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Abstract—As processors seek more resource efficiency, they
increasingly need to target multiple goals at the same time, such
as a level of performance, power consumption, and average uti-
lization. Robust control solutions cannot come from heuristic-
based controllers or even from formal approaches that combine
multiple single-parameter controllers. Such controllers may
end-up working against each other. What is needed is control-
theoretical MIMO (multiple input, multiple output) controllers,
which actuate on multiple inputs and control multiple outputs
in a coordinated manner.

In this paper, we use MIMO control-theory techniques to
develop controllers to dynamically tune architectural parame-
ters in processors. To our knowledge, this is the first work in
this area. We discuss three ways in which a MIMO controller
can be used. We develop an example of MIMO controller and
show that it is substantially more effective than controllers
based on heuristics or built by combining single-parameter
formal controllers. The general approach discussed here is
likely to be increasingly relevant as future processors become
more resource-constrained and adaptive.
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I. INTRODUCTION

There is an urgent need to make computer systems, and
processors in particular, increasingly resource efficient. To
be competitive, new systems need to consume less power,
use the battery better, operate at lower temperatures, and
generally avoid inefficient conditions. At the same time,
processors are built to be more adaptive, with C and P
states and extensive power management [1], [2], [3], [4],
[5], and there are a myriad of reconfiguration capabilities
under research (e.g., [6], [7], [8], [9D).

In this environment, as a program runs, we increasingly
want to target multiple goals at the same time — e.g.,
a certain application frame rate, power consumption level,
and average core utilization. To accomplish this, designers
typically develop control algorithms that try to enforce all
the constraints (e.g., [10]). Such algorithms use heuris-
tics, have rules and thresholds, and are often organized in
multiple loops — i.e., an inner loop that optimizes one
measure, surrounded by a second loop that optimizes the
next measure, and so on [2].

Unfortunately, this ad-hoc or heuristic-based approach is
generally not robust. First, it is not obvious how to build the
unified algorithm. For example, suppose that, to attain the
targets above, we can move jobs across cores and change
each core’s frequency, issue width, and load/store queue
size. It is unclear by how much and in what order we need
to change each of these parameters. Second, this approach
requires developing complex algorithms, which may end-up
being buggy. As the algorithm executes, there is the danger

that unexpected corner cases cause large deviations from the
targets.

The alternative is to design software or hardware con-
trollers using control theory [11]. With control theory, the
designer has a systematic way to quantify the knowledge
and expectations he has about the design. For example, he
knows how important each of the objectives is relative to
each other. He also knows the overhead of actuating on
different inputs. Hence, he can provide this information,
and then, proven methodologies generate a controller that
actuates on the most convenient and fastest inputs to safely
converge to the desired targets.

Control theory has been used to design controllers that
tune architectural parameters in processors (e.g. [2], [9],
[12], [13], [14], [15], [16], [17]). However, to the best of
our knowledge, in all architectural proposals, a controller
controls only a single output — e.g., the power, performance,
or utilization. Hence, these designs do not address the
general case where we want to control multiple outputs in a
coordinated manner. As a result, in a processor with multiple
controllers, each controlling a single output, we run the risk
that the separate controllers end-up working against each
other.

What is needed is what control theory calls MIMO con-
trol: a controller that actuates on multiple system inputs and
controls multiple interdependent system outputs [11]. For
example, a MIMO controller can actuate on a processor’s
frequency, issue width, and load/store queue size (system
inputs) to ensure that both the frame rate and power (system
outputs) attain certain target values. This approach ensures
the effective control of interdependent measures and, we
argue, will be key as processors become more resource-
constrained and adaptive.

In this paper, we use MIMO control-theory techniques to
develop controllers to dynamically tune architectural param-
eters in processors. To our knowledge, this is the first work
in this area. We give architectural intuition for the different
procedures involved. We discuss three ways in which a
MIMO hardware controller can be used. Specifically, a basic
use is to target a fixed set of reference values of multiple
outputs. A second use is to target a set of reference values
that change based on real-time conditions. For example, to
maximize battery life, a high-level agent can change the
target quality of service and the target power level as a
battery is being depleted. A final use is to maximize or
minimize a combination of the values of the outputs — e.g.,
the product of energy times delay squared (ExD?).

We develop an example MIMO controller that actuates



on the cache size, frequency, and reorder buffer size of a
processor, to control both the power and the performance of
the processor. We apply this controller to the three uses. We
show that it is substantially more effective than controllers
based on heuristics or built by combining single-output
formal controllers.

II. PROBLEM DESCRIPTION

In control theory, a controlled system is represented as a
feedback control loop as in Figure 1(a). The controller reads
the output y of a system in state x, compares it to the target
value yo and, based on the difference (or error), generates
the input u to actuate on the system to reduce the error.
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Figure 1: Typical feedback control loop.

Control theory has been used to design controllers that
tune architectural parameters in processors (e.g., [2], [9],
[12], [13], [14], [15], [16], [17]). To the best of our knowl-
edge, in these proposals, a controller only controls a single
output (y). Specifically, the large majority of these proposals
use a SISO design: Single Input to the system (x) and
Single Output (y) [2], [9], [15], [17]. For example, Lu et
al. [9] control the frame rate of multimedia applications by
changing the frequency. This is a limited approach.

The other designs use a MISO approach: Multiple Inputs
and Single Output. Some of them combine multiple SISO
models to generate a larger MISO controller. For example,
Wang et al. [14] control the total power of a multicore by
changing the frequencies of all the cores. The multicore’s
power is the sum of the powers of all the cores, and
each core’s power only depends on that core’s frequency.
Changing a core’s frequency (input) only impacts the power
of that core (output); it does not impact the power of all the
other cores — at least, not directly. A similar approach is
followed by others [12], [16].

One design that is intrinsically MISO is Fu et al. [13]. The
authors control the utilization of a processor by changing its
frequency and the size of its L2 cache. They embed this con-
troller inside an outer loop that uses a linear programming
solver to minimize power.

These designs do not address the general case where we
want to control multiple outputs in a coordinated manner.
For example, having three controllers, one for power, one
for performance, and one for utilization is not optimal.
These controllers may end-up working against each other
as follows. To keep the average utilization high, the utiliza-
tion controller consolidates the work into a few cores and
power-gates the rest; the resulting workload thrashing in the

cache lowers the performance, which causes the performance
controller to increase the frequency; then, the power goes
over the limit, which causes the power controller to reduce
the frequency and spread the workload into more cores. The
cycle then repeats. Overall, the system runs inefficiently and
may violate constraints.

Figure 1(b) shows our goal, MIMO control: Multiple
Inputs and Multiple Outputs [11]. The example controller
senses the frame rate and power of a processor, compares
them to their target values, and then actuates on multiple
inputs (the processor’s frequency, issue width, and load/store
queue size) to ensure both frame rate and power targets are
satisfied. Each of the inputs impacts each of the outputs.

This approach enables the designer to rank the relative
importance of the different outputs. For example, he can
declare that the power target is more critical, and the
controller will ensure that power errors are minimal. Most
importantly, this approach ensures the coordinated control
of the multiple outputs. The result is more effective control
in a resource-constrained era.

ITI. BACKGROUND
A. Overview of MIMO Control

We take a processor as our system, and abstract it as a con-
trolled system as in Figure 1(a). The system is characterized
by state x, inputs u, and outputs y. They are all a function
of time ¢. The system state x is given as an N-dimensional
vector. We assume we have [ inputs (e.g., frequency, issue
width, and 1d/st queue size) and O outputs (e.g., power and
frame rate). These measures are related as follows [11]:

z(t+1)=Axz(t) + B x u(t) (1)
y(t) = C x z(t) + D x u(t) 2)

where A, B, C, and D are matrices that characterize the
processor. They are obtained from an analytical model of
the processor or from measurements with programs running
on the processor. A is the evolution matrix, and is NxN;
B is the impact of inputs on the state, and is NxI; C is
state-to-output conversion, and is OxN; finally, D denotes
the feed-through of inputs to outputs, and is OXxI.

The characterization experiments also assess the unpre-
dictability component of the system, represented as two
matrices [11]. One encapsulates the non-determinism of the
system, possibly caused by effects such as interrupts and
unexpected program behavior changes. The other matrix
encapsulates the noise in reading the outputs — e.g., due
to inaccuracies in the power sensor. These two effects are
shown in the augmented feedback control loop of Figure 2
(together with an uncertainty effect that we discuss later).
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Figure 2: Augmented feedback control loop.




Table I: Comparing approaches for architecture tuning.

Approach | Problem formulation | Example | Design and tuning | Advantages | Shortcomings
Optimization Minimize an objective | Objective: power. Obtain a model of f(). | 1) Natural choice for | 1) Model needs to be close to re-
[18], [19] subject to constraints. | Constraint: IPC > | Use solvers at runtime | architecture. ality and convex.
The objective is a | k. to obtain the inputs. 2) Expressive. 2) No feedback.
f(inputs).
Machine input; = Input: frequency. Tune weights by spec- | 1) Data driven identifi- | 1) Hard to add feedback.
learning max([weights]y xo X Features: power, ifying the best set of | cation of relationships. 2) No guarantees.
[20], [21] [features],), where v | misses/Kinstr. input values and asso- | 2) Formal reasoning | 3) Requires exhaustive enumera-

is the # of values for
input;, and o is the #
of features.

ciated feature values.

and methodology.

tion during training.

Control theory
[12], [14]

Change inputs to make
outputs approach refer-
ence values, where out-
puts[t] = f(inputs[t,t-

Input: frequency.
Output: IPC.
Reference value:
QOSO.

Obtain the f() for out-
puts[t]. Specify several
design requirements.

1) Provides guarantees.
2) Learns from feed-
back.

3) Formal reasoning

1) Hard to obtain model.

2) Specitying reference values is

not obvious.

1,..]J,outputs[t-1,..])

and methodology.

Model-based Use a model to guide

Find the model.
to  develop
rules on top of the
Train rules to
set thresholds.

Use | 1) Model simplifies de-

cision making.
& 1) No guarantees.

2) No formal methodology.
3) Hard to add learning.
4) Prone to errors.

heuristics decisions. The model insight
[22], [23] relates outputs, inputs
and auxiliary outputs. Output: power. model.
Aux output:
Rule-based Encode in an algorithm misses/Kinstr.
heuristics decisions to choose in- | Input: frequency.
[24], [25] puts based on outputs

and auxiliary outputs.

Select rules. Train rules
to set thresholds.

1) Lightweight. 5) Hard to deal with multiple

inputs and/or outputs.

To control this system, we use a type of MIMO controller
called Linear Quadratic Gaussian (LQG) controller [11],
[26]. The LQG controller generates the system inputs, u(t),
based on the state of the system, x(¢), and the difference
in the outputs of the system from their reference (i.e.,
target) values. However, as the system’s true state is not
known, the controller begins with a state estimate and
generates the system inputs based on this estimate. The
controller refines the estimate and learns the true state by
comparing the output predicted using the state estimate and
the true output. Both estimation and system input generation
happen simultaneously and their accuracy increases with
time. The design of the LQG controller guarantees that the
estimated state converges to the unknown true state soon
and, therefore, the appropriate input values are generated to
stabilize the system’s outputs at their target values quickly.

We use LQG control because it fits the requirements
present in architectural control. Specifically, an LQG con-
troller tries to minimize the sum of the squares of a set
of costs (also called errors). Such errors are the differences
between each output and its reference value, and between
each input and the proposed new value of that input —
the controller minimizes input changes to avoid quick jerks
from steady state. These errors can be given architectural
meanings. Moreover, the designer can add weights to each
of these errors: the higher the weight, the more important
is for that error to be small. For example, the designer can
give a high weight to power errors. These weights are given
by the designer in two positive diagonal matrices [11]: the
Tracking Error Cost matrix (Q) for the outputs, and the
Control Effort Cost matrix (R) for the inputs. We give the
architecture insights in Section IV.

LQG control also allows a system to be characterized as

the combination of a deterministic part and an unknown
part that follows a Gaussian distribution. As indicated above,
this also matches architectural environments, which include
unpredictable effects. Finally, LQG control is simple and
intuitive. It has a low overhead because it only performs
simple matrix vector multiplications at runtime.

Since a processor is a very complex system, even models
generated by experimenting with many applications will be
incorrect in some cases. Hence, we add an Uncertainty factor
to the model. In practice, this means adding an additional
guardband to the parameters generated by the control theory
calculations. This is shown in Figure 2 as an extra path that
perturbs the system in a random way.

Then, we perform Robustness Analysis [11] to ensure
that the controller will work correctly with this level of
uncertainty. Robustness Analysis is a type of mathematical
analysis that analyzes every type of uncertainty that is
possible in the system (e.g., non-linearity or time variance)
and, for a given bound on the size of this uncertainty,
determines whether the system will be stable.

B. Comparing Approaches for Architecture Adaptation

Computer architects use several approaches to perform
architecture parameter tuning. We broadly classify them into
optimization, machine learning, control theory, model-based
heuristics, and rule-based heuristics. Table I compares these
approaches, outlining their problem formulation, design and
tuning method, advantages, and shortcomings.

Most of the entries in the table are self explanatory.
From the advantages and shortcomings columns, we see that
the control theory approach is the only one that: 1) uses
feedback to learn automatically at runtime, and 2) provides
three guarantees. We discuss the feedback difference more
in Section IX. The guarantees are Convergence, Stability,
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Figure 3: Proposed flowchart of the process of building a MIMO controller. Architecture-level insight is especially needed

in the hexagonal steps.

and Optimality [11]. Informally, these guarantees mean the
following. Convergence means that, if it is possible for the
outputs to take the reference (i.e., target) values, then they
will eventually reach them. Stability means that, once the
outputs converge to their reference or to the closest they
can get to them, then they exhibit no oscillatory behavior.
Optimality means that the final state of the system is optimal
according to the cost function specified by the architect.

In spite of control theory’s advantages, at least two issues
have limited its use in architecture. First, it needs a model
that gives the current output values as a function of the
current input values and some history of input and output
values. This is hard to obtain analytically. Second, control
theory approaches assume that the reference values for the
outputs are specified by a higher entity. This might be easy
in some cases, such as when targeting a Quality of Service
(QoS) requirement, but it is not so when trying to optimize
a metric — e.g., ExD?. We address these issues later.

We also note two limitations specific to the control theory
models we use here. First, in MIMO, the number of outputs
cannot be more than the number of inputs. Second, with
LQG controllers, it is not straightforward to specify a target
as “be less/more than this value”; it is easier to specify it as
“attain this value”.

IV. MIMO CONTROLLERS FOR PROCESSORS

We now propose how to design MIMO controllers for
processors. We first outline the steps, and then explain in
detail the steps that require architectural insight.

A. Steps in Controller Design

Figure 3 shows the proposed process to build a MIMO
controller, with hexagons showing steps that need architec-
tural insight. First, we select the outputs to be controlled and
the inputs that can be manipulated. Then, using architectural
insights, we decide on the relative importance of the outputs
(to generate the Q matrix), the relative overheads of the
inputs (to generate the R matrix), and the strategy for
modeling the system. The latter mainly involves choosing
how to model the system (analytically or experimentally)
and the number of dimensions of the system state x.

We model the system experimentally, performing the
experiments for black-box system identification [27], which
we describe later. We pass the experimental data to a least
square solver for a dynamic environment (running in MAT-
LAB) and generate the A, B, C, D, and two unpredictability
matrices. These matrices constitute the model. We pass this
model plus the Q and R matrices to a constraint optimization
solver (also running in MATLAB) to generate the controller.
The controller is encoded as a set of matrices that can
produce the changes in the manipulated inputs on observing
tracking errors in the controlled outputs.

Next, we validate the model by running additional pro-
grams on both the model and the real system. Based on the
observed differences, we estimate the model error and, using
architectural insights, we set the Uncertainty of this model.
The uncertainty will be used in the validation step.

Finally, we proceed to validating the controller in two
steps. First, we check if the controller meets the targets (i.e.,
it brings the outputs to the targets and does it fast enough).
Then, we use Robust Stability Analysis [11] to see if, for
the worst case of estimated uncertainty, the system is still
stable. We describe this process later. If any of these two
checks fail, we change the initial decisions and repeat the
process. Otherwise, we have the final controller.

B. Detailed Controller Design

1) Modeling the System: While there are analytical mod-
els of processor performance and power [28], [29], [30],
[31], they do not capture the dynamics of the system at the
level we need, and are not amenable for formal controller
design. To control the system, we need models that describe
the relation between inputs and outputs as a function of
time. Hence, we build an experimental model using the
black-box identification technique of System Identification
Theory [27], [32]. We apply waveforms with special patterns
at the inputs of the system, and monitor the waveforms at the
outputs. We then assume that the outputs at time 7 (i.e., y(1))
depend on the outputs at the previous k time steps (y(z-1),
...y(t-k)), the inputs at the current and previous /-] time steps
(u(t), ...u(t-1+1)), and a noise term. We pass the waveforms
to a least square solver for a dynamic environment (running
in MATLAB) and obtain the A, B, C, D, and unpredictability



matrices. Since system identification is well known, we do
not describe it further.

2) Building the Cost Matrices Q and R: The Tracking
Error Cost matrix (Q) contains a positive weight for each
output, and the Control Effort Cost matrix (R) a posi-
tive weight for each input. Intuitively, the output weights
represent how important it is for a given output not to
deviate from that output’s target. The input weights represent
how reluctant the controller should be to change a given
input from its current value (due to its overhead). These
two matrices are set by the designer. Let us consider the
architectural implications.

Consider Q first. For outputs that have a high weight,
the controller is more reluctant to actuate on inputs in a
manner that changes those outputs away from their target
values. Consequently, we assign the highest output weights
to architecture measures that are critical to correctness. On
the other hand, we assign lower weights to architecture
measures that determine result quality or performance. This
is because if these measures veer off their target values, the
system still functions acceptably.

Row 2 of Table II shows a sample of architectural
measures used as outputs, with a possible weight order from
higher to lower. Outputs such as voltage guardbands and
temperature limits have the highest weight. Intermediate
weights can be assigned to power, utilization, or energy.
Lower weights can go to various measures of performance,
as long as the performance is acceptable.

Table II: Qualitative weights of architectural measures. Input
weights only consider change overheads.

Type of Weight  Qualitative Weight Ranking (From High to Low)

System Outputs Voltage guardband, Temperature, Power, Core Utilization,

Energy, Frame rate, Instructions per Second (IPS)

System Inputs Cache power gating, core power gating, frequency,

issue width, 1d/st queue entries

Consider R now. The controller is more reluctant to
change inputs that have a high weight. There are two reasons
to be reluctant to change an input. The first one is if changing
it has a high energy or performance overhead. For example,
power gating a cache has higher overhead than changing the
number of load/store queue entries.

A second reason results from the fact that inputs often
take discrete values rather than continuous ones — e.g., we
only change the frequency in 100 MHz steps. Then, consider
an input that can take a large number of discrete values. If
we assign a small weight to this input, the controller will
generate frequent and large changes in the input’s value,
jumping over many possible settings, and not utilizing the
range of values available for this input. On the other hand, if
we assign a higher weight, the controller will be more likely
to use smaller steps, utilizing more of the available settings
and, hence, using the input for more effective control.

Row 3 of Table II shows a sample of architectural
measures used as inputs with a possible weight order (from
higher to lower), taking into account only change overhead.
Power gating a component has a high overhead, especially

for components with substantial state such as caches. Fre-
quency changes often take a few microseconds. Pipeline
changes may require only a pipeline flush or not even that,
which is why they have a low weight.

Finally, consider the relative weights of the outputs in Q
and the inputs in R. They strongly determine the behavior of
the system. Specifically, if the input weights are low relative
to the output weights, the controller is willing to change the
inputs at the minimum change of outputs — e.g., due to
noise. This will create a ripply system. If, instead, the input
weights are high relative to the output ones, the system will
have inertia: when the output is perturbed, the system will
react sluggishly, only after a while.

Figures 4(a) and (b) illustrate the two cases. Each figure
shows how the output (top) and input (bottom) change with
time, relative to the initial conditions. The time starts when
the output suffers some positive noise. Figure 4(a) shows
a ripply system: the input immediately reacts, causing the
output to change course and get into negative values. After
a few waves, the system stabilizes again. Figure 4(b) shows
a system with inertia: the input does not react until much
later, and with lower intensity. After a while, both output
and input return to the stable values. Note that the figures
are not drawn to scale.
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Figure 4: System behavior when input weights are low (a)
or high (b) relative to output weights.

We avoid systems that are too ripply or too sluggish:
they take too long to stabilize or may never do it. Besides
this, from an architecture perspective, we note the following.
First, when dealing with critical output measures, such as
voltage guardbands and temperature, we want the output
weights to be relatively high. This will ensure that the system
reacts immediately to changing conditions. On the other
hand, when we have high-overhead inputs such as power
gating large memory structures or process migration, we
want the input weights to be relatively high. This will avoid
continuous input changes due to noise.

The absolute values of the weights are unimportant;
only their relative value matters. The designer uses offline
experimentation and his architectural intuition to set them
appropriately. As an example, consider a weight of 100x for
one output (01) over the other (02). The relative quadratic
cost of a tracking error A in these outputs becomes 100A0?
and Ao3. If they are to matter equally, then we have
100A0? = Ao3, or 10A0; = Aoy. This means that the
controller will not deviate from the reference value for o;



by 1% unless it can reduce the deviation for oy by 10%.
Applying a similar analysis for inputs, a relative input weight
of 100 means that the controller will change the lower-
weight input by up to 10% before changing the higher-
weight input by 1%.

Weight selection is an offline procedure used during the
design of the controller. It requires an understanding of the
underlying system. The LQG methodology ensures that the
resulting controller is stable for any choice of weights.

3) Unpredictability Matrices: When MATLAB’s least
square solver takes the input and output waveform data and
generates the A, B, C, and D matrices, it also generates two
unpredictability matrices. These unpredictability matrices
encapsulate two effects: one that impacts the state x and
one that impacts the outputs y.

The architectural insights are as follows. The first set of
effects represents non-deterministic events such as branches,
interrupts, page faults and other probabilistic events; the
second set of effects represents sensor noise, such as that
resulting from inaccurate or coarse-grained sensors.

4) Uncertainty: Once we have the system model (i.e., the
A, B, C, D, Q, R, and unpredictability matrices), we proceed
to design the controller. However, as architects, we know
that processors are complicated, and unusual applications
may exercise corner cases. Hence, we validate the model
by running additional, highly compute- and highly memory-
intensive applications on both the model and on the real
system, and compare the results. Based on the difference, we
roughly estimate the uncertainty of the model. For example,
we may estimate that, under an unusual application, the
model’s predictions may be consistently (i.e., on average)
20% off from what the real system exhibits.

We want to ensure that the controller, based on a model
with this uncertainty, is still stable. Therefore, in the step
labeled Robust in Figure 3, we perform Robust Stability
Analysis (RSA) [11]. RSA checks whether a perturbation
equal in magnitude to the uncertainty, if coming at the worst
time and in the worst manner, can make the system unstable
— e.g., prevent the output ripples in Figure 4(a) from dying
down. If the system is unstable, we have to go back and
change the inputs to the controller design. In particular, we
can use more challenging applications in the initial design,
or use lower Q weights relative to R weights, thereby making
the system less ripply and more cautious to changes.

Note that, for heuristic algorithms, it is not possible to
perform a similar stability analysis. Hence, there is a risk
that a heuristic algorithm can fail when it encounters an
unusual application that it has not been trained on.

C. Adding Additional Inputs and/or Outputs

The MIMO methodology allows an easy procedure to re-
design the controller when new inputs and/or outputs need
to be added. First, the process of system identification is
repeated with the new inputs/outputs. Then, weights are
chosen for each of the new inputs/outputs. It is not necessary
to modify the weights for the existing inputs/outputs. If more
outputs are being added, then their uncertainty bounds are

measured and specified. The LQG design process automat-
ically generates and tunes the new controller.

V. USES OF THE CONTROLLER

There are multiple ways in which a MIMO hardware
controller can be used. In this section, we discuss three.

Tracking Multiple References: In the simplest use, a
high-level agent specifies the target value for each of the
multiple outputs. In addition, it can specify the relative
importance of each of the outputs and each of the inputs.

Time-Varying Tracking: A more advanced use is when
a high-level agent monitors real-time conditions and, based
on those, changes the target values that it wants the out-
puts to track [33]. A typical example is a battery-powered
mobile platform that runs a program as the battery is being
depleted. The best tradeoff in performance (or quality of
service) versus power consumed changes as the battery
energy level decreases. For example, while the battery is
above a certain level, the output targets are high performance
and a tolerably-high power consumption. As the battery
level decreases, the OS sets successively lower pairs of
performance and power targets to conserve battery life [2],
[33], [34], [35], [36].

Fast Optimization Leveraging Tracking: A final use
is when the high-level agent does not want certain target
values for its outputs, but that the value of a combination of
the output values is minimized or maximized. For example,
given power (P) and performance in instructions per second
(IPS), it wants to maximize IPS?/P, which is to minimize
EnergyxDelay (ExD). In this case, the controller needs to
do some search, but the search is at a high level and very
efficient. This is in contrast to a heuristic-based controller,
which typically needs to perform a very costly and inefficient
low-level search, apart from requiring heavy tuning.

Figure 5(a) shows the envisioned system. The outputs are
IPS and P, and we are trying to maximize IPS2/P. The search
is driven by an extension to the original controller that we
call Optimizer. It can be a part of the runtime system or a
hardware module.
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New choice:

Figure 5: Using MIMO to optimize a combination of mea-
sures such as ExD.

Initially, the optimizer sets a certain target IPSy and Py.
The base controller then generates the input configuration



(e.g., frequency, issue width, and load/store queue size)
that attains this target. After the system converges, the
optimizer changes the target outputs so that IPS?/P increases.
Specifically, it either increases P a little and increases IPS
much more, or decreases IPS a little and decreases P much
more. This is shown in Figure 5(b), where the original point
is called Current, and the two possible changes are (1) and
(2), respectively. Based on the new (IPS;, P;), the base
controller regenerates the input configuration.

This process is repeated a few times. Note that, given
an original point, the desirable points are those to the left
of the line that connects the point to the (0, 0) coordinate.
Of course, at any given step, the system may not reach the
desired (IPS;, P;), and we may end up in a less desirable
(IPS, P) point — especially since the inputs and outputs are
discrete. In this case, the optimizer does not choose the new
point and moves on. Eventually, the optimizer settles into a
good IPS?/P point. A new search will start only when the
controller detects that the application changes phases.

Overall, we see that the optimizer’s search is very effi-
cient. In contrast, a heuristic-based algorithm has to figure
out how to change the inputs (frequency, issue width, and
load/store queue size) to increase IPS?/P. The algorithm is
likely to be complicated and non-robust.

VI. EXAMPLE OF MIMO CONTROL SYSTEM

We describe the design of a MIMO control system for
an out-of-order processor using the design flow described
earlier. Our system is a processor with, initially, two con-
figurable inputs: (1) the frequency of the core plus LI
cache, and (2) the size of the L1 and L2 caches. The
input settings are shown in Table III. The frequency is
changed with DVFS. It has 16 different settings, changing
from 0.5GHz to 2GHz in 0.1GHz steps. The cache size is
changed by power gating one or more ways of the two
caches. The associativities of the L2 and L1 caches can
be (8,4), (6,3), (4,2), and (2,1). We later add an additional
configurable input, namely the reorder buffer (ROB) size.
We are interested in two outputs: (1) the power of the
processor plus caches, and (2) the performance in billions
of instructions committed per second (IPS).

A. Controller Design

1) Choosing Input/Output Weights: To assign the input
and output weights, we proceed based on the discussion of
Section IV-B2. Specifically, among the outputs, we assign
to power a higher weight than to IPS, to minimize power
tracking errors and power budget violations. As shown in
Table III, we use weights of 1,000:1 for power:IPS, which
makes power /1, 000X (or ~30x) more important than IPS.
In other words, we are willing to trade 1% deviation from the
power reference for 30% deviation from the IPS reference.

Among the inputs, we observe that the overhead of power-
gating a cache way, and that of adjusting the frequency by
one step are both large and perhaps comparable. However,
frequency offers more different settings than cache size (16
settings versus 4). Hence, to ensure that the controller uses

Table III: Control and architecture parameters.

Controller Parameters

Input configurations Frequency: 16 settings

0.5GHz to 2GHz in 0.1GHz steps
Cache size: 4 settings

L2,L1 assoc: (8,4),(6,3),(4,2),(2,1)
ROB size: 8 settings

16 to 128 entries in 16-entry steps
10,000 for power, 10 for IPS, 0.01 for frequency,
0.0005 for cache size, 0.001 for ROB size
Dimensions of system state 4
Uncertainty guardband 50% for IPS, 30% for power
Controller invocation Every 50us

Input/output weights

Optimizer Parameters

Optimizer invocation Every 10ms or phase change as in [8]
MaxTries 10

Baseline Core Parameters

3-issue out of order
48 entries (for EXD opt); 32/16 entries

Superscalar

ROB; Ld/St queue
Branch predictor 38Kb hybrid

Frequency 1.3 GHz (for EXD opt)
DVFS latency Sps

Baseline Memory System Parameters

L1 data cache
L1 instr. cache
L2 cache

Main memory

32KB, 3-way (for ExD opt), 3 cycles latency, 64B line
32KB, 2-way, 2 cycles latency, 64B line

256KB, 6-way (for ExXD opt), 18 cycles lat, 64B line
125 cycles latency

all the frequency settings and does not bypass many of
them in each adaptation, we choose a higher weight for
frequency. As shown in Table III, we use weights of 20:1 for
frequency:cache, which makes frequency ~4x less likely
to change in large steps, to account for having 4x more
adaptation settings.

We consider that it is more important for the outputs
to remain close to their reference values than to minimize
the overheads of changing inputs. Hence, we give higher
weights to the outputs than to the inputs. As discussed
in Section IV-B2, if the ratio of output to input weights
is too high, the system becomes ripply and takes longer
to converge; if it is too low, the inputs are sluggish, and
any perturbation also takes long to disappear. We need to
experiment with MATLAB to ensure that the chosen ratio
falls in between the two scenarios, and hence the system
converges reasonably fast. To select the output to input
weight ratio, we need to consider the less important output
(IPS) and the most important input (frequency). As shown
in Table III, we use weights of 1000:1 for IPS:frequency,
which makes IPS ~30x more important than frequency.

Section VIII-A performs a sensitivity analysis of the
weights.

2) Model Identification & Uncertainty Analysis: 1t is
challenging to build analytical processor models that can ac-
curately relate processor performance and power with cache
size and frequency. Hence, we perform experimental System
Identification [27], [32] of a cycle-level simulator that we
wrote to model the processor system. We run four profiling
applications from SPEC CPU 2006 on the simulator — two
integer (sjeng and gobmk) and two floating-point (leslie3d
and namd). For each program, we apply test waveforms of
cache size and frequency changes at runtime. We record the
time variation for the inputs and outputs.



System identification tests are designed to extract the most
information from the runs of these training-set applications.
With this information, we are able to characterize the system
and build a model. We find that a model of dimension 4
is a good tradeoff between accuracy and computation cost
(Table III). Section VIII-B performs a sensitivity analysis
of the number of dimensions. Based on this model, we use
MATLAB to construct the first version of the controller.

As per Section IV-B4, we use uncertainty analysis to
revise the design (Figure 3). We run two additional appli-
cations (h264ref and tonto) on both the simulator and the
model obtained with system identification, changing size
and frequency signals. The outputs are compared. We find
that the maximum error in the model is 14% for IPS and
10% for power. Then, we conservatively set the uncertainty
guardbands to 3 x these values, namely to 50% for IPS and
30% for power (Table III).

Recall from Section IV-B4 that these uncertainty guard-
bands refer to the average prediction errors across the whole
application execution that are tolerable. After choosing the
uncertainty guardbands, we run Robust Stability Analysis to
see if the system converges. If it does not, we use MATLAB
to reconstruct the controller with larger input weights, until
the system is shown to converge for the desired guardbands.

Section VIII-C performs a sensitivity analysis of the
uncertainty guardband.

B. Optimizer Design

As discussed in Section V, the Optimizer performs a high-
level search for the optimal operating point, according to
Figure 5(b). Depending on our goal, the search can be in
the ExD, ExD?, ... ExDF1 space. To minimize ExDk-1
the algorithm tries to maximize IPS*/P.

Every time that the algorithm is invoked, it starts by
setting the inputs to their midrange values: 1GHz frequency
and (4,2) associativity for (L2,L1) caches. Then, it makes
a move in one of the two directions in Figure 5, namely
”Up” (higher IPS but only slightly higher power) or "Down”
(slightly lower IPS and much lower power). If the resulting
value of the measure IPS*/P is higher than the previous one,
the algorithm continues to explore more points in the same
direction. Otherwise, it reverses the search direction. This
process repeats for a fixed number of trials (MaxTries as
shown in Table III). We do not use backtracking in this
algorithm.

C. Overheads of the Design

Both controller and optimizer operation cause very minor
overheads. The controller is invoked every 50us, and oper-
ates entirely in hardware. It reads performance and power
counters, and computes the difference between the values
and their references. It then performs four floating-point
vector-matrix multiplies, and generates the actuations on
cache and frequency. The controller only stores less than
100 floating-point numbers. The optimizer is invoked every
10ms or when there is a phase change as detected in [8]. It
also runs in hardware.

D. Adding an Additional Input

To show the flexibility of MIMO control, in a second set
of experiments, we augment the controller by adding a third
configurable input: the size of the reorder buffer (ROB). The
ROB size is changed by power gating 16 entries at a time,
as described in [37]. Since the full ROB has 128 entries, we
have 8 different ROB sizes (Table III).

We repeat the system identification process with the same
application training set, now including ROB size changes.
To set the input weight for the ROB resizing, we note
that ROB resizing has less overhead than cache resizing
or frequency changes. Hence, it should have a low weight.
However, since it has more settings that cache resizing, we
give it a slightly higher weight. Hence, we use weights
2:1 for ROB:cache resizing. We place the same uncertainty
guardbands as before and do not change the weights for the
other inputs/outputs. Since we do not change outputs, we
reuse the optimizer.

VII. EVALUATION METHODOLOGY
A. Infrastructure

We base our evaluation on simulations of a processor
like the ARM Cortex-A15 modeled with the ESESC sim-
ulator [38]. The architecture parameters optimized for best
ExD product in the baseline architecture are listed in
Table III. We modified ESESC to model the configurable
inputs and implement the hardware controller and optimizer.
Power estimates are obtained from the McPAT modules that
are integrated within ESESC. We use CACTI 6.0 for cache
power estimates. DVFES pairs are obtained from interpolating
published A15 DVES values [39]. We use MATLAB’s
System Identification and Robust Control Toolboxes [40]
for system identification, LQG controller design, tuning,
and robustness evaluation. We run all the SPEC CPU 2006
applications except zeusmp, which our infrastructure does
not support. We group the applications into a training set
(sjeng, gobmk, leslie3d, and namd) and a production set
(the remaining ones). Each application is monitored for an
average of 50 billion instructions, after fast forwarding 10
billion instructions.

B. Experiments

1) Tracking Multiple References: The goal of this experi-
ment is for the outputs to track reference values. Specifically,
we target 2.5 BIPS for IPS and 2 W for power. These values
are obtained by performing a design space exploration on
the training set applications, and picking output values that
minimize the average ExD for them. This IPS target is
infeasible for highly memory-bound applications. Hence, we
will show results separately for such applications.

2) Time-Varying Tracking: The goal of this experiment
is for the outputs to track time-changing reference values.
As indicated before, an example is when a high-level agent
throttles performance and limits power consumption based
on operating conditions such as battery levels [34], [35]. We
model such a scenario by changing the IPS and power targets
based on the recently-introduced Quality of Experience



(QoE) parameter in handheld devices [36]. We use the
analytical models for QoE and battery charge consumption
in [36] to compute how the targets should be changed. We
set the time betweeen changes to 2,000 epochs of 50us each,
and the total energy supply to 1 J.

3) Fast Optimization Leveraging Tracking: The goal of
this experiment is to generate outputs that minimize energy
(E), ExD, or ExD?. For the optimization (Figure 5(b)), the
optimizer can try at most MaxTries trials.

C. Architectures Evaluated

We compare the four architectures of Table IV. Baseline
is a non-configurable architecture where the inputs are fixed
and chosen to deliver the best outputs. Specifically, we
profile the training set applications and find the cache size,
frequency, (and ROB size for the 3-input experiments) that
deliver the best output — E, ExD, ExD?, etc, depending
on the experiment.

Table IV: Architectures compared.

Baseline Not configurable. Inputs fixed and chosen for best output
Heuristic Configurable with a coordinated-heuristics controller
Decoupled  Configurable with decoupled SISO controllers

MIMO Configurable with our proposed MIMO controller

The other designs are our configurable architecture with
different hardware controller algorithms to drive input adap-
tations. Heuristic uses a sophisticated heuristics-based algo-
rithm similar to [41], which is tuned with the training set
applications. The algorithm has two steps. First, it ranks the
adaptive features (cache size, frequency, and ROB size) ac-
cording to their expected impact in this application, like [8].
The second step depends on the experiment performed.

In tracking experiments, the second step involves taking
different actions, using the ranked features in order, de-
pending on the difference (magnitude and sign) between
each output value and its reference value. These actions
are qualified by threshold values experimentally determined.
In the optimization experiments, the second step involves
searching the space (e.g., ExD?) using an iterative process,
testing a few configurations of each of the adaptive features
in rank order. This is similar to earlier schemes [10], [23],
[41], [42].

Details of the algorithms can be found in [43]. Note
that, for Heuristic, the algorithms developed and tuned for
the two-input system (cache size and frequency) have to
be completely redesigned from scratch for the three-input
system (cache size, frequency, and ROB size).

Decoupled uses two formally designed Single Input Single
Output (SISO) controllers. One changes cache size to control
IPS, and the other changes frequency to control power. There
is no coordination between the two. The optimizer works as
the MIMO optimizer. Note that we cannot use Decoupled
in the three-input experiments.

MIMO uses our MIMO controller and optimizer. The
optimizers in all the architectures are limited to trying at
most MaxTries trials per search.

VIII. RESULTS

This section evaluates our four architectures. Due to space
limitations, the evaluation is kept concise. More details can
be found in [43].

A. Impact of Input and Output Weights

To see the impact of input and output weights, we run
the MIMO controller with the different sets of weights in
Table V, tracking 2.5 BIPS for IPS and 2 W for power (P).
For the application namd, Figure 6 shows the epochs taken to
achieve steady state (a), and the output tracking errors (b) —
i.e., the difference between output values at steady state and
their reference values. In all cases, we initialize the system
with the same input values, which are 20% and 30% different
than the reference IPS and power values, respectively.

Table V: Different sets of weight choices.

Label Description [Weache Wfreq Wips Wp]
Equal  Same weights inputs & outputs  [1 1 1 1]
Inputs  Lower weights for inputs [0.01 0.01 1 1]
Power  Higher weight for power [0.01 0.01 1 100]
Size Lower weight for cache size [0.001 0.01 1 100]
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Figure 6: Epochs to achieve steady state (a) and output
tracking errors (b) for different weight choices.

In Equal, all inputs and outputs have the same weight.
In this case, the relatively high input weights make the
controller reluctant to change inputs significantly. The con-
troller makes only small input changes, many of which
are rounded to zero. As a result, for the duration of our
experiment, the outputs do not converge yet. Hence, the
Equal datapoint is missing in Figure 6(a), and has not
moved from initial conditions in Figure 6(b). In Inputs,
minimizing input changes is less important than meeting the
output targets. Hence, the output tracking errors decrease
(Figure 6(b)) and the system converges within the measured
time (Figure 6(a)).

In Power, P has a higher weight and, hence, tracking P
has a higher priority. The resulting controller reduces the P
tracking error to less than 10%, and the IPS error also comes
down as a side-effect. Fewer epochs are needed for steady
state. Finally, in Size, by choosing a lower weight for the
cache size, cache size changes are favored over frequency
changes. Consequently, the steady state cache size is reached
faster, without changing the output tracking errors.



B. Impact of Model Dimension

The number of model dimensions is a tradeoff between
accuracy and computation overhead. With more model di-
mensions, we model the true system more accurately, but
the controller requires more computations. In practice, for
our small system, computation overhead is not a concern.
Still, we would like to use as few dimensions as possible
while retaining accuracy. Hence, we compare the IPS and
P attained by the true system (i.e., the simulator) and our
model with different dimensions. We refer to the difference
as the error. Figure 7 shows the maximum errors for different
dimensions. Based on this result, we use a model dimension
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C. Impact of Uncertainty Guardband

The size of the uncertainty guardband is a tradeoff be-
tween the time to attain steady state and the risk of system
instability. If we bet that production applications will behave
more like the training applications and, hence, a smaller
uncertainty guardband is acceptable, we can reduce the input
weights. Then, the system will reach the steady state faster.
However, if a production application deviates more than
we expected, the system will become too ripply and not
reach steady state. As per Section VI-A2, to design our
controller, we use uncertainty guardbands equal to 50%
for IPS and 30% for power. Figure 8 shows the resulting
number of epochs needed to reach steady state with our
controller (High Uncertainty). It also shows the number
needed if we had used a more aggressive design with lower
uncertainty guardbands equal to 30% for IPS and 20% for
power (Low Uncertainty). From the figure, we see that the
more aggressive design is still stable — and hence needs
fewer epochs to achieve steady state. Hence, our controller
design is conservative.

D. Using MIMO for Tracking Multiple References

We compare how effectively MIMO, Heuristic, and De-
coupled can track multiple output reference values — specif-
ically, 2.5 BIPS for IPS and 2 W for P. As indicated
in Section VII-B1, this IPS reference value is high, and
several memory-bound applications cannot reach it. For
these applications, which we call Non-responsive, no amount
of control can get IPS and P very close to their targets. For

the rest, which we call Responsive applications, different
control architectures have different effectiveness. The non-
responsive applications are bzip2, gcc, hmmer, h264ref,
libquantum, mcf, omnetpp, perlbench, Xalan, bwaves, dealll,
GemsFDTD, Ibm, and soplex.

Figure 11(a) and (b) show the average error in IPS
and P for the responsive and non-responsive applications,
respectively, for the MIMO, Heuristic, and Decoupled ar-
chitectures. For each architecture, the figures show a small
data point for each application and a large datapoint for the
average of all the applications.
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Figure 11: Results for tracking multiple references.

Focusing on the responsive applications, we see that while
all three architectures result in good power tracking, they
differ in IPS tracking. The average IPS error is 7%, 13%,
and 24% for MIMO, Heuristic, and Decoupled, respectively.
MIMO works best, as it can learn and adapt to the runtime
characteristics of the workload. Decoupled has a high error
because the two SISO controllers sometimes trigger antag-
onistic actions. In particular, one controller increases cache
size to improve IPS, inadvertently increasing P, while the
other reduces frequency to meet the P goal, degrading IPS.
The result is a suboptimal working point.

Heuristic is also limited in its capability. Even though
it uses metrics such as the memory boundedness of the
execution to choose its actions, its thresholds and rules are
based on static profiling with the training set. It lacks a
learning framework like MIMO. Hence, it may not make
the choices that align best with the dynamic execution of
the production set applications.

For the non-responsive applications, all the architectures
perform similarly.

E. Using MIMO for Time-Varying Tracking

We change the IPS and P reference values periodically, to
minimize the decrease in quality of experience in handheld
devices [36], and observe the outputs using the MIMO,
Heuristic, and Decoupled architectures. Figure 12 shows the
resulting IPS values as a function of time for each architec-
ture and the reference. Figures 12(a) and (b) correspond to
astar and milc, respectively. We do not show P values as all
the architectures perform similarly well.

The figure shows that MIMO is able to track the time-
varying reference IPS values well, much closer than the other
architectures. Heuristic and Decoupled attain an IPS that is
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Figure 12: Examples of time-varying tracking.

lower than the reference. For the lowest IPS at the end of the
battery life, MIMO performs a bit worse than expected (but
still better than the other architectures). This is because we
set an IPS reference that is too aggressive when combined
with the companion P reference.

F. Using MIMO for Fast Optimization Leveraging Tracking

We compare the ability of the different controllers to
optimize a combination of outputs. We first consider min-
imizing ExD. Figure 9 shows the ExD of the different
applications under MIMO, Heuristic, and Decoupled. For
each application (and the average in the far right), the bars
are normalized to the ExD of Baseline.

On average, MIMO, Heuristic, and Decoupled reduce the
ExD of the applications by 16%, 4%, and -3%, respectively.
MIMO is effective in practically all the applications, even
though there is substantial variation across integer and
floating-point applications. Heuristic does well on some
codes, but not on others, such as perlbench and dealll. This
is because some of the heuristics and thresholds from the
training set do not work well all the time. In perlbench, the
application is classified in a way that results in limiting the
set of cache sizes explored in the search, resulting in sub-
optimal ExD. In dealll, the code has a relatively low number
of memory accesses per operation, but is fairly sensitive
to L2 misses. The heuristic assumes that dealll is compute
intensive and has little sensitivity to cache size, which is
incorrect. Finally, Decoupled chooses bad values for cache
size and frequency because of lack of coordination between
the sub-controllers.

We obtain similar results for energy (E) and ExD?.
However, we do not show results due to lack of space.
MIMO, Heuristic, and Decoupled reduce the E x D2 by 18%,
7%, and 4%, respectively, and the E by 9%, 1%, and
0%, respectively, over Baseline. Most importantly, for these
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Figure 10: Energy x Delay minimization with 3 inputs.

experiments, the MIMO and Decoupled controllers remain
unmodified. Even the optimizer search in the IPS™—P space
is parameterized by n and remains unchanged. However, the
Heuristic controller needs to be completely redesigned and
retuned to optimize ExD? or E.

G. Adding a New Input: Configurable ROB Size

We augment the processor with the resizable ROB of
Section VI-D, and repeat the experiments in the previous
section. We cannot use Decoupled because the system has
3 inputs and only 2 outputs. Note that, while the controller
for MIMO 1is regenerated semi-automatically as explained
in Section VI-D, the controller for Heuristic needs to be
redesigned largely from scratch.

Figure 10 shows the ExD of the different applications
under MIMO and Heuristic. As usual, the bars in each
application (and the average) are normalized to the ExD
for Baseline. On average, MIMO and Heuristic reduce the
ExD of the applications by 25% and 12%, respectively.

We note that MIMO attains a substantial ExD reduction.
Heuristic does not do as well, and is affected by several
outliers. The rules and threshold values have become more
complicated with more inputs, and some of the tuning
performed based on the training set does not work well all
the time. In some cases, finding the best values of each of
the inputs in sequence, one by one, produces a configuration
that is inferior to the one attained by considering all three
inputs simultaneously.

IX. RELATED WORK

The argument for systematic coordinated control of mul-
tiple power/performance management policies has been ad-
vocated in prior research [10], [20], [44], [45], [46], [47]. In
addition, hardware support for adaptive power/performance
management is increasingly being used in modern proces-
sors [1], [2], [3], [5]. The Intel Skylake processor [2] uses a
SISO PID controller within its energy management architec-
ture. The IBM POWER 8 processor [1] has reconfiguration
registers within the pipeline, and supports fast and fine-
grained per-core DVFS. The Intel IvyBridge processor [3]
can resize its last-level cache by power gating its ways.

We discuss some past research in this area, following the
classification in Table I.

Rule-Based Heuristics. There are some works that use rule-
based heuristics to adapt configurable architectures. Some of
these works adapt one resource (e.g., [7], [8]). Other works
adapt multiple resources in a coordinated manner (e.g., [6],



[10], [24], [25]). In particular, Vega et al. [10] demonstrate
the conflicting nature of decoupled management of multiple
policies. Zhang and Hoffmann [41] propose a framework
for maximizing performance under a power cap using a
heuristic algorithm. Our Heuristic architecture uses a similar
algorithm.

Model-Based Heuristics. There are some works that use
models to drive the adaptation heuristics. For example, they
use models for joint memory and processor DVFS [22],
cache size [48], multicore thermals [23], or on-chip stor-
age [49]. Our MIMO methodology also uses an offline
model of the processor dynamics.

Control Theoretic Techniques. In addition to the SISO
schemes discussed in Section II [2], [9], [15], [17], there are
works that use multiple SISO controllers managed together
with heuristics [50], [51], [52]. The use of such decoupled
controllers has to be planned carefully before deploying
them. If there are cross dependences between the input of
one and the output of another, then the controllers will
conflict with each other.

The approach that combines multiple SISO models to
generate a larger MISO controller [12], [14], [16] still
requires heuristics to encode some decisions. This may
make the controllers suboptimal and error prone [19], [53].
The MIMO methodology can natively model the required
interactions, eliminating unanticipated behavior and finding
better solutions.

There have been some designs that use hierarchical con-
trol loops to coordinate multiple conflicting policies or
objectives. Specifically, Raghavendra et al. [44] propose
such a scheme to control power in datacenters, and Fu et
al. [13] propose another such design to control utilization in
processors. In these proposals, a formal controller is used
only in the innermost loop, and each higher level works
on a different abstraction and specifies the targets for the
lower levels. This approach works well for systems that
are naturally suited for hierarchical management. For other
cases, it might reduce the freedom of the slower timescale
controller, hence resulting in a sub-optimal operation.
Machine Learning techniques. Machine learning tech-
niques have been used to tune architectural parameters
(e.g., [20], [21], [54]). They have two main differences with
control theory techniques. The first difference is runtime
feedback. Machine learning techniques learn by recording
what input values are best for different observed output
conditions. However, if they find different output conditions
at runtime than those they were trained on, they provide a
lower-quality solution unless they go through an expensive
re-training phase. Control theory techniques, instead, when
they find runtime output conditions to be different than those
modeled, they use their intrinsic feedback loop to adapt to
the new conditions with low overhead. The second difference
is design guarantees. Unlike machine learning techniques,
control theory techniques can provide convergence, stability,
and optimality guarantees.

Optimization techniques. There are some works that adapt
based on optimization formulations. For example, they opti-

mize inputs to minimize power consumption [55], [56], per-
formance subject to power constraints [18], or E xD? [29].
STEAM [19] models the power and performance of cores
as a function of P- and T-states, IPC, temperature, and
memory accesses. It then uses a convex optimization solver
to maximize the ratio of performance over power.

X. CONCLUSION

Control theoretic MIMO controllers, which actuate on
multiple inputs and control multiple outputs in a coordinated
manner are likely to be key as future processors become
more resource-constrained and adaptive. In this paper, we
used MIMO control theory techniques to develop controllers
to dynamically tune architectural parameters in processors.
To our knowledge, this is the first work in this area. We
discussed three ways in which a MIMO controller can
be used. We developed an example MIMO controller and
showed that it is substantially more effective than controllers
based on heuristics or built by combining single-output
formal controllers.
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