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Abstract
Machine learning (ML)-based side channel attacks have become

prominent threats to computer security. These attacks are often

powerful, as ML models easily find patterns in signals. To address

this problem, this paper proposes dynamically applying Adversarial

Machine Learning (AML) to obfuscate side channels. The rationale

is that it has been shown that intelligently injecting an adversar-

ial perturbation can confuse ML classifiers. We call this approach

FriendlyFoe and the neural network we introduce to perturb signals
FriendlyFoe Defender.

FriendlyFoe is a practical, effective, and general architectural

technique to obfuscate signals. We show a workflow to design

Defenders with low overhead and information leakage, and to cus-

tomize them for different environments. Defenders are transfer-

able, i.e., they thwart attacker classifiers that are different from

those used to train the Defenders. They also resist adaptive attacks,

where attackers train using the obfuscated signals collected while

the Defender is active. Finally, the approach is general enough to

be applicable to different environments. We demonstrate Friendly-

Foe against two side channel attacks: one based on memory con-

tention and one on system power. The first example uses a hard-

ware Defender with ns-level response time that, for the same level

of security as a Pad-to-Constant scheme, has 27% and 64% lower

performance overhead for single- and multi-threaded workloads,

respectively. The second example uses a software Defender with

ms-level response time that reduces leakage by 3.7× over a state-

of-the-art scheme while reducing the energy overhead by 22.5%.

CCS Concepts
• Security and privacy→ Side-channel analysis and counter-
measures.
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1 Introduction
Securing computers against information leakage has never been

more challenging. Attackers can use complex analyses to exfiltrate

sensitive information from a variety of side channels. Recently,

attackers have begun using machine learning (ML) for side channel

analysis—a move that greatly amplifies the risk of information

leakage for many systems (e.g., [32, 30, 34, 39]).

ML-based side channel analysis is powerful for several reasons [39,

10, 32, 7, 29]. First, ML models learn information-carrying patterns

from the dataset automatically, without domain-specific assump-

tions or feature engineering. In contrast, earlier approaches like

template attacks assumed particular properties of the collected sig-

nals and targeted specific connections between the data [32]. As

a result, they often fail to leverage all the correlations in the data,

and become vulnerable to countermeasures. Second, ML networks

can circumvent simple defenses like noise addition, masking, and

shuffling. Finally, ML networks can work with raw data, lowering

the efforts to construct leaky side channels and pre-process signals.

In contrast, most current approaches to obfuscate information

against side channel analysis (e.g., [12, 60, 43]) are specific to partic-

ular attacks and circumstances. They are hard to generalize across

different types of side channels. Further, the signal distortions they

create often result in high performance overheads. Therefore, it is

necessary to develop more intelligent defense strategies that are

general and minimize performance overheads.

An intriguing approach is to use adversarial machine learning

(AML) for defense. AML is a technique that intelligently perturbs

the inputs of an ML classifier such that it causes a misclassification.

AML has become popular in confusing image classifiers [56], and

offers an opportunity to defeat ML-based side channel analyses.

There are two prior works that use AML as a countermeasure [41,

44]. These methods require the full trace of a signal to determine

how it should be distorted. Such a trace is only available after the

system execution. By the time these schemes start post-processing

https://doi.org/10.1145/3656019.3676952
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the signal, the information has already leaked to an attacker. To

protect real systems, we need a dynamic defense that produces the

perturbations on the fly.
This paper shows, for the first time, that on-the-fly AML is an

effective and general architectural technique to obfuscate side chan-

nel signals. We call the approach FriendlyFoe and the network to

perturb signals FriendlyFoe Defender. We show the practicality,

efficacy, and generality of FriendlyFoe against side channel attacks.

The core of our proposal is to train a FriendlyFoe Defender using

a Generative Adversarial Network (GAN) [16, 56]. This approach

trains three networks together: the Defender, which adds noise

to a signal, and two attackers (classifier and discriminator) that

take the noisy signal and try to make a correct guess. All networks

are trained adversarially: the Defender to add noise to mislead

the attackers; the attackers to identify the correct label. Through

this, the Defender is trained to minimize information leakage with

minimal noise addition, even against a strong adaptive attacker.

We propose a FriendlyFoe workflow to build Defenders for dif-

ferent environments. Such Defenders are transferable—i.e., they are

effective against other types of attacker classifiers beyond those

they trained with. Moreover, they also resist adaptive attacks, where
attacker classifiers train using the obfuscated signals collected while

the Defender is in operation. In addition, Defenders can exhibit

inter-application transferability, where a Defender trained for one

victim application can provide a reasonable level of protection to

other victim applications. Finally, the approach is general, as it can

be applied to different side channel analyses that collect time-series

signals and apply pattern recognition to decode secret information.

We demonstrate FriendlyFoe by applying it to two different side

channel attacks: one based on memory contention and one on sys-

tem power. The first example uses a hardware Defender module

with ns-level response time that, for the same level of security as a

Pad-to-Constant scheme, has 27% and 64% lower performance over-

head for single- and multi-threaded workloads, respectively. The

second example uses a software Defender with ms-level response

time that reduces leakage by 3.7× over a state-of-the-art scheme

while reducing the energy overhead by 22.5%.

The contributions of this paper are:

• Showing the practicality, efficacy, and generality of on-the-fly

AML as an architectural defense.

• Design of a FriendlyFoe Defender and a GAN structure to train it

for architectural use.

• Workflow to design, implement, train, and deploy FriendlyFoe

Defenders for different environments.

• Application of FriendlyFoe to thwart two side channel attacks

based on memory contention and system power.

2 Background
2.1 Side Channel Analysis with ML
The goal of side channel analysis is to recover sensitive informa-

tion from a victim’s execution. Such analysis has been successfully

applied to exfiltrate information from structures like caches [59, 1],

branch predictors [13], and interconnects [34], as well as physical

signals of computers like power [25, 43] and electromagnetic (EM)

emanations [14].

Recently, attackers have used ML classifiers for signal analysis,

leveraging their pattern recognition capabilities [22, 19, 21, 39, 54].

ML-based side channel analyses have recovered sensitive data from

encryption modules [19], caches [57], power measurements [40,

27, 21, 45, 32], EM emissions [3] and on-chip interconnects [34].

These classifiers, particularly Deep Neural Networks (DNNs), can

automatically identify information-carrying patterns, overcoming

simple defenses like noise addition or signal misalignment [7, 39].

Hence, there is an urgent need to develop countermeasures that

are effective against even the strongest ML-based attackers.

2.2 Adversarial Machine Learning (AML)
Recent studies have found that it is possible to generate adversarial
examples [17] against an ML classifier which, with very small per-

turbations (imperceptible to the human eye), bring drastic changes

to the classification outcomes. For example, adding an impercepti-

ble noise to an image of a panda can cause a DNN to misclassify

the image as that of a gibbon [17].

Figure 1a shows howAdversarialMachine Learning (AML)works.

Given an input sample (e.g., an image), a Generator adds a small

perturbation that causes a Classifier to misclassify the image to a

wrong label. If both the generator and classifier are DNNs, they

can be trained adversarially [56]—i.e., the generator is trained to

create better perturbations, while the classifier is trained to predict

the correct label despite the perturbation. In the best case, after

the training, the generator’s perturbations are transferable to other

classifiers [36]. This means that the generator can induce misclas-

sification in other classifiers that have a different structure and

parameters than the original classifier.
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Figure 1: From adversarial ML (AML) to training a Friendly-
Foe Defender. In our design, we call the generator Defender.

A Generative Adversarial Network (GAN) [16] is a structure that

trains a generator adversarially against another neural network

called Discriminator. The generator creates samples in a certain

domain (e.g., images) and the discriminator tries to distinguish

whether a sample is from the generator (fake) or from the real

dataset (real). A common practice is for the discriminator to estimate

the differences between the fake and real sample distributions using

the Wasserstein distance [2]. By GAN training, the generator learns

to create realistic outputs that can deceive the discriminator.

The Adversarial GAN (AdvGAN) structure introduced by Xiao

et al. [56] combines the previous two concepts for maximum gen-

erator effectiveness. This structure, shown in Figure 1b, includes a

generator, a classifier, and a discriminator network that are trained
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adversarially. The classifier, generator, and discriminator can be

any type of DNN, where the choice is often based on the data type.

For images, a Convolutional Neural Network (CNN) [26] is often

used, while to detect sequential patterns, a recurrent neural net-

work (RNN) such as a Long Short-Term Memory (LSTM) [20] or a

Gated Recurrent Unit (GRU) [9] is used.

3 FriendlyFoe
This paper shows, for the first time, that on-the-fly AML can be a

generic, practical, and effective architectural technique to obfus-

cate side channel signals. Our approach, called FriendlyFoe, uses a
DNN called FriendlyFoe Defender to obfuscate a signal coming out

of an architecture side channel. Such signal is composed of a set

of samples {𝑥1, 𝑥2, . . .}. Successful obfuscation involves adding a

perturbation (i.e., noise) 𝑝 to each of the samples such that, with the

resulting signal {𝑥1 + 𝑝1, 𝑥2 + 𝑝2, ...}, even advanced ML classifiers

that have been trained using noisy signals are unable to extract

information from the signal.

FriendlyFoe is a general technique. It can be applied to a side

channel if the side channel leaks information through a signal

measurable over time, an attacker applies pattern recognition to

decode the secret in the signal, and there exists a method for the

Defender to actuate on the signal. In this paper, we demonstrate

FriendlyFoe in two side channels: memory contention and system

power. There are many other side channels that could be used, such

as network traffic that enables website fingerprinting [8] or PCIe

latency that allows keystroke detection [51].

3.1 How to Apply FriendlyFoe
FriendlyFoe can be applied in several ways. Table 1 lists some of the

attributes that determine how to apply FriendlyFoe, and whether

they are affected by the side channel, the victim application, or the

system constraints. We consider each in turn.

Table 1: Attributes that affect how to apply FriendlyFoe.

Attribute Affected by

Side Victim System

Channel Appl.

Signal recorded ✔

General Actuation on signal ✔ ✔

Area, power, latency ✔

Signal Sampling period ✔

Length (in # samples) ✔ ✔

Actuation grain size ✔ ✔

Other Actuation timing ✔

Number of classes ✔ ✔

General Environment. Important attributes that determine how

to apply FriendlyFoe are the type of recorded signal, the actuation

capability to perturb the signal, and the hardware cost allowed for

the FriendlyFoe module (area, power, latency).

Signals. Two attributes of the signal that affect a FriendlyFoe De-

fender design are the sampling period (the time between each sam-

ple), and the signal length in number of samples. The sampling

period is determined by the side channel, and impacts the expected

response time of the Defender. Typically, the Defender takes the

set of most recent samples and generates the noise to add to a

few upcoming samples before the attacker can observe the next

sample. Consequently, if the period is short, the Defender has to

make decisions quickly. The signal length is a characteristic of the

victim application and the side channel. It determines the capacity

of the Defender: long signals often require large DNNs to manage

the long-term pattern, increasing the hardware cost.

Other Attributes. As shown in Table 1, there are other attributes

that determine how to apply FriendlyFoe. For example, one may

have to sub-sample the signal, adding noise to only one out of 𝑁

samples. We call this approach coarse-grain actuation. Additionally,

if responding before the next sample is outright impossible, one

may generate noise to be applied to a future sample, delaying the

actuation. We call this attribute actuation timing. Finally, some

signals may carry a binary secret, while other signals carry a multi-

label secret.

3.2 Defender Architecture and Training
We want a Defender that minimizes both the information leakage

and the perturbation level on the side channel signal. Our general

design for the Defender is shown in Figure 2. It has two modules: a

Gaussian noise shaper that takes as inputs the mean 𝜇 and standard

deviation 𝜎 , and a neural network that periodically generates new

𝜇 and 𝜎 pairs for the noise shaper. Given a 𝜇 and 𝜎 pair, the noise

shaper generates 𝑁 samples from the resulting Gaussian distribu-

tion that will become the next 𝑁 samples of the Target signal.

Neural Network Layers
& Softmax

Weighted Sum
𝜇

𝐻Scores

Sample from 
	𝒩(𝜇, 𝜇/2 !)

Target	Signal	
𝑦" …𝑦"#$%&

History	𝑥!…𝑥!"#$%
𝐾 history samples

𝑁 samples

Noise Shaper

Neural Network Perturbations	𝑝" …𝑝"#$%&

Post-
processing

Figure 2: FriendlyFoe Defender architecture.

The noise shaper generates target signal values and not just per-

turbation values because generating perturbations using a Gaussian

distribution leads to a signal that is easily compromised. Also, this

target signal is not the final signal. If 𝑦𝑡 is the value of the target

signal at time 𝑡 and 𝑥𝑡 is the measured value of the system at time

𝑡 , then a post-processing step computes the perturbation value 𝑝𝑡
that must be added to the measured signal value to obtain the final

signal value as as 𝑝𝑡 = 𝑦𝑡 − 𝑥𝑡 . If a side channel signal cannot allow
negative perturbations (e.g., a timing side channel), only positive

or zero perturbations are added to the measured signal value.

After the 𝑁 samples are generated, the neural network deter-

mines a new 𝜇 and 𝜎 pair. In our experiments, we set 𝜎 = 𝜇/2
because we empirically find that it is hard for neural networks to

learn to generate good 𝜎 values. The likely reason for this is that

the effect of the standard deviation is zero on average. Therefore,

it becomes hard to learn good values of the standard deviation in

large-batch DNN training. Overall, the neural network only learns
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to generate sequences of 𝜇 values that minimize both the informa-

tion leakage and the perturbation level of the side channel signal.

To pick a 𝜇 value, the neural network takes the history of 𝐾

past samples of the signal. This vector is passed through a series

of hidden neural network layers, followed by a softmax layer. As-

sume that the softmax layer has 𝐻 outputs𝑤1 . . .𝑤𝐻 . The neural

network computes 𝜇 as 𝐴
∑𝐻
𝑖=1 (

𝑖
𝐻
𝑤𝑖 ), where 𝐴 is a configurable

hyperparameter to adjust the amplitude. The 𝜇 value obtained from

the neural network is then applied to the noise shaper to generate

the next 𝑁 target signals. This process repeats every 𝑁 samples.

The designer chooses the values of the subsampling window

size 𝑁 , the number of past samples read 𝐾 , and the number of

hidden neurons 𝐻 to meet the appropriate area, power, and latency

constraints. A smaller 𝑁 enables finer control of the noise pattern,

allowing the pattern to change more frequently. Increasing 𝐻 in-

creases the capacity of the model to handle more patterns. A higher

𝐾 gives more visibility to the network to protect long-term patterns.

However, these changes also increase the compute costs.

We recommend setting 𝑁 first, based on the relative speed of the

Defender module and the side channel signal. For example, if the

Defender module is implemented on an FPGA, whose frequency

is lower than the frequency of the memory system we are trying

to defend, then 𝑁 is adjusted to be at least the ratio of the two

frequencies. Then, the designer can configure 𝐻 and 𝐾 to match

the target implementation cost. Finally, to choose neural network

layers, we recommend simple feed-forward layers when the signal

patterns are short and we desire a low hardware cost. For long

patterns, we may need to use RNNs [20, 9], 1-D CNNs [33], or

attention-based Transformers [53].

To train the Defender, we propose the GAN structure shown

in Figure 1c, inspired by Adversarial GAN [56]. In this design, the

generator is the Defender and the classifier is the attacker. The

Defender adds a perturbation to a signal and passes the noisy signal

to the discriminator and classifier networks. The classifier tries

to make a correct guess. The discriminator tries to estimate the

Wasserstein distances [2] between the different label distributions,

acting as another type of classifier. The networks are trained ad-

versarially: the Defender is trained to perturb signal so that the

classifier produces a wrong label; the classifier is trained to identify

the correct label; and the discriminator is trained to recognize the

difference between the different labels. The classifier and discrimi-

nator can be any type of DNN. They can be large and sophisticated,

as they are used only for the training phase; only the Defender is

deployed to the system.

3.3 Resisting Adaptive Attacks
The Defender is trained using a particular classifier and input data

set. The operation is shown in Figure 3a, where classifier and data

set are called Classifier 1 and Train 1, respectively. However, the
Defender must also be effective against a variety of other classifiers

that the attacker may use at runtime. Specifically, the attacker may

use a deployed Defender to train a potentially stronger classifier

(Classifier 2) with a new input data set (Train 2) (Figure 3b). The
attacker’s goal is to become more effective against the Defender.

Then, the attacker will use the trained Classifier 2 to attack deploy-

ment runs with real (i.e., Test) input data sets and perform accurate

predictions of the secret data (Figure 3c).

Train 1

Defender

Classifier 1

Train 2

Classifier 2

Test

Defender

Classifier 2

Prediction

Defender

Adversarial Training Training

Frozen

Frozen

(a) (b) (c)

Figure 3: Training and deploying a FriendlyFoe Defender.

A Defender needs to be effective against classifiers which it has

not been trained for. This ability is called transferability. In Figure 3,

while the Defender has been trained only against Classifier 1, it

must be effective against Classifier 2. For example, Classifier 1 may

be a CNN and Classifier 2 a newly-trained CNN, or a different ML

model such as an RNN or a Support Vector Machine (SVM) [55].

4 Two Target Side Channel Attacks
To show the effectiveness of FriendlyFoe, we examine attacks using

two different side channels: memory contention and system power.

Their characteristics are shown in Table 2. In this section, we out-

line the two use cases and, in Section 5, describe our proposed

FriendlyFoe workflow, emphasizing the differences between the

two use cases.

Table 2: Two FriendlyFoe use cases.

Attribute Use Case 1 Use Case 2
Side channel Memory contentn System power

Perturbation Introduce stalls Add compute threads &

idle time. Change freq.

Victim application Crypto PARSEC

Implementation Hardware Software

Time between samples A few ns 20 ms

Signal length 28–75 samples 500 samples

Actuation timing Now Later

Classes Binary Multi-label

4.1 Threat Model
Memory-contention side channel.We instantiate an attack based

on the work of Paccagnella et al. [34]. We consider a chip multi-

processor where the victim runs on one core and the attacker on

another. The victim executes code whose memory accesses depend

on secret bits; the attacker repeatedly accesses the main memory

and measures the latency of its own accesses. The latency observed

by the attacker’s accesses is affected by main-memory contention

induced by the victim. Depending on the pattern of memory access

latencies observed, the attacker can deduce the secret bits.
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A good target for this attack is the loop inside a crypto appli-

cation where, in each iteration, the memory accesses depend on

one bit of an encryption key. Following the work of Paccagnella et

al., we assume that the administrator has configured the system to

clean the victim’s cache footprint on context switches, and that the

attacker can interrupt the victim using preemptive scheduling tech-

niques. In this case, one can time the attacker to interrupt the victim

at the beginning of each iteration. Then, we simulate cache cleaning

by calling clflush on the victim’s cache lines, which evicts them

from all cache levels. Then, as the victim executes the loop iteration

with a clean cache and is forced to make main-memory accesses,

the attacker accesses main memory and measures the load latency.

With this design, the attacker can deduce the value of the bit in the

iteration from the memory access latency measurements.

In our implementation, we run two crypto applications: the

RSA [47] and EDDSA [4] algorithms. The trace of memory access

latencies seen by the attacker during one iteration is the side chan-

nel signal, and the secret bit of the iteration is the target label. This

is a binary classification problem.

We do not consider cache attacks. Caches can be secured by

existing methods. For example, the last-level cache (LLC) can be

partitioned into different security domains, so that the attacker

cannot observe the victim’s LLC access. Also, simultaneous multi-

threading can be disabled, so that private caches are not shared by

multiple threads. Main memory remains shared and vulnerable.

Application power side channel. This attack is based on the

work of Pothukuchi et al. [43]. It considers a chip multiprocessor

running one of several victim applications. The attacker periodically

measures the chip power consumption using the Intel RAPL inter-

face [35]. Based on the measurements over time, the attacker tries

to deduce which application is running. We run PARSEC 3.0 [5] ap-

plications. We assume the attacker knows when a new application

starts its execution.

4.2 Defender for Memory Side Channel
The envisioned Defender is in a hardware unit in the memory

controller (MC) that records the time when a load arrives at the MC

and the time when the main memory produces the requested data.

To obfuscate the latency of the attacker load access, the Defender

may stall the returning data for a certain time period. We assume

that every main-memory load transaction must pass through the

MC and that its access latency is accurately measured in cycles.

It would appear that the time between samples is the time be-

tween loads from a core arriving at the MC. However, since there

may be multiple attacker cores, the Defender has to process every

single load arriving at the MC—irrespective of the source core. As

a result, as shown in Table 2, the time between samples can be

a few ns. The signal length is 28–75 samples per iteration of the

algorithm. The Defender dynamically generates a delay to be added

to the current memory access—not to a future one.

4.3 Defender for Power Side Channel
The envisioned Defender is a software process running in priv-

ileged mode in one or more cores. We assume that the OS and

hardware power and performance measurements are all trusted.

The Defender measures the power consumption using RAPL, and

spawns compute-intensive threads, adds idle time, or changes the

frequency to distort power. The set-up is based on the one described

in Maya [43]. Maya used a randomized mask generator to distort

power; in this paper, we replace it with a FriendlyFoe Defender.

As shown in Table 2, the sampling period is 20 ms, the default

period of Maya. For the applications considered (Section 6), the

signal length is about 500 samples. Because the Defender makes a

decision only after measuring the current power, it can only affect

future power samples. Finally, in this attack, the classifier picks one

of multiple labels, which corresponds to the application run.

5 FriendlyFoe Workflow
In this section, we describe the workflow for FriendlyFoe, which

we apply to the two use cases.

5.1 Designing the Defender Network
We design the Defender network based on the architecture of Sec-

tion 3.2. For the memory side channel, we assume an FPGA imple-

mentation. We set the subsampling window 𝑁 to 8, as determined

by the speed of FPGA DNN accelerators (200Mhz [58]) and the

frequency of DDR4-3200 memory (1600Mhz). We set the history

length 𝐾 and the hidden neuron size 𝐻 so that the area and power

of the Defender are less than 1% of the area and TDP, respectively,

of the multicore chip. The actual values used are 𝐾=16 and 𝐻=16.

The Defender’s perturbation values must be positive numbers of

cycles to add to the latency of memory accesses. Hence, negative

values become zero. Note that we could use a custom circuit to

implement a Defender with a smaller 𝑁 and a higher frequency.

However, such a Defender would consume more power and area.

The Defender computes new target samples at every 𝑁 = 8 mem-

ory controller accesses. To support this actuation frequency, the

Defender is implemented in hardware and has relatively few hidden

neurons. To reduce the hardware cost, we quantize the network

parameters (weights and biases) to 16-bit floating point (FP16) num-

bers. While 8-bit integer (INT8) is the standard for quantization,

we find that an FP16 model with fewer neurons has better security

than an INT8 model with more neurons. Further, our Defender has

two layers of 16 neurons each. As a result, it has 528 parameters

in total: 512 for the two 16 × 16 weight matrices of the two layers,

and 16 for the bias addition in between.

The Defender for the power side channel measures and actuates

on power every 20ms. Hence, we use 𝑁 = 1 because we have

plenty of time between samples. In addition, since the response

time is not very critical, we implement it in software and use𝐾 = 32

and 𝐻 = 64. This makes the network compute latency less than

1ms, which is small compared to the 20ms sampling period. The

outputs can be positive or negative numbers, which correspond

to increasing or decreasing the power consumption, respectively.

This Defender does not need any quantization since the latency is

already low even with an FP32 software implementation. It has 6208

parameters in total: 6144 for 32 × 64 and 64 × 64 weight matrices,

and 64 for the bias addition in between.

A summary of the Defender configurations is shown in Table 3.

The implementations are detailed in Sections 5.4.1 and 5.4.2.
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Table 3: Defender configurations for two side channels.

Parameter Memory contention Application power

side channel side channel

Window size 𝑁 8 1

History length 𝐾 16 32

Hidden neurons 𝐻 16 64

Parameter precision FP16 FP32

Neural layer type Feed-forward Feed-forward

Parameter count 528 6208

5.2 Training the Defender
Once we have designed the Defender and collected labeled signals

from the side channel, we train the Defender using a GAN network.

As shown in Figure 1c, training is performed with three networks:

the Defender, the classifier, and the discriminator.

Figure 4 shows how we train the networks. The Defender takes

𝐾 samples of history as input and produces the perturbation val-

ues to be applied to 𝑁 future samples. Specifically, at step 𝑡 , the

Defender reads the most recent 𝐾 samples {𝑥𝑡−𝐾+1, . . . , 𝑥𝑡 } and pro-
duces perturbations for the next window, which has 𝑁 samples, i.e.,

𝑝𝑡 , . . . , 𝑝𝑡+𝑁−1. At the beginning of the next signal window, i.e., at

time 𝑡 + 𝑁 , the Defender is fed 𝐾 samples once more {𝑥𝑡+𝑁−𝐾+1,
..., 𝑥𝑡+𝑁 } and produces perturbations for the next window after

that, i.e., 𝑝𝑡+𝑁 , . . . , 𝑝𝑡+2𝑁−1. After processing all the samples in 𝑥 in

this way, the entire signal and generated perturbations are added—

eliminating negative perturbations in the memory side channel—

and passed to the classifier and discriminator. Then, the classifier

and discriminator produce their predictions, and the three networks

compute their loss functions and proceed to backpropagation. Then,

the whole process repeats for another input signal.

…𝑥!"#𝑥!"$𝑥!𝑥!%$𝑥!%#…

Defender

Perturbations 𝒑
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𝐱 + 𝒑

…𝑝!"#𝑝!"$𝑝!𝑝!%$𝑝!%#…

Next Window (N)

Figure 4: Training the networks in the GAN structure.

The three networks are adversarially trained simultaneously,

with different loss functions. The classifier is trained by the cross-

entropy loss between its prediction probabilities and the true label.

The discriminator is optimized by Wasserstein loss [2], which tries

to maximize the Wasserstein distances between distributions.

TheDefender is trainedwith three losses: (1) the Kullback-Leibler

divergence [28] between the classifier output probabilities and the

uniform probability, (2) the negated Wasserstein loss of the dis-

criminator, and (3) the L2-norm of the perturbation. The first loss

optimizes the Defender to confuse the classifier, while the second

loss optimizes it for perturbed outputs that are indistinguishable

to the discriminator. Finally, the L2-norm loss minimizes the per-

turbation level to lower the overhead caused by the Defender’s

perturbations. The loss can be hinged [15] by a constant to adjust

the allowed perturbation level.

5.3 Assessing Defender Transferability
Recall from Section 3.3 that, to be useful, a Defender trained with

a certain classifier must be transferable to other classifiers. Con-

sequently, after we train a Defender, we select various types of

DNN networks for the classifier and, for each of them, perform the

two steps shown in Figures 3b and c. Then, we report the highest

classification accuracy attained by any classifier. This is the worst

case for the Defender.

Theoretically, it is impossible to verify the minimal security

guarantees provided by a Defender because one cannot evaluate it

against every possible classifier. However, this transferability anal-

ysis for a variety of classifier architectures often provides empirical

assurance that the Defender is transferable.

5.4 Architecting the Overall System
While the previous steps of the workflow are common for differ-

ent uses of FriendlyFoe, the next step, which involves architecting

the whole system, is use-specific. Depending on the side channel

addressed, applications used, or systems targeted, the implemen-

tation is different. For this reason, in this section, we consider the

implementations of our two FriendlyFoe examples separately.
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Figure 5: Defender for thememory contention side channel.

5.4.1 Defender for the Memory Contention Side Channel. We im-

plement the Defender in hardware in the memory controller (MC).

As shown in Figure 5, when a load request arriving at the MC from

the network is sent to the DRAM module, the hardware stores its

core ID (𝑐𝑜𝑟𝑒𝑖𝑑𝑖𝑛), its address (𝑎𝑑𝑑𝑟𝑖𝑛), and the current time (𝑡𝑖𝑛) in

an Input Buffer. When the memory returns a response at 𝑡𝑜𝑢𝑡 with

an address (𝑎𝑑𝑑𝑟𝑜𝑢𝑡 ) and core ID (𝑐𝑜𝑟𝑒𝑖𝑑𝑜𝑢𝑡 ), two operations occur

in parallel: 1) the response is deposited in a Delay Buffer where it is

delayed by a precomputed perturbation value, and 2) the response

checks the Input Buffer for a matching entry and, on finding it, the

hardware computes 𝛿 = 𝑡𝑜𝑢𝑡 − 𝑡𝑖𝑛 and pushes 𝛿 to a 𝐾-entry FIFO

History Vector for that core. Every time that the History Vector for

a core has taken in 𝑁 entries, it sends its 𝐾 entries to the Defender,
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which computes the perturbation values (𝑝1, . . . , 𝑝𝑁 ) to delay the

next 𝑁 responses to that core. From then on, the next 𝑁 responses

to that core arriving at the Delay Buffer are delayed by 𝑝1, . . . , 𝑝𝑁 .

During this time, new entries continue to be pushed into the His-

tory Vector. As before, after 𝑁 insertions, the History Vector sends

its 𝐾 entries to the Defender, starting the process again.

Most of the hardware cost of theDefender comes from computing

matrix multiplications. Since the Defender has two layers of 16

neurons each, it needs hardware for 512 FP16 FMAs (Fused Multiply

Adds). We estimate their cost based on Johnson’s analysis [23] for

TSMC 28nm, scaled down [49] to 7nm. Assuming a single MC

with dual-channel DDR4-3200 memory, we conservatively estimate

that our added hardware consumes a maximum dynamic power

of 0.11W and uses an area of 0.4𝑚𝑚2
. These are less than 1% of

the TDP (105W) and area (74𝑚𝑚2
) of a contemporary 7nm desktop

processor like the AMD 5800x [52]. We estimate that the critical

path of the Defender can be pipelined in about ten stages: two

stages for each of the two feed-forward layers (one for an FMA

and one for a bias addition), three stages for softmax, and three

stages for the final perturbation computation. In each stage, many

operations are performed in parallel. Given an MC frequency of

1.6GHz, the Defender operation takes less than 7ns. Most of this

latency can be overlapped with the memory controller’s routing

and flow-control logic—shown in Figure 5 as "rest of the MC logic".

Since the Defender can process requests at the same rate as the MC,

the memory throughput remains the same.

5.4.2 Defender for the System Power Side Channel. We implement

the Defender in software as a privileged process running on one of

the cores.We build on the framework ofMaya [43], a technique used

to obfuscate power signals. Figure 6a shows the Maya framework.

Maya consists of two parts. TheMask Generator creates randomized

target power shapes; the Robust Controller uses control theory

techniques to control the system inputs (e.g., frequency) so that the

system produces the target power shapes. As shown in Figure 6b,

our Defender is plugged into the Maya framework, by replacing a

Mask Generator with a FriendlyFoe Defender.

Mask Generator Robust Controller System
Target 
Power

Control
Inputs

Power Output

(a)

Power Defender Robust Controller System
Target 
Power

Control
Inputs

Power Output

(b)

Figure 6: Maya [43] framework (a) and FriendlyFoe power
side channel Defender plugged into the same framework (b).

5.5 Defending Other Victim Applications
A Defender is often effective for other victim applications beyond

those for which it has been trained. We evaluate this case in Sec-

tion 7.1.3.

However, in the general case, defending other types of victim

applications may require the system designer to collect data for

the new applications, train a Defender using the data, and deploy

the new Defender. Note that the Defender architecture does not

change; only the weight and bias parameters need to be updated

based on the applications. Therefore, as we change the victim, we

re-use the Defender module and re-program its parameters.

We can support this form of reconfigurability by placing the De-

fender parameters in registers or special memories, and providing a

way for the software to update them across victim applications. For

the system power side channel Defender, we can easily update the

parameters since we deploy it via software. On the other hand, for

the memory side channel Defender, we need a software-hardware

interface to update the parameters.

This interface to reconfigure the Defender can use model-specific

registers (MSR), microcode, or firmware. For example, if an MSR

interface is used, the software can write to an MSR the ID of the

parameter it wants to change and its new value. For our Defender,

one MSR is sufficient to perform a full reconfiguration. This is

because the Defender has 528 parameters (weights and biases) as

shown in Table 3, and each of them is an FP16 value. Hence, the

MSR takes 10 bits to specify the parameter ID and 16 bits to specify

the new value. If one MSR write takes about 1𝜇s, reprogramming

all the parameters of the Defender takes less than 1ms.

With this support, one can also disable the Defender, if needed,

by writing zeros to all parameters. Thus, to selectively invoke the

Defender only for a security-critical application, one can write the

application-specific Defender parameters at the beginning of the

application and clear them at program exit.

6 Experimental Methodology
To evaluate FriendlyFoe for our two side channels, we proceed

in two steps. First, we run the victim and the attacker on a real

computer, collect traces, and train a FriendlyFoe Defender. Second,

we evaluate the security provided by the FriendlyFoe Defender and

its execution and/or power overhead.

For the memory contention side channel Defender, we evaluate

the security provided by applying the perturbations to the traces; we

evaluate its performance overhead on benign applications through

simulations of the architecture. Since we deploy the power side

channel Defender on a real system, we evaluate its security and

overheads with real system measurements.

6.1 Memory Contention Side Channel
We base our attack code on the ring side channel code of Paccagnella

et al. [34]. We collect signal traces from a desktop with an Intel

i5-7400 processor when running one victim crypto application and

an attacker that repeatedly measures its memory access latency.

We have two victim applications: the RSA decryption algorithm in

libgcrypt 1.5.2, and the EDDSA algorithm in the libgcrypt 1.6.3 [24].
The execution traces consist of the latencies of the attacker ac-

cesses. Themeasurements are segmented intomultiple signals. Each

signal corresponds to one loop iteration of the victim application,

which processes a single secret bit. Each signal contains 28 and 75

samples for RSA and EDDSA, respectively. The sample values are

normalized by subtracting the median and dividing by the standard

deviation of all the samples in all the signals. Each signal is labeled

with the secret bit it corresponds to. For each application, we collect

12000 signals and split them into a 6:3:1 ratio to create Train 1, Train
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2, and Test datasets (Figure 3). We use PyTorch [37] to train and

evaluate the different ML networks.

We then apply four obfuscation methods: FriendlyFoe Defender,

Gaussian, Gaussian Sinusoid, and Padding to Constant. The last three
are techniques from previous work [43]. They add perturbations to

create target signals of gaussian shape, gaussian + sinusoidal shape,

and constant value, respectively. Recall that when the Defender

produces a negative perturbation for a sample, we set it to zero.

We also evaluate whether the defense is robust against interfer-

ence from concurrent threads. Hence, we conduct experiments in

noisy environments for both attack and defense. Specifically, while

collecting execution traces, we run random PARSEC [5] applica-

tions on the two remaining cores, filling up the four cores of i5-7400.

The Defender is trained using traces from clean environments, but

it is tested on the traces collected from this noisy environment.

We evaluate the performance impact of the FriendlyFoe De-

fender on benign applications in two environments: single- and

multi-threaded. For this, we configure the Gem5 [31] simulator to

model the hardware that generated the signals and run SPEC 2017

applications [6].We compare the execution overhead induced by the

FriendlyFoe Defender, Padding to Constant, and the state-of-the-art

DAGguise defense [12].

To model the DAGguise defense, we mostly follow DAGguise’s

setup. Specifically, in single-threaded evaluations, we run one of

DAGguise’s victim applications (DocDist) and one SPEC application,

for a total of two busy cores. In multi-threaded evaluations, we run

four DAGguise victims (2 DocDist and 2 DNA) with four SPEC

applications, for a total of 8 busy cores. We use this setup because

the DAGguise defense is highly specific to the victim application

that is running. Then, for fairness, we must also run the same

DAGguise applications when evaluating the FriendlyFoe Defender.

Since the Defender is not entirely specific to the victim and, instead,

has transferability to defend other victim applications, we deploy

the Defender trained to protect the RSA victim. In our experiments,

we run the simulations up to one billion instructions per thread

and compare the performance of the SPEC application threads.

6.2 System Power Side Channel
For this attack, we use the code base from Maya [42]. We collect

power traces on a desktop with an Intel Xeon W-2245 processor

using RAPL [35]. As victim applications, we use 6 PARSEC (blacksc-

holes, bodytrack, canneal, freqmine, vips, streamcluster) and 4

Splash2x (radiosity, volrend, water_nsquared, and water_spatial)

applications from the PARSEC 3.0 suite [5] with simlarge inputs.

The traces of the victim applications collected in an unprotected

environment are the Train 1 dataset (Figure 3), which we use to

train the FriendlyFoe Defender. Train 1 has 6000 signals. Then, we

collect traces with two defense environments: a Gaussian Sinusoid
mask generator from Maya [43], and FriendlyFoe Defender. We

collect 4000 signals for each defense method. These signals are split

3:1 to the Train 2 and Test datasets. All signals are 500-samples

long to record the longest workload (i.e., 10 seconds). The power

values are normalized by subtracting the idle power (30W) and

dividing by the power range (160-30=130W). Each signal is labeled

with the label of its dataset. Hence, the attack becomes a 10-label

classification problem. The networks are trained using PyTorch and

deployed to the same machine using the Maya code base and the

C++ API of PyTorch.

To evaluate inter-application transferability, we split the 10 ap-

plications into two sets: the 6 original PARSEC and the 4 Splash2x

applications. We train one Defender on one set and the other on

the other set, and evaluate whether the Defenders can protect ap-

plications on which they have not been trained.

6.3 Machine Learning Models
The neural network in the Defender consists of a 2-layer MLP, a

softmax layer, and a weighted sum (Figure 2). For the classifier

in Figure 4, we use a 16-layer 1-D CNN, which has the best at-

tack accuracy. For the discriminator, we use an MLP, producing

one real number for binary discrimination and 𝑁 numbers for the

𝑁 -class cases. We consider seven classifiers to evaluate network

transferability (i.e., Classifier 2 in Figure 3). Five of them are DNNs

implemented using PyTorch: the original 16-layer 1-D CNN (CNN),

a similar CNN with 25 layers (CNN-D for deep), a 16-layer CNN

with double hidden neurons (CNN-W for wide), a GRU-based net-

work (RNN), and an attention-based network (Att). The other two

are non-DNNs implemented with scikit-learn [38]: an SVM and a

K-Nearest Neighbor (KNN).

7 Evaluation
Since the two side channels are different, we evaluate each in turn.

7.1 Memory Contention Side Channel Defense
7.1.1 Security Provided. We take the unperturbed Test signals (Fig-
ure 3c) for the RSA and EDDSA victims, perturb them with our

defenses, and then use the 7 different classifiers described in Sec-

tion 6.3 (trained with Train 2) to see if they can break the defenses.

We consider the 4 defenses of Section 6.1 (FriendlyFoe, Gaussian,

Gaussian Sinusoid and Padding to Constant) and, for each, vary

the level of noise—i.e., the average added memory latency. This is

accomplished by adjusting the amplitude 𝐴 of the noise generators.

Figure 7 shows the information leakage in bits for RSA and ED-

DSA with different types of defenses and levels of noise—showing

only the best attack results of the 7 classifiers. Information leakage

is the mutual information [48] between the secret bits and the at-

tacker’s predictions. If one defense has𝑀 times less leakage than

another, the attacker must do𝑀 times more repetitions to obtain

the same information as for the other. As the attack tries to retrieve

a single bit, the leakage is 1 bit when the accuracy is 100%, and the

leakage is zero when the accuracy is 50%.

Consider RSA (Figure 7 left). The simplest defense, Pad to Con-

stant, is effective only when the average noise added is large (120-

160 cycles). For fewer cycles added to the memory requests, e.g., 40

to 110 cycles, Pad to Constant leaks more information than Friend-

lyFoe. For example, for an information leakage of 0.0026 bits, Pad

to Constant induces about 38% more latency than FriendlyFoe (76

cycles for FriendlyFoe vs 105 cycles for Pad to Constant). Alter-

natively, for a fixed extra latency overhead of 76 cycles, Pad to

Constant leaks 8.2x more information (0.0214 bits) than Friendly-

Foe (0.0026 bits). The randomized defenses (Gaussian and Gaussian

Sinusoid) are also ineffective. The main reason is that part of their



FriendlyFoe: Adversarial Machine Learning as a Practical Architectural Defense against Side Channel Attacks PACT ’24, October 14–16, 2024, Long Beach, CA, USA

0.0001

0.001

0.01

0.1

1

20 40 60 80 100 120 140 160

In
fo

rm
at

io
n 

Le
ak

ag
e 

(b
its

)

Average Extra Latency (cycles)

RSA

Pad to Constant
Gaussian Sinusoid
Gaussian
FriendlyFoe

0.01

0.1

1

20 40 60 80 100 120 140

In
fo

rm
at

io
n 

Le
ak

ag
e 

(b
its

)

Average Extra Latency (cycles)

EDDSA

Pad to Constant
Gaussian Sinusoid
Gaussian
FriendlyFoe

Figure 7: Trade-off between security and overhead of the defense methods for RSA (Left) and EDDSA (Right). The x-axis is the
average extra latency a defense adds, while the y-axis is the information leakage with the best attacker in bits.

perturbation samples end up being zero because the target sam-

ple values were lower than the measurement values. On the other

hand, the neural network in the FriendlyFoe Defender dynamically

adjusts the noise level to reduce both the information leakage and

the execution overhead. Hence, it is the best design.

Next, consider EDDSA (Figure 7 right). Compared to RSA, the

leakage is higher in all cases. This is expected, as the EDDSA sig-

nals are longer than the RSA signals (75 vs 28 samples), delivering

more information per signal. Nonetheless, FriendlyFoe remains a

better choice over other defenses. For example, for an average extra

latency of 80 cycles, the leakage with the FriendlyFoe Defender is

58% of that with the next best scheme.

7.1.2 Transferability to Other Classifiers. Our FriendlyFoeDefender
was trained with a CNN classifier and an MLP discriminator. We

now assess the transferability of the Defender to the other classi-

fiers. Table 4 shows the classification accuracy of the 7 different

attacker classifiers of Section 6.3 for both the RSA and EDDSA

victims. Recall that, in binary classification, an accuracy of 0.5 is

zero leakage, while 1.0 is full 1-bit leakage. The highest accuracies

are in bold, which represent the worst-case information leakage

with the Defender.

Table 4: Classification accuracy of 7 attacker classifiers as
they attack our Defender trained with the CNN classifier.

Victim Classifier Accuracy

Appl. Att RNN CNN CNN-D CNN-W SVM KNN

RSA 0.508 0.505 0.533 0.530 0.537 0.519 0.506

EDDSA 0.560 0.549 0.603 0.601 0.598 0.501 0.499

The range of accuracy numbers in the table is 0.499-0.603. Com-

pared to the CNN classifier, the other networks do not show higher

classification accuracy, even though the Defender was not trained

with them. This means that the perturbations generated after train-

ing our FriendlyFoe Defender with a CNN classifier are transferable

to various other types of ML attackers. We also see that CNNs with

more layers (CNN-D) or neurons (CNN-W) do not show noticeably

higher accuracy than the original CNN. This observation suggests

that using a bigger DNN is unlikely to break the defense.

7.1.3 Different Victim Application. In this section, we examine the

inter-application transferability of the FriendlyFoe Defender—i.e.,

the security of one victim when the Defender is trained for another

victim. We consider Defenders trained for the RSA or the EDDSA

victims. The resulting Defenders have the same model structure;

they only differ in the neural network weights and biases.

Table 5 shows the attacker accuracies of the most effective clas-

sifiers against our FriendlyFoe Defender trained on one victim

application (Train) but used to defend another victim (Target). We

also show the average added cycles per sample. The Defenders are

configured to have similar noise levels by setting the same noise

amplitude 𝐴.

Table 5: Attacker accuracies against a FriendlyFoe Defender
trained on one victim (Train) but used to defend another vic-
tim (Target), along with their average added cycles.

Target Train Victim

Victim RSA EDDSA

Attack Added Attack Added

Accur. Cycles Accur. Cycles

RSA 0.537 76.0 0.542 77.3

EDDSA 0.603 81.9 0.603 80.5

In the table, we compare the data within the same row. For exam-

ple, for the EDDSA row, we target EDDSA with either a Defender

trained with RSA or with EDDSA. We see that, in both cases, the

accuracy is the same (0.603). Further, the number of cycles only

increases by 1.4 as we go from an EDDSA-trained Defender to an

RSA-trained one. When targeting RSA, the attacker accuracy only

increases slightly from 0.537 to 0.542 as we go from an RSA-trained

Defender to an EDDSA-trained Defender, and the number of cycles

only increases by 1.3. Therefore, for these applications, the Friend-

lyFoe Defender shows inter-application transferability. One can

avoid the effort of collecting data and re-training the Defender for

the new application. Note that inter-application transferability is

not guaranteed and it may not apply to some victim applications.

In such cases, we must re-train a new Defender and deploy the

Defender using the methods discussed in Section 5.5.
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7.1.4 Effect of Environmental Noise. Since our target side channel
is shared among all cores, other applications may inject noise to the

channel. This noise alters the shapes of the signals observed by both

attackers and the Defender. Table 6 shows the attacker accuracies

against the FriendlyFoe Defender trained on a clean environment

and used to defend a victim in a clean or noisy environment. The

average added cycles is also shown. The noise is injected by PARSEC

applications in the background (see Section 6.1).

Table 6: Attacker accuracies against a FriendlyFoe Defender
trained on a clean environment and used to defend a clean
or noisy environment, along with the average added cycles.

Target Target Environment

Victim Clean Noisy

Attack Added Attack Added

Accur. Cycles Accur. Cycles

RSA 0.537 76.0 0.533 79.8

EDDSA 0.603 80.5 0.539 81.6

We see that the attacker accuracy is lower in the noisy environ-

ment than in the clean one. The reason is that interference provides

extra obfuscation to block information leakage. The number of

added cycles in the noisy environment is only slightly higher.

7.1.5 Performance Overhead. We evaluate the performance over-

head of FriendlyFoe on benign applications in two environments

discussed in Section 6.1: single- and multi-threaded workloads. We

compare three defenses: FriendlyFoe, DAGguise [12], and Pad to

Constant. Due to space limitations, we only show the RSA eval-

uation; the EDDSA evaluation shows similar results. Recall from

Table 5 that, with FriendlyFoe, the attacker accuracy is 0.537 and the

added cycles are 76.0. We configure Pad to Constant to have a simi-

lar level of leakage as the FriendlyFoe Defender. It was discussed in

Section 7.1.1 that this corresponds to a design that adds 105 extra

cycles. Indeed, in Figure 7, the configuration in the FriendlyFoe

Defender line with 76.0 cycles and the one in the Pad to Constant

line with 105 cycles are at the same Y coordinate. The DAGguise

configuration is the default one in their code base [11].

Figure 8 shows the execution overhead of the defense schemes

on benign single-threaded workloads, namely running one SPEC

application (plus the victim application). In this environment, mini-

mizing memory latency is important for performance. DAGguise

adds memory contention, which only indirectly increases the la-

tency of the benign application. FriendlyFoe and, especially, Pad to

Constant, directly add latency to the benign application. For these

reasons, on average, DAGguise only adds 6.4% overhead, while

FriendlyFoe and Pad to Constant add 8.1% and 11.1%, respectively.

Figure 9 shows the execution overhead of the defenses on benign

multi-threaded workloads. In this case, there are four instances of

the same SPEC application running (plus four victims). In this en-

vironment, the memory throughput is critical to their performance.

FriendlyFoe and Pad to Constant do not add extra memory con-

tention. However, DAGguise’s fake memory requests introduce

substantial traffic, which results in memory contention and higher

latencies. On average, FriendlyFoe only adds 2.7% overhead, while

Pad to Constant and DAGguise add 7.4% and 20.7%, respectively.
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Figure 8: Execution overhead of defense schemes on benign
applications in a single-threaded environment.
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Figure 9: Execution overhead of defense schemes on benign
applications in a multi-threaded environment.

Overall, FriendlyFoe is the most competitive scheme: it has the

lowest overhead in multi-threaded environments (which are the

most common ones) and modest overhead in single-threaded ones.

Compared to Pad to constant, its execution overhead is 27% and

64% lower for single- and multi-threaded workloads, respectively.

7.2 Power Side Channel Defense
7.2.1 Security and Power. To evaluate the security versus power

tradeoff, we compare three mask generators under the framework

of Figure 6: None (i.e., no mask generator and therefore no defense),

Maya (i.e., the state of the art gaussian sinusoid mask proposed in

the Maya paper [43]), and FriendlyFoe Defender. For each of them,

Table 7 shows the accuracy of different classifiers as they classify 10

PARSEC 3.0 applications. Since there are 10 applications, an attack

accuracy of 10% corresponds to a perfect defense. The table only

shows a few representative classifiers, including an MLP, which is

used in the Maya paper [43], and a CNN, which consistently shows

the highest accuracy. The table also shows the average application

power consumption and the average application energy (𝑝𝑜𝑤𝑒𝑟 ×
𝑡𝑖𝑚𝑒𝑒𝑥𝑒𝑐 ). The latter is relative to None, to compare the efficiency

of the systems.

Table 7: Accuracy of different classifiers for 10 PARSEC 3.0
applications under three different defense schemes. The ta-
ble also shows the application power and relative energy.

Defense Classifier Accuracy Avg. Appl. Rel. Appl.

SVM MLP CNN Power (W) Energy

None 0.729 0.653 0.917 85.9 1

Maya 0.113 0.114 0.235 95.4 1.89

FriendlyFoe 0.105 0.113 0.169 91.7 1.69
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Table 7 shows that FriendlyFoe provides better security than the

state-of-the-art approach represented by Maya. Although Maya

is effective against the simpler ML networks (SVM and MLP), it

is less effective against the more powerful CNN model. This is

because Maya’s gaussian sinusoid simply adds random noise and

does not take advantage of the application’s dynamic behavior. In

contrast, our FriendlyFoe Defender shapes the noise based on the

application’s behavior to maximize obfuscation.

Compared toMaya, and against the strongest attacker (i.e., CNN),

which is the one that matters, FriendlyFoe reduces the attacker ac-

curacy from 0.235 to 0.169. Converting accuracy to information

leakage, it can be shown that this corresponds to leaking 0.11 and

0.03 bits per observation, respectively. Consequently, FriendlyFoe

reduces the leakage of Maya by 3.7×. Since this is a 10-class classifi-
cation problem, each label has 𝑙𝑜𝑔2(10) = 3.32 bits of information. If

we assume that the attacker can force repeated re-execution of the

victim, the attacker under Maya requires 3.32/0.11 = 30.2 repeated

observations on average to retrieve the application label. The at-

tacker under FriendlyFoe requires 3.32/0.03 = 110.7 observations on

average. In many cases, however, the attacker cannot force repeated

re-execution of the victim.

The controller in both FriendlyFoe and Maya (Figure 6) distorts

the system power by modulating CPU frequencies, injecting CPU

idle times, and adding dummy compute threads. However, com-

pared to Maya, FriendlyFoe is optimized to minimize the distortion

of the power signal while still obfuscating it. Less distortion implies

less inefficiency added to the system. As a result, applications con-

sume less energy with FriendlyFoe than with Maya. This is shown

in Table 7, where FriendlyFoe and Maya consume 69% and 89%

more energy than None, respectively. In other words, FriendlyFoe

reduces the energy overhead of Maya by 22.5%.

The impact of FriendlyFoe on the applications’ average power

and average execution time relative to Maya depends on application

behavior. The data, however, shows that, on average, applications

consume less average power and take less time to execute with

FriendlyFoe than with Maya. Table 7 shows that FriendlyFoe and

Maya increase the average power consumption over None by 5.8W

and 9.5W, respectively.

Figure 10 shows the execution time of the applications when the

system is defended with FriendlyFoe and with Maya, relative to the

system without protection. We see that, while there is variation

across applications, applications tend to have longer execution

times with Maya than with FriendlyFoe. On average and compared

to None, applications take 70% longer with Maya and 58% longer

with FriendlyFoe.

7.2.2 Inter-application Transferability. To verify if our FriendlyFoe

Defender is transferable to other victim applications, we split the

10 PARSEC 3.0 applications in two sets (6 original PARSEC and

4 Splash2x) and train two Defenders separately on the two sets.

Then, we measure the CNN attacker accuracy when targeting one

set using the Defender trained with either the same set or the other

set. Table 8 shows the attacker accuracies. Comparing the numbers

within the same row, we see that the attacker accuracy on a set of

applications increases only slightly if the Defender has been trained

on another set of applications. It can be shown that, in both cases,
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Figure 10: PARSEC 3.0 application execution times on a sys-
temdefendedwith FriendlyFoe andMaya, relative to the sys-
tem without protection.

the application power differences are very small. Consequently, we

conclude that our defense has inter-application transferability.

Table 8: CNN attacker accuracies against a FriendlyFoe De-
fender trained on one set of applications (Train) and used to
defend either the same set or another set (Target).

Target Train Victim

Victim PARSEC Splash2x

PARSEC 0.191 0.195

Splash2x 0.289 0.279

8 Related Work
There are two prior works that use AML as a countermeasure

against ML analysis of signals [41, 44]. These schemes need to know

the full trace of a signal to produce the perturbations for the signal.

Such a trace is only available after the system execution. By the time

these schemes start post-processing the signal, the information has

already leaked to an attacker. To protect real systems, we need a

dynamic defense like our proposed scheme, which uses AML to

produce the perturbations on the fly.

In addition, these prior works have limitations that our tech-

nique solves. Specifically, Picek et al. [41] showed that adding small

adversarial modifications can mislead ML-based power side chan-

nel attackers. However, they only use classifiers trained with un-
protected signals, which is unrealistic. Our methodology targets

attackers that are trained with signals already perturbed by the

Defender. The work by Rahman et al. [44] showed the use of AML

against website fingerprinting attacks through traffic measurement.

Their defense is not very effective, in that attackers can still achieve

38–42% accuracy for a 100-class classification.

There are two works where ML is used not to obfuscate a signal,

but to help other techniques to do so. Gu et al. [18] designed a

countermeasure against a power side channel attack by combining

the one-pixel attack [50] with the insertion of noise instructions

by the compiler. This is a compiler-based method that requires

access to the source code of the victim application, while ours

does not. Rijsdijk et al. [46] applied reinforcement learning (RL) to

help counter ML-based attacks. The work assumes multiple existing



PACT ’24, October 14–16, 2024, Long Beach, CA, USA Hyoungwook Nam, Raghavendra Pradyumna Pothukuchi, Bo Li, Nam Sung Kim, and Josep Torrellas

countermeasures and uses RL to choose a right method combination

dynamically. Our method directly obfuscates the signal and does

not depend on multiple existing solutions.

There are many non-ML techniques to obfuscate information

in particular side channels. Two relevant ones are Maya [43] and

DAGguise [12]. Maya [43] re-shapes power signals into gaussian

sinusoid signals with the help of control theory; our approach has

been shown to improve Maya by replacing the signal generator.

DAGguise [12] is a defense technique that re-shapes the main

memory accesses of a victim to obfuscate its behavior. Specifically,

it may delay memory responses to the victim or create extra mem-

ory accesses for the victim. FriendlyFoe is different in multiple

ways. First and foremost, FriendlyFoe is a general defense for vari-

ous side channels (including power), while DAGguise in applicable

only to contention side channels. Second, FriendlyFoe uses ML

methods, while DAGguise does not. Third, focusing on the memory

contention side channel, FriendlyFoe distorts the attacker’s ac-

cess latencies (and therefore its measurements); DAGguise distorts

the victim’s access patterns by delaying the victim’s accesses and

adding fake requests. Finally, as shown in Section 7.1.5, FriendlyFoe

incurs substantially less performance overhead than DAGguise in

multi-threaded workloads and only slightly more than DAGguise

in the less common single-threaded workloads.

9 Conclusion and Future Work
This paper showed the practicality, efficacy, and generality of on-

the-fly AML as an architectural defense to obfuscate signals from

architectural side channels. We called our approach FriendlyFoe.

We showed a workflow to design, implement, train, and deploy

transferable FriendlyFoe Defenders for different environments. We

successfully applied FriendlyFoe to thwart two very different side

channel attacks: one based on memory contention and one on sys-

tem power. We are now studying the use of FriendlyFoe for defend-

ing against other attacks such as PCIe contention and frequency

side channel attacks.
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