linear systems. In Proceedings of the 14th international conference on Hybrid systems: compu-

tation and control, pages 93–102, 2011.

Pierre-Jean Meyer, Alex Devonport, and Murat Arcak. Tira: Toolbox for interval reachability analysis. In

Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control,

HSCC ’19, page 224–229, New York, NY, USA, 2019. Association for Computing Machinery.

Wikipedia contributors. Singular value decomposition — Wikipedia, the free encyclopedia, 2021. [Online;

accessed 27-March-2021].

Torsten Söderström. Perturbation results for singular values. Technical Report 1999-001, Department of

Information Technology, Uppsala University, April 1999.

Bo Kågström. Bounds and perturbation bounds for the matrix exponential. BIT Numerical Mathematics,

17(1):39–57, 1977.

Charles Van Loan. The sensitivity of the matrix exponential. SIAM Journal on Numerical Analysis, 14(6):971–

981, 1977.

Bineet Ghosh and Étienne André. Offline and online monitoring of scattered uncertain logs using uncertain

linear dynamical systems. In Mohammad Reza Mousavi and Anna Philippou, editors, Formal Techniques

for Distributed Objects, Components, and Systems, pages 67–87, Cham, 2022. Springer International

Publishing.

Bineet Ghosh and Étienne André. Offline and online energy-efficient monitoring of scattered uncertain logs

using a bounding model, 2022.

Bineet Ghosh and Étienne André. MoULDyS: Monitoring of autonomous systems in the presence of uncertain-

ties, 2023.

186

Antoine Girard. Reachability of uncertain linear systems using zonotopes. In International Workshop on

Hybrid Systems: Computation and Control, pages 291–305. Springer, 2005.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo

Ripado, Antoine Girard, Thao Dang, and Oded Maler. Spaceex: Scalable verification of hybrid systems.

In International Conference on Computer Aided Verification, pages 379–395. Springer, 2011.

Stanley Bak and Parasara Sridhar Duggirala. Hylaa: A tool for computing simulation-equivalent reachability

for linear systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation

and Control, pages 173–178, 2017.

Debayan Roy, Licong Zhang, Wanli Chang, Dip Goswami, Birgit Vogel-Heuser, and Samarjit Chakraborty.

Tool integration for automated synthesis of distributed embedded controllers. ACM Trans. Cyber-Phys.

Syst., 6(1), nov 2021.

Sumana Ghosh, Arnab Mondal, Debayan Roy, Philipp H. Kindt, Soumyajit Dey, and Samarjit Chakraborty.

Proactive feedback for networked cps. In Proceedings of the 36th Annual ACM Symposium on Applied

Computing, SAC ’21, page 164–173, New York, NY, USA, 2021. Association for Computing Machinery.

Hao Liu, Ben Niu, and Jiahu Qin. Reachability analysis for linear discrete-time systems under stealthy cyber

attacks. IEEE Transactions on Automatic Control, 66(9):4444–4451, 2021.

Jiangnan Cheng, Marco Pavone, Sachin Katti, Sandeep Chinchali, and Ao Tang. Data sharing and compression

for cooperative networked control. Advances in Neural Information Processing Systems, 34, 2021.

Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of a matrix,

twenty-five years later. SIAM review, 45(1):3–49, 2003.

Aditya Zutshi, Sriram Sankaranarayanan, and Ashish Tiwari. Timed relational abstractions for sampled data

control systems. In International Conference on Computer Aided Verification, pages 343–361. Springer,

2012.

Parasara Sridhar Duggirala and Mahesh Viswanathan. Parsimonious, simulation based verification of linear

systems. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification (CAV), 2016.

187

Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent reachability of large linear systems with

inputs. In International Conference on Computer Aided Verification, pages 401–420. Springer, 2017.

Sadra Sadraddini and Russ Tedrake. Linear encodings for polytope containment problems, 2019.

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni

Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,

Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,

Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef

Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald,

Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

Fredrik Johansson et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic (version

0.18), December 2013. http://mpmath.org/.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020.

Pythonrobotics. https://pythonrobotics.readthedocs.io/en/latest/.

Bineet Ghosh, Sandeep Chinchali, and Parasara Sridhar Duggirala. Interpretable trade-offs between robot

task accuracy and compute efficiency. In 2021 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 5364–5371, 2021.

Olaf Stursberg and Bruce H. Krogh. Efficient representation and computation of reachable sets for hybrid

systems. In Hybrid Systems: Computation and Control (HSCC), 2003.

R. Diwakaran et al. Analyzing neighborhoods of falsifying traces in cyber-physical systems. In 8th

International Conference on Cyber-Physical Systems (ICCPS), 2017.

G. C. Calafiore and M. C. Campi. The scenario approach to robust control design. IEEE Transactions on

Automatic Control, 51(5):742–753, 2006.

Bai Xue et al. Pac model checking of black-box continuous-time dynamical systems, 2020.

188

https://pythonrobotics.readthedocs.io/en/latest/

André Platzer and Edmund M. Clarke. Formal verification of curved flight collision avoidance maneuvers: A

case study. In Formal Methods (FM), 2009.

Nicole Chan and Sayan Mitra. Verifying safety of an autonomous spacecraft rendezvous mission. In ARCH17.

4th International Workshop on Applied Verification of Continuous and Hybrid Systems.

Nikolaos Kekatos et al. Lane change maneuver for autonomous vehicles (benchmark proposal). In ARCH18.

5th International Workshop on Applied Verification of Continuous and Hybrid Systems.

S. Kaynama and C. Tomlin. Benchmark: Flight envelope protection in autonomous quadrotors. 2014.

Hongxu Chen et al. Motor-transmission drive system: a benchmark example for safety verification. In

ARCH14-15. 1st and 2nd International Workshop on Applied veRification for Continuous and Hybrid

Systems, 2015.

Thomas Heinz et al. Benchmark: Reachability on a model with holes. In ARCH14-15. 1st and 2nd

International Workshop on Applied veRification for Continuous and Hybrid Systems, 2015.

Anna-Kathrin Kopetzki, Bastian Schürmann, and Matthias Althoff. Methods for order reduction of zonotopes.

In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 5626–5633, 2017.

Xuejiao Yang and Joseph K. Scott. A comparison of zonotope order reduction techniques. Automatica,

95:378–384, 2018.

MoULDyS installation guide. https://www.github.com/bineet-coderep/MoULDyS/blob/main/

documentation/installation guide.md, 2022.

MoULDyS user guide. https://www.github.com/bineet-coderep/MoULDyS/blob/main/

documentation/user guide.pdf, 2022.

Bineet Ghosh, Clara Hobbs, Shengjie Xu, Parasara Sridhar Duggirala, James H. Anderson, P. S. Thiagarajan,

and Samarjit Chakraborty. Statistical verification of autonomous system controllers under timing

uncertainties. 2023.

Clara Hobbs, Bineet Ghosh, Shengjie Xu, Parasara Sridhar Duggirala, and Samarjit Chakraborty. Safety

analysis of embedded controllers under implementation platform timing uncertainties. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 41(11):4016–4027, 2022.

189

https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/installation_guide.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/installation_guide.md
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/user_guide.pdf
https://www.github.com/bineet-coderep/MoULDyS/blob/main/documentation/user_guide.pdf

Shengjie Xu, Bineet Ghosh, Clara Hobbs, P. S. Thiagarajan, and Samarjit Chakraborty. Safety-aware flexible

schedule synthesis for cyber-physical systems using weakly-hard constraints. In Proceedings of the 28th

Asia and South Pacific Design Automation Conference, ASPDAC ’23, page 46–51, New York, NY, USA,

2023. Association for Computing Machinery.

Shengjie Xu, Bineet Ghosh, Clara Hobbs, P.S Thiagarajan, Prachi Desai, and Samarjit Chakraborty. Safety-

aware implementation of control tasks via scheduling with period boosting and compressing. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems.

Shengjie Xu, Bineet Ghosh, Clara Hobbs, Enrico Fraccaroli, Parasara Sridhar Duggirala, and Samarjit

Chakraborty. Statistical approach to efficient and deterministic schedule synthesis for cyber-physical

systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

M. Fisher et al. Verifying autonomous systems. Commun. ACM, 56(9):84–93, 2013.

J. Wing. Trustworthy AI. Commun. ACM, 64(10):64–71, 2021.

L. Dennis and M. Fisher. Verifiable self-aware agent-based autonomous systems. Proc. IEEE, 108(7):1011–

1026, 2020.

Alejandro Masrur, Sebastian Drössler, Thomas Pfeuffer, and Samarjit Chakraborty. VM-based real-time

services for automotive control applications. In 16th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA), 2010.

P. Axer et al. Building timing predictable embedded systems. ACM Trans. Embedded Comput. Syst.,

13(4):82:1–82:37, 2014.

L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time Systems, 28(2-3):157–177, 2004.

R. Wilhelm. Real time spent on real time. Commun. ACM, 63(10):54–60, 2020.

P. Pazzaglia et al. Beyond the weakly hard model: Measuring the performance cost of deadline misses. In

30th Euromicro Conference on Real-Time Systems (ECRTS), 2018.

D. Soudbakhsh et al. Co-design of arbitrated network control systems with overrun strategies. IEEE Trans.

Control. Netw. Syst., 5(1):128–141, 2018.

190

R. Blind and F. Allgöwer. Towards networked control systems with guaranteed stability: Using weakly hard

real-time constraints to model the loss process. In 54th IEEE Conference on Decision and Control

(CDC), 2015.

D. Liberzon. Switching in systems and control. Springer, 2003.

W. Zhang et al. Stability of networked control systems. IEEE Control Systems Magazine, 21(1):84–99, 2001.

Matthew O’Kelly, Hongrui Zheng, Dhruv Karthik, and Rahul Mangharam. F1tenth: An open-source

evaluation environment for continuous control and reinforcement learning. Proceedings of Machine

Learning Research, 123:77–89, 2020.

R. Kass and A. Raftery. Bayes factors. Journal of the American Statistical Association, 90(430):773–795,

1995.

O. Bernardi and O. Giménez. A linear algorithm for the random sampling from regular languages. Algorith-

mica, 62:130–145, 2010.

Karl J. Åström and Björn Wittenmark. Computer-Controlled Systems (3rd Ed.). Prentice-Hall, Inc., USA,

1997.

Willem Hagemann. Reachability analysis of hybrid systems using symbolic orthogonal projections. In Armin

Biere and Roderick Bloem, editors, Computer Aided Verification (CAV), 2014.

Sadra Sadraddini and Russ Tedrake. Linear encodings for polytope containment problems. In 2019 IEEE

58th Conference on Decision and Control (CDC), 2019.

Antoine Girard. Reachability of uncertain linear systems using zonotopes. In Proceedings of the 8th

International Conference on Hybrid Systems: Computation and Control (HSCC), 2005.

Komei Fukuda. From the zonotope construction to the minkowski addition of convex polytopes. Journal of

Symbolic Computation, 38(4):1261–1272, 2004. Symbolic Computation in Algebra and Geometry.

P. Flajolet et al. A calculus for the random generation of labelled combinatorial structures. Theoretical

Computer Science, 132(1):1–35, 1994.

Robert A Gabel and Richard A Roberts. Signals and linear systems. John Wiley & Sons, USA, 1991.

191

Bineet Ghosh, Masaad Khan, Adithya Ashok, Sandeep Chinchali, and Parasara Sridhar Duggirala. Dynamic

selection of perception models for robotic control, 2022.

Sandeep Chinchali, Apoorva Sharma, James Harrison, Amine Elhafsi, Daniel Kang, Evgenya Pergament,

Eyal Cidon, Sachin Katti, and Marco Pavone. Network offloading policies for cloud robotics: A

learning-based approach. In Proceedings of Robotics: Science and Systems, Freiburg im Breisgau,

Germany, June 2019.

Akhlaqur Rahman, Jiong Jin, Antonio Cricenti, Ashfaqur Rahman, and Manoj Panda. Motion and connectivity

aware offloading in cloud robotics via genetic algorithm. In GLOBECOM 2017-2017 IEEE Global

Communications Conference, pages 1–6. IEEE, 2017.

Maya Cakmak and Andrea L Thomaz. Designing robot learners that ask good questions. In 2012 7th

ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 17–24. IEEE, 2012.

David Whitney, Eric Rosen, James MacGlashan, Lawson LS Wong, and Stefanie Tellex. Reducing errors

in object-fetching interactions through social feedback. In 2017 IEEE International Conference on

Robotics and Automation (ICRA), pages 1006–1013. IEEE, 2017.

Krishnanand N Kaipa, Akshaya S Kankanhalli-Nagendra, Nithyananda B Kumbla, Shaurya Shriyam,

Srudeep Somnaath Thevendria-Karthic, Jeremy A Marvel, and Satyandra K Gupta. Enhancing robotic

unstructured bin-picking performance by enabling remote human interventions in challenging perception

scenarios. In 2016 IEEE International Conference on Automation Science and Engineering (CASE),

pages 639–645. IEEE, 2016.

Amir Erfan Eshratifar and Massoud Pedram. Runtime deep model multiplexing for reduced latency and

energy consumption inference. In 2020 IEEE 38th International Conference on Computer Design

(ICCD), pages 263–270. IEEE, 2020.

Nicolai Dorka, Johannes Meyer, and Wolfram Burgard. Modality-buffet for real-time object detection. In

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 10543–10549,

2020.

Thinh Quang Dinh, Quang Duy La, Tony QS Quek, and Hyundong Shin. Learning for computation offloading

in mobile edge computing. IEEE Transactions on Communications, 66(12):6353–6367, 2018.

192

Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus. Data-dependent

coresets for compressing neural networks with applications to generalization bounds. In International

Conference on Learning Representations, 2019.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning for

efficient neural networks. In 8th International Conference on Learning Representations, ICLR 2020,

Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal coresets for least-squares

regression. IEEE Transactions on Information Theory, 59(10):6880–6892, 2013.

Kyle D. Julian, Ritchie Lee, and Mykel J. Kochenderfer. Validation of image-based neural network con-

trollers through adaptive stress testing. In 2020 IEEE 23rd International Conference on Intelligent

Transportation Systems (ITSC), pages 1–7, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

X-plane 11. https://www.x-plane.com/.

Sydney M. Katz, Anthony Corso, Sandeep Chinchali, Amine Elhafsi, Apoorva Sharma, Marco Pavone,

and Mykel J. Kochenderfer. Nasa uli aircraft taxi dataset, 2021. Stanford Research Data, https:

//purl.stanford.edu/zz143mb4347.

Bineet Ghosh, Sandeep Chinchali, and P. S. Duggirala. Interpretable trade-offs between robot task accuracy

and compute efficiency. Technical report, University of North Carolina at Chapel Hill, 2021.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In

ICML, 2019.

Bineet Ghosh et al. Interpretable trade-offs between robot task accuracy and compute efficiency. In IROS,

2021.

Jiangnan Cheng et al. Data sharing and compression for cooperative networked control. Advances in Neural

Information Processing Systems, 34, 2021.

193

https://www.x-plane.com/
https://purl.stanford.edu/zz143mb4347
https://purl.stanford.edu/zz143mb4347

Shital Shah et al. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field and

Service Robotics. Springer International Publishing, 2018.

Sartaj Sahni. Computationally related problems. SIAM J. Comput., 3, 1974.

P. M. Pardalos and S. A. Vavasis. Quadratic programming with one negative eigenvalue is np-hard. Journal

of Global Optimization, 1, 1991.

Alberto Bemporad and Vihangkumar V. Naik. A numerically robust mixed-integer quadratic programming

solver for embedded hybrid model predictive control. 2018. NMPC.

Robert Hult et al. An miqp-based heuristic for optimal coordination of vehicles at intersections. In IEEE

Conference on Decision and Control (CDC), 2018.

Cenk Baykal et al. Data-dependent coresets for compressing neural networks with applications to generaliza-

tion bounds. In ICLR, 2019.

Lucas Liebenwein et al. Provable filter pruning for efficient neural networks. In ICLR, 2020.

Christos Boutsidis et al. Near-optimal coresets for least-squares regression. IEEE Transactions on Information

Theory, 59, 2013.

Surat Teerapittayanon et al. Branchynet: Fast inference via early exiting from deep neural networks. In 2016

23rd International Conference on Pattern Recognition (ICPR), 2016.

Priyadarshini Panda et al. Conditional deep learning for energy-efficient and enhanced pattern recognition.

DATE ’16, 2016.

Lieven Vandenberghe et al. SIAM Review, 38, 1996.

F. Ellert and C. Merriam. Synthesis of feedback controls using optimization theory–an example. IEEE

Transactions on Automatic Control, 1963.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2 edition, 2012.

M.K. Kozlov et al. The polynomial solvability of convex quadratic programming. USSR Computational

Mathematics and Mathematical Physics, 20, 1980.

Robert M. Freund. Introduction to semidefinite programming (sdp). MIT Lecture Notes.

194

	LIST OF FIGURES
	Introduction
	Role of Uncertainties: Understanding Their Impact and Implications
	Verification of Autonomous Systems
	Designing of Autonomous Systems
	Thesis
	Contributions
	Reachable set computation techniques that can account for uncertainties.
	Scalable techniques to perform safety verification of systems under uncertainties.
	Designing autonomous systems that can leverage heterogeneous compute resources optimally.

	How Robust Is Safety?
	Preliminaries
	All Uncertainties Are Not Equal: Classifying Uncertainties Based on Their Impact on Safety
	Sufficient Conditions for Representing Reachable Set of Uncertain Linear Systems using Bi-linear Inequalities
	Generalizing Sufficient Conditions for Closure of LME products
	Sufficient Conditions for Time-Varying Perturbations
	Comparing with Interval Arithmetic

	Robust Reachable Set: Introducing Perturbations in the Linear Dynamics
	Illustration

	Ordering Uncertainties Based on their Impact on Safety
	Relationship between Reachable Sets and Singular Values
	Ordering the cells of the matrix based on its sensitivity to perturbation
	Computing Robustness Threshold

	Safety Verification of Autonomous Systems in the Presence of Uncertainties
	Deterministic Approaches
	Reachability Using Perturbation Analysis
	Reachability Using Set Representations
	Case Studies

	Verifying Complex Autonomous Systems: Statistical Approaches
	Reachable Sets With Probabilistic Guarantees using Hypothesis Testing
	Statistical Verification of Candidate Reachable Sets
	Main Algorithm
	Reachable Sets Using Model Learning
	Evaluation

	Detailed Analysis
	Computational Benefits of Using Frobenius Norm Over 2-Norm
	Zonotope Based Reduction
	Bloating the Reachable Set of Mean Dynamics
	Structure Guided Reachable Set Computation
	Structure Guided Reachable Set Computation

	Singular Values based Reachable Set Computation
	Model Learning Based Reachable Set Compution
	Scenario Optimization Details
	Learning the Model

	Monitoring Autonomous Systems—Analyzing Logs to Detect a Crash
	Preliminaries
	Offline Monitoring: Analyzing Noisy Logs with Missing Samples
	What If Timestamps Are Noisy, Too?

	Online Monitoring: Gather Samples Only When Necessary
	MoULDyS: A Monitoring Tool for Autonomous Systems
	Software Architecture
	Implementation
	Software Functionalities

	Case Studies
	First benchmark: Anesthesia
	Second benchmark: Adaptive Cruise Control
	Third benchmark: Aircraft Orbiting

	Scheduling in Autonomous Systems—Handling Workloads Safely
	Effect of Timing Uncertainties on Autonomous System Controllers
	System Modeling

	The Problem Statement and a Deterministic Approach
	Quantitative Safety Analysis of Autonomous System Controllers in the Presence of Timing Uncertainties: A Statistical Approach
	Hypothesizer: Guessing an upper-bound on deviation
	Verifier and Refiner: Validating and refining the bound on deviation

	Statistical Hypothesis Testing with Sets of Initial States
	Representing Sets using Zonotopes

	Handling Environmental Disturbances
	Illustration of the Proposed Approach And Advantages of Jeffreys's Bayes Factor
	Reason for Choosing Jeffreys's Bayes Factor

	Experimental Evaluation
	Benchmarks
	RC network
	Electric steering
	Unstable second-order system
	F1Tenth

	Results
	RC network
	Electric steering
	Unstable second-order system
	F1Tenth

	General Observations

	Synthesizing Schedulers in the Presence of Timing Uncertainties

	Designing Autonomous Systems—Unlocking Performance Perfection by Smart Resource Utilization
	Choosing Between Two Compute Models
	The Compute Model Selection Problem with Two Compute Models: A Formal Definition
	Formal Problem Definition
	Discussion on the Problem Definition

	An Algorithmic Approach To Model Selection
	Analytical Results for Linear Regression
	Analytical Results for Deep Neural Networks (DNNs)

	Application Scenarios
	Linear Regression
	Compute Efficient Robotic Perception
	Reachable Set Computation
	Benchmark Algorithm

	Evaluation
	Linear Regression Results
	Deep Neural Networks (DNN)
	Reachable Set Computation

	Decision Making in Perception-Based Robots: Selecting from a Variety of Perception Models
	Problem Statment
	Perception Model
	Perception Cost and Control Cost
	Model Selection Problem

	Model Selection Problem When All the Perception Outputs are Known
	An expectation based approach to the Model Selection Problem
	A Special Subcase: Model Selection in Polynomial Time Complexity
	Experiments
	Drone Landing Simulation
	Photo-realistic Drone Landing Simulation in AirSim

	Detailed Analysis
	Proof of Equivalence
	Encoding with Binary Variables
	Expectation and Variance of the Difference Vector
	Minimizing Expectation
	Polynomial Time Proof
	Transformation of Choice Variables
	Canonical Form
	The Quadratic Matrix is a Positive Semidefinite
	Casting to a Semidefinite Program

