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The security of computers is at risk because of information leaking through their power
consumption. Attackers can use advanced signal measurement and analysis to recover
sensitive data from this side channel. To address this problem, this article presents
Maya, a simple and effective defense against power side channels. The idea is to use
formal control to re-shape the power dissipated by a computer in an application-
transparent manner—preventing attackers from learning any information about the
applications that are running. With formal control, a controller can reliably keep power
consumption close to a desired target function even when runtime conditions change
unpredictably. By selecting the target function intelligently, the controller can make
power to follow any desired shape, appearing to carry activity information which, in
reality, is unrelated to the application. Maya can be implemented in privileged software,
firmware and hardware. We implement Maya on three machines using only privileged
threads against machine learning based attacks, and show its effectiveness and ease of
deployment. Maya has already thwarted a newly developed remote power attack.

The physical signals of a computer, such as its
power consumption, temperature, and electro-
magnetic (EM) emissions, are strongly corre-
lated with the computer's activity, and have been
exploited as potent side and covert channels. Through
these physical channels, attackers have been able to
exfiltrate a variety of information about the applica-
tions running, including keystrokes and passwords,
location, browser, and camera activity, and encryption
keys."? Many types of platforms have been success-
fully attacked using these physical channels, including
smartphones, personal computers, cloud servers, mul-
titenant datacenters, and home appliances.

The methods used to acquire power signals have sig-
nificantly grown in number and stealth. Attackers use
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software techniques, such as reading counters (e.g.,
PLATYPUS?), estimating power from unprivileged infor-
mation, and analyzing code to estimate energy con-
sumption. They can also use hardware methods, such
as direct probing, antennas, indirect measurement by
tapping electrical outlets and power supply networks,
trojan chips, field-programmable gate arrays (FPGAS),
and circuits.>* Since most of these techniques simply
collect measurements, they cause little interference in
the target computer and are hard to detect.

Recently, it has even been shown that the detailed
power activity of a computer can be measured from a
different room in a building, as long as the victim and
the attacker computers are connected to the same
power delivery network.? The attacker needs no physi-
cal access, and can measure power using widely avail-
able equipment. This approach greatly amplifies the
risk of leaking information through power signals.

Unfortunately, research on defenses against power
side channels has not kept pace. One limitation is that
most prior research on defenses has focused on
encryption circuits. In practice, there are many attacks
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that are easy to mount, and which, use system- or
chip-level power measurements to steal sensitive
information not related to encryption, like program
activity, passwords, and browsing data.

THIS ARTICLE DESCRIBES MAYA, ANEW
DEFENSE TECHNIQUE THAT USES
FORMAL CONTROL TO INTELLIGENTLY
RESHAPE THE POWER DISSIPATED BY
A COMPUTER IN AN APPLICATION-
TRANSPARENT MANNER.

Another limitation of many proposed defense techni-
ques is that they require new hardware and, hence, leave
existing computers in the field vulnerable. Finally, mecha-
nisms such as keeping constant power, inserting noise,
or randomizing dynamic voltage and frequency scaling
(DVFS) levels are unsuccessful because they do not
completely mask application activity."®

An alternative approach is to modify each application
individually, so that its activity is not visible through physi-
cal side channels. However, this is a costly proposition.

There is an urgent need to develop effective
defenses against power side channels that do not rely
on special hardware, and which can be implemented
as firmware or privileged software in an application-
transparent manner.

To address this problem, this article describes
Maya, a new defense technique that uses formal con-
trol® to intelligently reshape the power dissipated by a
computer in an application-transparent manner.
Maya's controller changes a computer's parameters
to reliably keep the computer’s power close to a given
time-varying target, even under unpredictable runtime
conditions. By setting this target intelligently, power
can be shaped in any desired form, appearing to carry
activity information which, in fact, is unrelated to the
application. Such obfuscation removes leakage thro-
ugh power and, in addition, through temperature and
EM signals, as they are related to power.

Maya can be implemented in privileged software,
firmware, or simple hardware. It relies on commonly
available actuators to change power, such as the
DVFS level, injection of idle execution cycles, and a
custom “balloon” application whose power consump-
tion can be increased on demand. In this article, we
implement Maya using only privileged software. This is
the first defense against power side channels that is
readily deployable and application transparent.

July/August 2022

We evaluate Maya against statistical and machine
learning-based power analysis attacks on three differ-
ent machines, in one case tapping an electrical power
outlet. We show Maya's high effectiveness. Maya is the
first application of formal control to side-channel
defense. Maya is publicly available at https://github.
com/mayadefense/maya and the design of its formal
controller is detailed in http://iacoma.cs.uiuc.edu/
jacoma-papers/isca21_1_tr.pdf.

Shao et al.® recently described a covert-channel
attack across a building’s power network. Four victim
computers are connected to electrical power outlets.
The attacker is also connected to an electrical power
outlet in another part of the building, at a distance of
90 ft, tapping on the same power network. The atta-
cker samples voltage with an oscilloscope every 2 us
and, over a period of 33 ms, is able to decode one bit
of information from the victims. Shao et al. then
deployed a power-reshaping defense based on Maya
that acts every 40ms, and show that it completely
thwarts their covert channel.

Physical Side Channels
Physical side channels, such as power, temperature, and
EM emissions, can be used to uncover many details
about an execution. Attackers have used these signals
to infer the characters typed by a user,' to identify the
running application, the length of passwords on smart-
phones, the browser activity on personal computers, to
disrupt operation in multitenant datacenters, and even
to recover encryption keys from a cryptosystem.

Physical side channels appear because, as semi-
conductor devices switch, they consume dynamic
power. The switching activity varies with instructions,
which leave distinct fingerprints in the power trace.!
Temperature and EM emissions are related to the com-
puter's power, and leave similarly analyzable patterns.

Attackers can capture physical signals in many
ways, most of which are nonintrusive. For example, in
PLATYPUS,? attackers can use a malicious application
that reads unprivileged hardware and operating sys-
tem (OS) counters for power or temperature. In cloud
systems, an application can use the thermal coupling
between cores to infer the temperature or power pro-
file of a co-located application using its own coun-
ters.® When power/thermal counters are unavailable,
attackers can estimate power from OS metrics like uti-
lization or from code analysis. Malicious smart batter-
ies are another source of energy counters.

Power can also be measured by tapping ac electricity
outlets, power distribution units, and public USB charging
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booths. If proximity to the victim is possible, low-cost
infrared thermometers and antennas can be used to
read temperature and EM emissions, respectively. With
direct access to the computer, attackers can use multi-
meters or oscilloscopes. Such high-end equipment is
usually necessary to extract encryption keys.

Trojan hardware, such as chips, co-processors,
FPGAs, and other IP modules like chiplets that are co-
located with the target chip can also surreptitiously
measure the target’s chip-level power or temperature.
Cloud systems share FPGAs across processors and
accelerators, and can be exploited for remote power
measurement.? In multicore systems, the hierarchical
power management policies can be abused to act as
power covert channels between cores.

A computer’s power activity can even be measured
by an attacker hooked to an ac electrical power outlet
connected to the same power delivery network, from
a different location in a large building.® The attacker
needs no physical access, and can use existing com-
mercial equipment.

To extract sensitive information from signals,
attackers can apply machine learning (neural net-
works), signal processing, and statistical analysis tech-
niques." Such techniques can identify information-
carrying patterns in the signal, like its phase behavior
and peak locations over time, and its frequency spec-
trum after a Fourier transform.

To extract encryption keys, attackers either use
simple power analysis on a single trace, or differential
power analysis over thousands of traces.

The timescale over which the signals are analyzed
is determined by the information that attackers seek
and the available measurement channels. Most atta-
cks steal information like the identity of the running
applications, keystrokes, or browser data, and are per-
formed with samples at intervals of milliseconds or
more.! For cryptographic keys, it is typically necessary
to record and analyze signals with samples at intervals
of a few microseconds or less.”

State-of-the-Art Defenses

Prior defenses against power side-channel attacks
have mostly targeted encryption circuits. They try to
mask activity information by keeping physical signals
at constant levels or by adding noise. Unfortunately,
these defenses need new hardware and, hence, can-
not protect existing systems in the field.

Some of these defenses have additional limitations.
For example, adding noise® or randomizing DVFS in the
encryption circuits is easily countered by averaging
multiple signal samples. Furthermore, some of these
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circuit defenses first measure the encryption circuit’s
power and then change their own activity to keep the
overall power constant. Unfortunately, since the defe-
nse reacts only after observing the power changes,
these defenses cannot fully hide application activity.

It is possible to implement the software versions of
these defenses to protect against information leaking
through chip- or system-level power signals. However,
as we will show later, these software schemes also
have limitations.

An alternative strategy is to modify applications so
that they do not leak information through physical sig-
nals. This is possible for a few critical applications
(e.g., OpenSSL) but is impractical for the rest—like
browsers, video, or camera applications. To our knowl-
edge, there are no defenses that can be readily used
in existing machines in the field against power side
channels in an application-transparent manner.

Formal Control Techniques

Using formal control,® one can design a controller K
that manages a system S (i.e.,, a computer) as shown
in Figure 1. The system has outputs y (e.g., the power
consumed) and configurable inputs « (e.g., the DVFS
level). We want the outputs to be kept close to the
output target functions r. The controller reads the
deviations of the outputs from their targets
(Ay = r — y), and sets the inputs appropriately.

The controller is a hardware or software state
machine characterized by a state vector, z(7'), which
evolves over time 7. At a given time, it generates the
system inputs «(7T") by reading the output deviations
Ay(T), and advances its state to z(7' + 1)

2(T+1) =Axa(T)+ B x Ay(T)

z(0) = 0. (1

w(T) =Cxz(T)+ D x Ay(T)

A, B, C, and D are the matrices that encode the
controller.

Designers specify multiple parameters in the con-
trol system.®> They include the maximum bounds on
the deviations of the outputs from their targets, the
magnitude of the unmodeled effects that the control-
ler must be tolerant of (i.e., the uncertainty guard-
band), and the relative priority of changing the
different inputs (i.e. the input weights).® With these
parameters, controller design is automated.’

Output targets~ Output deviations | Controller | Inputs | System | Outputs
r ? Ay K u S y ‘

FIGURE 1. Control loop.
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We consider power side-channel attacks that perform
signal analysis at the timescale of milliseconds, and
which use pattern recognition techniques, such as
machine learning, signal processing, and statistics to
analyze the signal. Such attacks do not need physical
access and can use widely available commercial equip-
ment. These attacks can steal information like the
identity of the running applications, keystrokes typed,
and browser data accessed. This threat model covers
the majority of attacks described earlier (e.g., the work
of Lifshits et al.,' Shao et al..® Giechaskiel et al.* and
Masti et al.f), except for those attacks identifying
encryption keys.” The latter attacks are harder to
mount, and typically need more detailed knowledge of
the cryptosystem being attacked.

We assume that attackers can know the algorithm
used by Maya to reshape the computer’'s power. They
can run Maya's algorithm and see its impact on the
time-domain and frequency-domain behavior of appli-
cations. Using these observations, they can develop
machine learning models to adapt to the defense and
try to defeat it.

Finally, we assume that the firmware or privileged
software that implements the control system for
reshaping power is uncompromised. In a software
implementation, the OS scheduler and DVFS interfa-
ces need to be uncompromised.

We propose that a computer system defend itself
against power attacks by distorting its power con-
sumption. Unfortunately, this is hard to perform suc-
cessfully because simple distortions like adding noise
can be removed by attackers using signal processing.
This is especially the case if, as we assume in this arti-
cle, the attacker knows the defense algorithm used to
distort the signal. Indeed, past approaches have been
unable to provide a solution to this problem. In this
article, we propose the new approach of using formal
control to reshape power.

Maya Defense Architecture

Figure 2 shows the Maya architecture. Maya has a
mask generator, a controller, and mechanisms (or
inputs) to change the power of a computer that is run-
ning an application. The mask generator creates the
target power function to mislead attackers and com-
municates it to the controller. The controller reads
this target and the actual power consumed by the
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DVFS
Balloon level

Mask | Target Idle level | Computer | Power
Controller
Generator | power (Inputs) system | (Sensors)

FIGURE 2. High-level architecture of Maya.

computer as given by the sensors. Then, it actuates all
the inputs so that power is brought to the target.

The inputs that the controller actuates are the lev-
els of DVFS, the balloon task, and the idle activity. The
balloon task performs power-consuming operations
(e.g., floating-point operations) in a tight, tunable loop.
The balloon level determines the fraction of power-
consuming operations. The idle activity level deter-
mines the percentage of processor cycles in which
the processor is forced into an idle state.

To understand the environment targeted by Maya,
consider Table 1. The table shows two types of power
side-channel environments, which we call InScope
and OutOfScope. Our envisioned Maya design targets
the InScope environment.

In InScope, attackers measure power with meth-
ods like reading counters or tapping electrical power
outlets, even with oscilloscopes.® The signal analysis
is at the granularity of milliseconds and, therefore, one
can use typical matrix-based controllers, as described
in the “Formal Control Techniques” section. They are
implemented in firmware or privileged software. The
controller can respond in 5-10 us, setting the DVFS

TABLE 1. Two types of power side-channel environments.

Characteristic InScope OutOfScope
Attacker's Counters, electrical High-frequency
sensors line tapping with probes, on-die

oscilloscopes trojan circuits
Signal milliseconds <microseconds
analysis
Controller Matrix-based Table-based
type controller in controller in

firmware or hardware
privileged software
Controller 5-10 us ~10ns
response time
Example Change frequency Insert compute
actuations and voltage, instructions and
regulate balloon bubbles in

and idle levels pipeline

Example uses Hide what Hide features of a
application runsor | crypto algorithm
the keystrokes
typed
IEEE Micro
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level and regulating the balloon and idle activity levels.
This implementation can hide information like the
identity of the application running or the keystrokes
typed. This environment is the focus of this article,
and is relevant because it is widely used.

Table 1 also shows the OutOfScope environment,
which would require a different design for Maya. Here,
attackers use better sensors, such as high-frequency
probes, antennas, or on-die trojan circuits, and perform
signal analysis at the micro- to nanosecond timescale. In
this case, the controller has to be fast, and hence,
cannot use the matrix-based approach. Instead, it
has to use a table of precomputed values from
which it quickly reads the action to be taken. This
controller must be implemented in hardware and
have a response time of no more than =10 ns. Pos-
sible actuators in this environment are hardware
modules that insert compute-intensive instructions
or bubbles into the pipeline. With such fast actu-
ation, this implementation could be used, e.g, to
prevent information leaking from crypto algorithms.
We do not consider this environment in this article.

Why Use Formal Control?

Formal control is necessary to reliably keep the com-
puter's power close to the target power given by the
mask generator. Simple approaches cannot adapt to the
changes in power arising from the application itself. A
formal controller makes more informed power changes
at every interval, based on history. Specifically, the action
taken at time T is a function of the tracking error
observed at time 7" and the controller's state [x(T) in (1)].
The state is an accumulation of the controller's experi-
ence in regulating the computer’s power.

Moreover, obtaining the controller's matrices (A, B, C,
and D) involves capturing the response of training appli-
cations while scheduling the balloon and idle threads,
and measuring the resulting power changes. Hence,
these matrices embed the intrinsic behavior of the appli-
cations under these conditions, which increases control
effectiveness.

Finally, the controller can change multiple inputs
at a time, which increases control accuracy. Thus, it
can keep power close to the target even when runtime
behavior is unpredictable,® which is often the case
with computers. If the target signal function is chosen
appropriately, the attacker will be unable to obtain
application information.

Generating Effective Targets

The target power function (or mask) should be con-
structed such that it can hide application activity effec-
tively. Consider what happens if the target is simply set
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to a constant. As the application activity changes, any
method to maintain the computer's power at a fixed
level would have to first observe power deviating from
the target, and then set the inputs accordingly. Hence,
the output signal will have power activity leaking at all
change points in the application.

On the other hand, choosing a random target
power at every timestep is not a good design either.
The attacker could run the application many times,
and then use signal processing techniques to remove
the random noise. Then, the native change points
in the application would stand out. Therefore, the
targets must be changed deliberately to hide such
inadvertent leakage, and this is the role of Maya's
mask generator.

An effective mask must hide information in both
the time domain and the frequency domain (i.e., after
obtaining the masked signal's Fourier transform). We
postulate that such a mask must have three proper-
ties. First, the mask should have several phases, each
with a different combination of mean and variance lev-
els. Second, the mask must have repetitive activity
with varying periodicity. This will create several peaks
in the power signal's Fourier transform. Applications
naturally create peaks in the Fourier transform domain
if they have loops. By introducing repetitive activity,
any natural peaks are overwritten or hidden. Finally,
the phase transitions must have different variation
rates, ranging from smooth to abrupt. With such
ranges of variation, the Fourier transform of the mask
will be spread over a range of frequencies. If the mask
has the abovementioned three properties, the result-
ing power signal will have many artificially induced
change-points that will erase or hide the original ones.

We find that a randomly changing Gaussian sinu-
soid signal, which is the addition of a Gaussian distri-
bution and a sinusoid, has all the properties we want.
It changes the mean and variance in the time domain,
and has spread and peaks in the frequency domain. In
the frequency domain, the Gaussian has a noisy spec-
trum that is spread across a continuous range of val-
ues. In contrast, the sinusoid has sharp and tall peaks.
Therefore, the combination of the two signals results
in a spectrum that has peaks that are both large and
spread across a range. This is the mask that we pro-
pose. More details are found in our conference paper.

Why Maya Works

Maya works because it reshapes power instead of
adding noise. With the latter, the original and distorted
power signals differ only by noise, which can be
filtered. Instead, Maya specifies a varying target

July/August 2022



TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

shape first, and attains this power by actuating on
the computer. So, the distortions are not simply
separable noise; they are made to appear as carry-
ing information. Attackers cannot isolate the distor-
tions even if they know Maya's defense, as long as
they cannot reproduce the random numbers used
by Maya.

We implement Maya to protect the three different
computers listed in Table 2. Sys1 is a consumer-class
machine with six physical cores, each with 2-way SMT,
totaling 12 logical cores. Sys2 is a server with two
sockets, each having 10 cores of 2-way SMT, for a total
of 40 logical cores. Sys3 is another consumer-class
machine with four physical cores, each with 2-way
SMT. On all systems, the architecture of Maya is the
same (see Figure 2). We target the InScope attack
environment of Table 1. The controller and mask gen-
erator run as privileged software.

The Maya controller measures the power used by
the cores plus L1 and L2 caches (Sys1 and Sys3), and
by the two packages (Sys2) using running average
power limit (RAPL) counters every 20 ms. It actuates
on three inputs: the DVFS level of all cores, percentage
of idle activity, and balloon power level.

DVFS levels are set through the cpufreq utility. The
idle activity level is changed using Intel's powerclamp
driver interface. The powerclamp system launches as
many kernel-level threads as the number of cores.
These threads repeatedly displace other running
threads and force the cores into idleness, until the
desired level of idleness is achieved.

We develop a simple balloon application that runs
floating-point operations in a loop. The percentage of
the balloon activity is set using a sysfs file and can be
0%-100% in steps of 10%. The balloon application first
spawns as many threads as the total number of cores.
Then, in the main loop, the master thread configures
each thread to run a loop of matrix multiply operations
for a few ms followed by sleep cycles. If the desired
power balloon level is high, the fraction of sleep is low
and vice versa. One iteration of the main loop (read
level-run compute-sleep loop), takes ~10 ms. The

TABLE 2. Implementation platforms.

Name Configuration RAPL sensors
Sysl SandyBridge (12 cores), CentOS 7.6 | Cores+L1+L2
Sys2 [ SandyBridge (40 cores), CentOS 7.6 Packages
Sys3 Haswell (8 cores), CentOS 7.7 Cores+L1+L2
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FIGURE 3. Tapping an ac electrical outlet.

balloon threads are created with OpenMP, and run
with root priority.

We design Maya's controller following standard
procedures® and using two applications from PARSEC
3.0 (swaptions and ferret)* and two from SPLASH-2x
(barnes and raytrace) running on Sysl as training
applications.

We consider multiple common attacks based on
machine learning as listed in Table 3. These attacks
try to identify which application is running on the
machine, which video is being encoded, and what is
the user's browsing activity. They are widely reported
in prior work.!

To defend, Maya's controller samples power at 20-ms
intervals because RAPL provides reliable measure-
ments only at this timescale. The attacker also samples
power at 20-ms intervals except in Sys3, where the sam-
pling interval is 50 ms because the measurements are
taken from an ac power outlet cycling at 60 Hz. Figure 3
shows a picture of our Sys3 test platform. We tap the
electrical outlet used by the victim computer with wires
connected to a multimeter. This multimeter (Yokogawa
WT310) passes its measurements into another com-
puter using a USB connection. This is a powerful and
stealthy attack because information is obtained by sim-
ply rigging electrical outlets without installing any mod-
ules on the victim.

We use a three-layer multilayer perceptron (MLP)
neural network for classification in the three attacks.
The network uses ReLU units for its hidden layers and
the output layer uses Logsoftmax. This network takes
the power traces over time for the application detection
and video identification attacks. For webpage identi-
fication, the network is trained with the fast Fourier
transform (FFT) of the power signals recorded when
browsing popular websites.

PARSEC 3.0: https://parsec.cs.princeton.edu/parsec3-doc.
htm.
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TABLE 3. Machine-learning-based power attacks. TABLE 4. Designs compared.

Attacker’s goal Victim Signal-capturing Design Description
computer method Noisy Each run has a new DVFS, Idle and Balloon
Detect running Sys1 Counters baseline level
application Random DVFS, Idle, and Balloon levels change
Identify video being Sys2 Counters inputs randomly at runtime
encoded Maya Maya (see Figure 2) with a constant mask
Identify webpages Sys3 AC outlet power constant
visited Maya GS Maya with a Gaussian sinusoid mask
(Proposed)
Defenses

Our Baseline environment is a high performance inse-
cure machine without any noise or mask to obfuscate
the application to an attacker. On top of this environ-
ment, we build the software defenses shown in Table 4.
Specifically, in Noisy baseline, each run of the applica-
tion is executed with new DVFS, idle activity, and bal-
loon levels that are picked randomly before the
application starts, and kept fixed for the duration of
the whole execution.

Random inputs changes the values of the DVFS,
idle activity, and balloon levels randomly at runtime.
Once a set of values is chosen, it is kept unchanged

defense on (i.e, Random inputs, Maya constant, or
Maya GS). Then, they use their MLP to recognize new
obfuscated traces from the same defense.

To highlight our results, we use the attack that detects
the application running. We run a total of 11 applica-
tions from PARSEC 3.0 and SPLASH-2x. We compare
the different defenses from Table 4 using confusion
matrices. A confusion matrix is a table where each
row corresponds to the true labels of the applications
(0-10 for the 11 applications) and each column has the

for a randomly selected duration, after which another
set of values is selected. This makes the application’s
power profile significantly noisy.

Maya constant uses Maya’'s formal controller but
the power target is a constant. Finally, Maya GS is our
proposal that uses the formal controller and a Gauss-
ian sinusoid mask generator.

We evaluate the security of the designs in Table 4
in an environment where attackers adapt to each
defense. Specifically, attackers collect data to train
their MLP classifier when the victims run with their

fraction of the signals classified as the predicted
labels by the attacker's MLP classifier. The matrices
are shown in Figure 4. For example, the entry in the
Oth row and 1st column gives the fraction of the sig-
nals that had a true label of 0 and were classified as
application 1. The diagonal entries give the correct
predictions, and averaging all the diagonal entries
gives the overall average accuracy. Note that the ran-
dom chance of correct classification is ~9%, as there
are 11 applications. An accuracy around this value indi-
cates a classification failure.

Predicted label Predicted label Predicted label
4 5 6 4 5 6 4 5 6

0 1 2 8 9 10 0 1 2 8 9 10 0 1 2
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FIGURE 4. Confusion matrices for detecting the running application from power signals. (a) Random inputs (avg. accuracy 94%).
(b) Maya Constant (avg. accuracy 62%). (c) Maya GS (avg. accuracy 14%).
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FIGURE 5. Summary statistics of the average of 1,000 signals. The Y-axis of each chart is drawn to a different scale. (a) Noisy

baseline. (b) Random inputs. (c) Maya constant. (d) Maya GS.

Figure 4 shows the confusion matrices on the three
main defenses that we test. Entries with higher frac-
tions are darker. The average classification accuracy is
94% for Random inputs, 62% for Maya constant, and
14% for Maya GS. Random inputs fails. To defend
because randomly changing the DVFS, idle, and balloon
levels does not hide the application’s inherent activity.
For example, changing DVFS has a different impact in
compute and memory bound phases of the application.
The MLP catches such differences.

Maya constant manipulates the DVFS, idle, and
balloon levels to maintain constant power. It has bet-
ter obfuscation than Random inputs, but is ultimately
ineffective. As described in the “Generating Effective
Targets” section, ensuring constant power causes inf-
ormation leaks at application change points.

Finally, the attack on Maya GS has only 14% average
accuracy. This is close to the 9% prediction accuracy of
random chance. Overall, Maya GS achieves excellent
obfuscation. The Gaussian sinusoid mask and the formal
controller hide any original patterns in the application with
false activity. Since Maya GS produces a different trace in
each run, the MLP cannot find any common pattern.

Signal Statistics and Analysis

For more insights, we analyze the signals produced by
the defenses of Table 4 using signal summary statis-
tics and change-point analysis.

Signal summary statistics: We perform the follow-
ing analysis for each defense. For each application, we
collect all the power traces produced by the defense
across runs and average them out. Then, we examine
the distribution of power values in this averaged sig-
nal, and compare it to the distribution of power values
in other applications. An effective defense would pro-
duce similar distributions in all applications, so the
applications are hard to distinguish.

Figure 5 shows the box plots of power values in the
averaged traces for Noisy baseline, Random inputs,
Maya constant, and Maya GS. The averages are
obtained from 1,000 raw traces of each application.
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Each chart labels the applications on the horizontal
axis from 0 to 10. Each box includes the 25th to 75th
percentile values for the application. The line inside
the box is the median value. The whiskers of the box
extend up to the maximum and minimum. The dark-
red "+" markers represent values detected statistically
as outliers in the distribution. For legibility, the Y-axis
on each chart is drawn to a different scale.

With Noisy baseline [see Figure 5(a)], the value dis-
tribution is distinct for each application and acts like a
fingerprint. In Random inputs [see Figure 5(b)], the
boxes shrink in size, but the relative difference remains
the same. With Maya constant [see Figure 5(c)], the
boxes shrink further (see the change in Y-axis scale)
and the median values of applications become closer
to each other. However, the distribution is sufficiently
different for the attacker to identify each application.

Finally, with Maya GS [see Figure 5(d)] the distribu-
tions are near-identical (see the Y-axis scale). The
median values are nearly the same because Maya GS
produces a different trace in each run that is uncorre-
lated with other runs. Moreover, each run uses the
whole range of allowed values. Therefore, averaging
traces cancels out the patterns. Hence, the median,
mean, variance, and the distribution of the samples
are close, indicating a high degree of obfuscation.

Change-point detection: This is a signal-processing
technique used to identify the times when the proper-
ties of a signal change. The properties can be the sig-
nal mean, variance, edges, or Fourier coefficients. We
use a standard change-point detection algorithm® to
identify the phases found in the reshaped signals. We
present the highlights of this analysis using the black-
scholes application.

With Noisy baseline [see Figure 6(a)], four phases
of the application are clearly seen: 1) sequential, 2)
parallel, 3) sequential, and 4) idleness after the

bhttps://www.mathworks.com/help/signal/ref/findchangepts.
html
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FIGURE 6. Change-point detection in blackscholes using traces over time. Chart (a) shows all four phases being detected.

(a) Noisy baseline. (b) Random inputs. (c) Maya constant. (d) Maya GS.

application ends. The difference between the phases
is not too large, and there is some noise because of
the interference with idle and balloon activity. How-
ever, the algorithm detects the four major phases.

With Random inputs [see Figure 6(b)], the profile is
significantly noisy. However, since the noise is ran-
dom, the inherent application activity is uniformly per-
turbed and hence, any phases in the application are
still visible. The change-point detection algorithm
identifies all the phases.

With Maya constant [see Figure 6(c)], the power
profile is mostly around 25W because the mask is
held constant at that value. However, the algorithm
can still recover phases. The constant target cannot
prevent activity from leaking at phase transitions.
There are sharp peaks at phase change points. The
FFT of the signal (not shown) also preserves such
changes.

With Maya GS [see Figure 6(d)], change-point anal-
ysis detects many phases, but these are all artificial.
The signal and its FFT (not shown) are totally different
from the original signal. In fact, it is also impossible to
infer when the application completed. The application
completed around 121s, but the signal shows no nota-
ble difference at that time.

Overheads of Maya

Maya runs as a software process that wakes up at reg-
ular intervals to read the power sensors, generate the
next mask value, run the controller, and initiate the
actuations.

Generating the next mask value requires obtaining
one (pseudo) random number to sample from the
Gaussian distribution. However, when the properties
of the Gaussian and sinusoid functions are changed,
more random numbers need to be generated. In our
implementation, we use the C++ STL library. In the
worst case, getting all the required random numbers
takes about a microsecond.

Running the controller involves computing (1) using
the difference between the target and the measured
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power values to obtain the DVFS, idle, and balloon lev-
els. The controller has an 11-element state vector (7'
(1). It can be shown that running the controller needs
~200 fixed-point operations, which complete within
1us. The controller needs less than 1kb of storage.

Maya needs few resources to operate, making it
attractive for firmware, software, or even hardware
implementations. The primary bottlenecks in our
implementation are the sensing and actuation laten-
cies, which can reach a millisecond or more.

Impact on Application Power and
Performance

We run the PARSEC and SPLASH-2x applications on
Sys1 with Maya GS and Baseline (see the “Defenses”
section). Baseline runs applications at the highest
available frequency without inserting idle or balloon
threads. We measure power and execution time. Com-
pared to the high-performance Baseline, the average
power consumed by the applications with Maya GS is
30% lower. The power is lower because Maya GS uses
idle threads and sometimes low DVFS values. On the
other hand, the average execution time is 47% higher,
because of the idle and balloon threads, and the low
DVFS values. The total energy consumed by Maya GS
is approximately the same as that of Baseline.

We believe that the slowdown of Maya GS relative
to Baseline is acceptable given the high level of secu-
rity that it provides without needing any hardware
support at all.

Two promising research directions are to decrease
Maya's performance and energy overhead, and to
widen Maya's applicability to other side channels.

Lowering Maya's Performance and
Energy Overhead

The performance and energy overhead of Maya may
be prohibitive for systems, such as those involving
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battery-powered and Internet of Things devices.
Among the methods to reduce this overhead, one
approach is to activate Maya only during sensitive
sections of applications, such as when executing login
routines. This approach is similar to how power gover-
nors can be invoked in Linux. Even though such selec-
tive activation reveals the onset of a sensitive phase,
information during that phase is protected.

MAYANEEDS FEW RESOURCES TO
OPERATE, MAKING ITATTRACTIVE FOR
FIRMWARE, SOFTWARE, OR EVEN
HARDWARE IMPLEMENTATIONS.

Another approach to reduce the application slow-
down is to run the application and the power balloon
threads on separate SMT contexts to avoid context
switch overhead. Yet another approach is to imple-
ment Maya in firmware, to eliminate the software calls
to read and modulate power. Finally, one can imple-
ment the power-burning circuits in hardware, to elimi-
nate the software overhead of executing the power
balloon threads.

A more complex solution to reduce overhead
would be to utilize knowledge about an application to
minimize the distortions. Currently, Maya assumes
that information-carrying patterns may exist anywhere
in an application. Therefore, it thoroughly reshapes the
application’s power activity. However, recent research
has indicated that it is possible to use additional
knowledge of an application—e.g., gathered with
machine learning techniques—to identify particular
locations where information-leaking patterns occur
and also to identify any specific features those pat-
terns have (e.g., Gu et al.'s work™). This knowledge can
reduce the locations and magnitude of the distortions
that Maya introduces. Consequently, the overall ene-
rgy and performance impact may also come down. We
consider the prospects of jointly using machine learn-
ing and Maya's formal control to be exciting new work
in security.

Simultaneously Tackling Multiple
Sources of Information Leakage
Computers have various sources of information leak-
age that attackers can exploit. Information may also be
identified by correlations across patterns in multiple
channels (e.g, memory traffic and power). Previous
work'? has shown that signal reshaping can stop
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information leaking through side channels, such as
memory and network traffic measurements. A key
challenge, however, is to simultaneously obfuscate
information from multiple channels.

MAYA IS THE FIRST DEFENSE ACAINST
POWER SIDE CHANNELS THAT IS
APPLICATION TRANSPARENT AND
READY TO BE DEPLOYED TO PROTECT
EXISTING SYSTEMS.

Maya is a promising solution for multichannel obfus-
cation for several reasons. First, as this article shows, a
formal control-based defense is simple and effective.
Second, the controller has the capability to regulate
multiple outputs at the same time, potentially mitigating
multiple side channels simultaneously. Third, the Maya
design needs few resources to operate, making it suit-
able for even hardware and firmware implementations,
and to scale with more signals. Finally, the use of formal
control simplifies verification and can be used to pro-
vide the guarantees of protection.

We believe that there is a significant research
potential in identifying the best target masks for multi-
channel obfuscation and in designing multirate con-
trollers that can obfuscate patterns at various
timescales across different channels.

Maya is the first defense against power side channels
that is application transparent and ready to be
deployed to protect existing systems. It needs few
resources to operate, and the knobs that it changes
are supported by virtually every computer today.

In our conference paper, we show that Maya pre-
vents the profiling of instructions from power signa-
tures. Such capability prevents the recent PLATYPUS
attack? from recovering cryptographic keys from
RAPL energy counters.

Maya has already been used by a different
research group to block a new power attack. Specifi-
cally, Shao et al.® described a covert-channel attack
across a building’s power network.

We hope that Maya will spur many researchers to
use advanced formal control for security. We consider
Maya-based signal reshaping to be a powerful defense
mechanism when attackers can gather signals from a
victim.
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