Building the Infinite Brain

COMP 590/790

Raghavendra Pradyumna Pothukuchi

B} raghav@cs.unc.edu



)

—

-

Q.uiCk Review ‘ Homework 2 assigned, due 9/24

Vo

Why dynamic scheduling?

To be resource efficient in exploiting instruction level parallelism

What are hardware methods for dynamic scheduling?

Scoreboarding, Tomasulo’s algorithm, speculation

What systems principles does dynamic scheduling involve?

Eager, speculation, and concurrency

What are some other methods to exploit ILP?

Software pipelining, unrolling that target static ILP



e Caches

=)

For Today




Motivation

Vo

Memory accesses are slow

Typically, 100x

Methods to regroup work (dynamic scheduling) still cannot stop clogged up pipelines: bottleneck

!

L1 Instruction Cache, 192KiB

A

Branch Execution |< Decode
8 popsl
Map and Rename
8 pops 8 pops 8 Hops | 8 Hops |
Dispatch Queue (12 Entry) Dispatch Queue (12 Entry) Dispatch Queue (10 Entry) Dispatch Queue (12 Entry)
1 yop 1 pop 1 pop 1 pop 1 yop 1 pop 4 pops 1 pop 1 pop 1 yop 1 pop
A4 Y \ 4 Y h 4 . 4 \ 4

Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler (48 Entry) Scheduler Scheduler Scheduler Scheduler
(24 Entry) (26 Entry) (16 Entry) (12 Entry) (28 Entry) (28 Entry) Ty (36 Entry) (36 Entry) (36 Entry) (36 Entry)

ALU ALU ALU ALU ALU ALU FP/SIMD FP/SIMD FP/SIMD FP/SIMD

FLAGS FLAGS FLAGS MUL MUL FCSEL FCSEL

B/BL/ADR B/BL/ADR DIV MADD STORE SL1%‘:?DE Lot 4] L ty) TO INT TO INT
MOV NzZCV MOV NZCV BFM AMX AMX DIV/RECP
MRS PTRAUTH CRC SQRT/SHA

BR/BLR FROM FP FROM FP JCVTZS

STQ (60 Entry) LRQ (130 Entry), LEQ (?) Coalesced Retire Queue (~334 Entry)

) b

L1 Data Cache, 128KiB 8-Way
(128 banks of 2B each)

Rename Retire Queue (~623 Entry)




Latency

Area/bit

Cost/bit

)

—

How To Improve Performance?

Vo

“Exploit technology”

Registers SRAM DRAM NVM

1x (tens of ps) 50x (low ns) 500x (tens of ns) 500,000% (tens of us)

1x 0.1x 0.01x 0.001x

$$$$$ $$$$ $$$ $$

Pick one?

“Yummy”: Who will buy it?

Is it “Efficient™?

“Divide and conquer” and “Fast Path”

500,000,00% (ms)

Optimize different structures for different goals, and make unwanted case uncommon



@

CPU

=

Memory Hierarchy

Program data

e_
e

Addresses in the
code




Caching

4

Organization and indexing

(address-to-entry mapping, placement, replacement)

Block (entry size, B)

=

Capacity (total size, C)



A Basic Cache

byte-addressable memory

M-bit address

T-bits

A-bits K-bits

Choice of bits can vary

Match data layout or
access patterns

K = log, B-bit offset
Spatial locality
Amortize tag overhead

L ¢
Tag array Valid Data array N entries = B
Overhead A =log,N-bit address

=

Direct-Mapped
Placement



A Basic Cache: Reads and Writes

| T-bits | A-bits | Kbis |

>
| Hit!

Tag array Valid
+ Dirty

Data

=

array

Write-through

All writes go to memory

Write-back

Writes go to memory only when
the block is moved out

‘Idz)/ »



A Basic Cache: Reads and Writes

| T-bits | A-bits | Kbis |

H : Memory
Miss! O 1

, Write-allocate
< Writes are like reads
Evict .
No write-allocate
Leave cache unchanged
Tag array Valid Datalarray
+ Dirty
Py <€ —
[} Jol



Cache Performance Metrics

/D
4

Misses per kilo instructions (MPKI)

Miss ratio

Misses

Accesses

Average memory access time (AMAT)

Thje + Miss ratioxTpjg | Recall “fast path” from Lecture 2

Average latency seen in the pipeline

11



Understanding Misses

/D
4

Compulsory misses

First reference to a block misses in the cache

Capacity misses

Cache is too small for the working set

Conflict misses

Cache blocks evicted due to mapping conflicts

12



)

)

-

Improving the Likelihood of the Fast Path

4

Compulsory misses
. . . L - o
First reference to a block misses in the cache | Sizing right is key—can hurt hits!

Prefetching Increase block size

Eager, speculation Locality

Capacity misses

Cache is too small for the working set

Increase cache size

Conflict misses

Cache blocks evicted due to mapping conflicts

Increase entries Change mapping?



=

Cache Mapping and Associativity

M-bit address
T-bits A-bits K-bits

f( = log, B-bit offset

2T conflicts to the
block!

C
N entries = —
Tag array Valid Data array cntnes =4

+ Dirty A =log, N-bit address



Cache Mapping and Associativity

M-bit address

T-bits A-bits K-bits
Valid Valid
Tag array + Dirty Data array Tag array + Dirty Data array
T-bits T-bits
i N entries per way = £ ]
Way P ST Way

A =log, N-bit set address

set

At a high level, this cache appears to have the same number of address conflicts, but overall conflict misses are fewer

Number of sets is limited by “page size” (later)

Generalize to m-way associative caches

Fully associative cache: 1 entry per way, i.e., the entire cache is 1 set

=



o o . Self stud
C aChe OP timizations Whatt drey the broader principles?

Split and unified caches

Instruction and Data

Nonblocking or Lockup-free caches

Caches don’t stall on a miss (use Miss Status Handling Registers)
Way prediction
Banking

Request critical word first (from Memory) and enable early restart (for processor)

Write merging

Software optimizations too!
16



Example from a BCI Processor (SCALO)

Scratchpads to support streamingvdataﬂow, and storage to hold data

No registers, caches or memory, but there is a cache for storage

Custom port widths and number of ports

2-entry (page)
cache: pingpong

NVM Compression Network C.IT CIT
T ol T1] JLT]
Wei Erenl LZ LIC MA RC NPACK oo
el Toncld 0 {UE | (o C,[T,] C.[T,]
ﬁ HCOMP GATE DCOMP HFREQ UNPCK
Read ADC
> Intra-BCI
4 Processor | [rado ®
Brain Hashing Storage Co[T,] Co[T,]
B
st Power Supply HCONV || NGRaMm [()| EMDH CCHCK sC
®
Signal Processing Lin Alg
FFT CSEL XCOR DTW BBF BADD BSUB
DWT NEO SBP THR SVM BMUL INV
% DWT
RISC-V uC X)| Aaes

Y

SC

)
Non-blocking

Write merging
(Write back)

(Mostly)

linear access

\4

To NVM =
Il



T ak e aways ‘ Review B3: Ch. 2 and App B.

Vo

What is caching?

A technique to minimize the impact of long memory latencies

What are the basic cache parameters?

Associativity (placement), block size, capacity, write through/back, write-allocate or no

What are the types of cache misses?

Compulsory, capacity, conflict

What are some ways in which cache performance can be improved?

Non-blocking, banking, software or hardware prefetching etc.

How to choose the right memory hierarchy design?

Tailor it to the access patterns and layout: general purpose to domain specific
Understand the relevant “systems” problems and identify solutions



)

—

Image Credits (Educational, Fair Use)

Vo

Title image: VLADGRIN, https://www.istockphoto.com/vector/human_-machine-gm147409511-16840728 (Educational fair use)

Infinite brain: Science wonder stories, May 1930, Illustrator: Frank R Paul, Editor: Hugo Gernsback

Brain color, ICs, cloud server, black rat: No attribution required (Hiclipart)

Hand with spoon: public domain freepng

Signals: https://www.nature.com/articles/nrn3724

Thought clouds: F. Willett et al./Nature 2021/Erika Woodrum, https://med.stanford.edu/neurosurgery/news/2022/bci-award. https://www.the-
scientist.com/news-opinion/brain-computer-interface-user-types-90-characters-per-minute-with-mind-68762

Picture of scientists: https://www.cs.auckland.ac.nz/~brian/rutherford8.html (original: Pierre de Latil), Bush (Carnegie Science), Others (Wikipedia,
National Academies, IEEE, and university profile images)

Flowchart: Pause08 — flaticon.com; Digital brain: Smashicons — flaticon.com; Quantum processor icons created by Paul J. - Flaticon

Server rack: upklyak - freepik.com

Arm, Lotus: Adobe stock

Quantum processor: Rigetti computing

Images of implanted users: Top: Case Western Reserve University (https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-
move-just-thinking/), Bottom: Jan Scheuermann (University of Pittsburgh/UPMC; https://www.upmc.com/media/news/bci-press-release-chocolate)
Images of wearable BCIs: Cognixion, NextMind

Types of BCIs: “Brain—computer interfaces for communication and rehabilitation,

[lustrative BCI: Neuralink

Electrodes: “Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces”, Vatsyayan et al.

Form factors: Neuropace, Medtronic, Bloomberg, “Fully Implanted Brain—Computer Interface in a Locked-In Patient with ALS” by Vansteensel et al.,
Blackrock Neurotech

Jose Delgado’s video: Online, various sources (CNN, Youtube)

Video of Kennedy and Ramsey: Online, various sources (Youtube, Neural signals)

Code snippet inspiration: ECE 252 slides at Duke (Dan Sorin et al.)

Apple processor pipeline: https://dougalli.github.io/applecpu/ﬁrestorm.html Logos’ trademarks are all properties of respective owners

Not to be shared outside the course



https://www.istockphoto.com/vector/human_-machine-gm147409511-16840728
https://www.istockphoto.com/vector/human_-machine-gm147409511-16840728
https://www.istockphoto.com/vector/human_-machine-gm147409511-16840728
https://www.istockphoto.com/vector/human_-machine-gm147409511-16840728
https://www.istockphoto.com/vector/human_-machine-gm147409511-16840728
https://www.istockphoto.com/vector/human_-machine-gm147409511-16840728
https://www.istockphoto.com/vector/human_-machine-gm147409511-16840728
https://www.nature.com/articles/nrn3724
https://med.stanford.edu/neurosurgery/news/2022/bci-award
https://med.stanford.edu/neurosurgery/news/2022/bci-award
https://med.stanford.edu/neurosurgery/news/2022/bci-award
https://www.cs.auckland.ac.nz/%7Ebrian/rutherford8.html
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://thedaily.case.edu/man-quadriplegia-employs-injury-bridging-technologies-move-just-thinking/
https://dougallj.github.io/applecpu/firestorm.html

	Building the Infinite Brain
	Quick Review
	For Today
	Motivation
	How To Improve Performance?
	Memory Hierarchy
	Caching
	A Basic Cache
	A Basic Cache: Reads and Writes
	A Basic Cache: Reads and Writes
	Cache Performance Metrics
	Understanding Misses
	Improving the Likelihood of the Fast Path
	Cache Mapping and Associativity
	Cache Mapping and Associativity
	Cache optimizations
	Example from a BCI Processor (SCALO)
	Takeaways
	Image Credits (Educational, Fair Use)

