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ABSTRACT

Computers increasingly operate in constrained environments,
and are being equipped with controllers for resource manage-
ment. However, the operation of modern computer systems is
structured in multiple layers, such as the hardware, OS, and
networking layers—each with its own resources. Managing
such a system scalably and portably requires that we have a
controller in each layer, and that the different controllers co-
ordinate their operation. In addition, such controllers should
not rely on heuristics, but be based on formal control theory.

This paper presents a new approach to build coordinated
multilayer formal controllers for computers. The approach
uses Structured Singular Value (SSV) controllers from Ro-
bust Control Theory. Such controllers are especially suited
for multilayer computer system control. SSV controllers can
read signals from other controllers to coordinate multilayer
operation. They accept uncertainty guardbands, which incor-
porate the effects of interference between the controllers. We
call this approach Yukta. We prototype a two-layer Yukta con-
trol system in an 8-core big.LITTLE board and demonstrate
its modular design. Yukta reduces the EnergyxDelay and
the execution time of a set of applications by an average of
50% and 38%, respectively, over advanced heuristic-based
coordinated controllers.

1. INTRODUCTION

Computing devices are ubiquitous and are increasingly op-
erating in constrained environments where resources such as
energy, power, or storage capacity are limited, and measures
such as temperature, Quality of Service (QoS), or throughput
need careful control. Computer systems use sophisticated
controllers to change system parameters and meet resource
management goals dynamically. [1,2,3,4].

In the design of compute resource management systems,
there is a tension between design modularity and coordina-
tion. As shown in Figure 1, modern computing systems are
organized in multiple layers — e.g., the hardware, Operat-
ing System (OS), and application layers. Each layer is a
complex subsystem designed independently by expert teams
from possibly different companies. Each layer has its own
resources, controllable parameters and partial information
about the program execution that it uses to manage resources.
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Figure 1: Multilayer organization of computer systems.

For scalability, portability and maintainability, it is vital
that resource controllers in each layer are modularly designed.
Modularity is also essential because designing a controllers
for a layer requires expertise of that layer’s internals, which
may be proprietary and publicly unavailable.

At the same time, application execution interacts with mul-
tiple layers, and it is well known that resource efficiency is
best achieved when these layers coordinate their resource
management [5,6,7,8]. However, it is difficult to coordinate
controllers that are designed with partial system knowledge
and operate with partial system view, creating a tension be-
tween the two design goals. These goals cannot be achieved
simultaneously by either monolithic designs that use a single
controller to manage all layers or decoupled designs that use
an uncoordinated controller in each layer.

Instead, there is a need to use modular controllers in each
layer of the system that collaborate through a mutually agreed
interface. Industrial companies are working on coordinated
hardware-software approaches where each layer performs its
own resource management, and interacts with the other layers
through well-defined interfaces [1,2,4].

Currently, most multilayer designs are based on ad hoc
heuristics. It is not pragmatic to use ad hoc heuristics for
building modular controllers. The costs to design, tune and
verify the bulky heuristics needed to optimally manage even
a single complex layer are prohibitively high. Prior research
and commercial systems demonstrate many instances where
even highly tuned heuristics fail unwittingly on application
corner cases [9, 10]. The difficulty is higher when the con-
trollers have only a partial system view. Moreover, heuristics
are highly specific to particular choices, and may become un-
usable when a different hardware or software platform is used.
The solution, then, is to use formal methodologies such as
control theory, whose properties are well studied and promise
robust operation [11].

In this work, we present a new approach to build coordi-
nated multilayer formal controllers for computer systems. We
consider Robust Control Theory, which focuses on uncertain
environments, and pick the Structured Singular Value (SSV)
controller [11] to be used for computers. This is a MIMO
(Multiple Input Multiple Output) controller that can change
many system inputs (i.e. parameters) to regulate many outputs
(i.e. objectives).

SSV controllers are particularly suited for multilayer com-
puter control. First, they can read External Signals, which
provide information that the controller cannot directly change,
but can use to make better decisions; we use them to pass
coordinating information between the controllers in differ-
ent layers. Second, the design of SSV controllers accepts
uncertainty guardbands, which are useful to incorporate the
effects of interference between independently-designed con-
trollers. Third, designers can specify the maximum bounds on
the deviations of outputs from their goals, enabling accurate
computer control. Finally, SSV controllers support systems
with discretized values for inputs such as computers — un-
like other controllers that assume inputs to have continuous
unlimited values.

We call this approach of using multilayer SSV controllers
for computer system control Yukza. With Yukta, controllers at



different layers can be built with little interaction. To assess
its effectiveness, we prototype it in an 8-core big. LITTLE
system running Linux and build a two-layer control system.
Yukta reduces the ExD (Energy x Delay) and the execution
time of a set of applications by an average of 50% and 38%,
respectively, beyond what advanced heuristic-based coordi-
nated controllers attain. Our contributions are:
1. Applying MIMO SSV control from robust control the-
ory for systematic computer resource efficiency.
2. Yukta, an approach for independent teams to design
coordinated multilayer controllers with MIMO SSV.
3. A prototype of Yukta on a big.LITTLE multicore board
and its evaluation.
This is the first work that uses MIMO SSV control to ad-
dress the collaborative multilayer computer control problem.

2. BACKGROUND AND RELATED WORK
2.1 Related Work

There are many works on managing resources from differ-
ent layers of a computer system (e.g., [5,6,7,8,12]). They
emphasize the need for modular coordinated control. How-
ever, most of them rely heavily on heuristics. There is strong
evidence from research and practice demonstrating the dif-
ficulty of developing heuristics for control, and the mishaps
that occur when the system encounters an application not
seen during the training set [9, 10].

Currently, there are no control theoretic methods to develop
coordinated multilayer controllers for computers even though
control theory has been used to design computer controllers
(e.g., [1,10,13]). Most designs use PID (Proportional Inte-
gral Derivative) or similar Single Input Single Output (SISO)
controllers [1, 13] that only monitor one goal and change
one parameter. Some designs are Multiple Inputs and Sin-
gle Output (MISO) or Multiple Inputs and Multiple Outputs
(MIMO) [10]. The MIMO approach is the most applicable to
computer systems, since multiple goals (performance, power)
are typically coupled with each other. However, existing
controllers are intended for standalone use, and do not have
channels for coordination between multiple controllers. Some
designs employ heuristics or controller ordering to make up
for this deficit [8, 13], but this defeats the purpose of formal
control methods. Some designs use a combination of heuris-
tics and control theory [8] or heuristics and optimization [5].

Existing designs are not natively robust to the large un-
certainty that appears in the presence of multiple controllers,
each acting with partial system information.

2.2 Mathematical Theory of SSV Controllers

Computers are complex, and program behavior is deter-
mined by many factors. As a result, controlling computer
environments intrinsically involves dealing with uncertain
dynamics and approximate models. Robust Control Theory
is a branch of control theory that considers variability and
uncertainty of the system dynamics to be an integral part of
the controller synthesis process.

Among the robust controller methodologies, one of the
most mature and better understood, with standard packages
and tools, is Structured Singular Value (SSV) control [11].
SSV design is automated with tools and designers only need
to express high level specifications [14].

SSV(N,A,B,W) =

To obtain an SSV controller (K), the designer first specifies
the model of the system (M). Then, there are real world inac-
curacies denoted by A. One is due to the true system behavior
deviating from the model (A,) because of model limitations.
This is the model uncertainty for which we specify guard-
bands. Another is due to the inputs taking only a discrete (or
quantized) and limited (or saturated) set of allowed values
(Ajn). This is the input discretization. These specifications are
pictorially represented as in Figure 2. The designer also gives
the desired bounds B on the allowed deviations of outputs
from their targets, and the relative weights/overheads W, to
change the inputs.
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Figure 2: Internal representation in SSV synthesis.

The system inside the dotted line boundary in Figure 2 is
called the nominal closed loop, N because it contains the com-
ponents without imprecisions. Consolidating the individual A
components into an overall A, the controller K is robust if it:
(i) keeps N stable, (ii) generates optimal inputs according to
designer-specified input weights W, and (iii) keeps all outputs
within bounds B of the targets — for all possible model inac-
curacies smaller than the specified A. Robust control theory
uses the Structural Singular Value (SSV) defined as follows
to assess a controller’s robustness [11]:

1

min {s|det(I —s x N x [A;B~1;W—1]) =0}

M

where [A; B~!;W~1] is a diagonal matrix of A, B~! and W~!;
and / is the identity matrix. Physically, s is a scaling factor
that multiplies the A, 1/B, and 1/W given by the designer. The
minimum scaling factor min(s) gives the worst-case values
of A, B and W that the controller supports. If min(s) is larger
than 1, it means that the controller can handle the A, B, and
W requested by the designer. MATLAB runs an iterative
search to generate such a controller. If the synthesis fails, the
designer selects lower A, 1/B, and 1/W values, and restarts.

3. Yukta: MULTILAYER SSV CONTROL

To address the challenge of controlling multiple layers,
we propose using Collaborative MIMO SSV controllers. In
this solution, there is preferably an SSV controller in each
layer. Less desirably, there is an SSV controller at least in
the layer that controls outputs requiring accurate control (e.g.,
temperature or power), and other types of controllers in the
other layers. We utilize the properties of SSV controllers to
create a modular coordinated computer control system.

First, SSV controllers can read an additional type of signals
called External Signals. We use them to pass information
from one layer’s controller to the other at runtime. For exam-
ple, an OS controller can pass the number of running threads
as an external signal to a hardware power controller. The
second controller can use the signals to make better decisions,
although it cannot control them.

Second, SSV control designers can specify model uncer-
tainty guardbands, typically expressed in percentages. For



example, a 20% uncertainty means that, due to unanticipated
effects, the values of the outputs can possibly be +=20% differ-
ent than predicted by the model. In a multilayer system, one
controller’s actions indirectly affect the outputs that a second
controller is supposed to control. This interference can be
incorporated in the SSV controller design by increasing the
uncertainty guardband of the second controller.

Third, designers can specify bounds on the allowed devi-
ation of the outputs from their targets. This ability enables
accurate computer control. Finally, robust controllers accept
the the discreteness (Saturation and Quantization) in the val-
ues taken by the inputs. This is in contrast to non-robust
controllers where each input is assumed to take continuous
and unbounded values. This makes SSV controllers natively
applicable to computing systems, which have discrete re-
sources. For example, core frequency can only take a few
discrete values. When these inputs and outputs are passed as
an external signals to another layer’s controller, the availabil-
ity of precise bounds or discretization information helps the
pair of controllers improve their coordination.

Often, computers need to optimize outputs (or combination
thereof) subject to other outputs being within certain limits.
An example is to minimize E X D (Energy x Delay) subject
to a power constraint. In this case, the controller needs to
perform some search. Hence, we augment each SSV con-
troller with an optimizer module. The Optimizer generates
progressively better targets to the controller, which in turn
find the best inputs to meet those targets. Eventually, the
Optimizer converges to a desirable set of targets. We call our
general approach Yukta. Figure 3 shows the envisioned Yukta
control system for a two-layer system. Each controller takes
external signals from the other.
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Figure 3: Yukta controller augmented with optimizers.
3.1 Designing SSV Controllers

Figure 4 shows the process of designing a Yukta multilayer
SSV controller. In each layer, a team initiates the design
of the layer’s controller by selecting the input signals and
their discretized values, the output signals and their deviation
bounds, and the external signals that the controller takes.
Then, the teams exchange Inferface information. This is
meta-information about external signals and common outputs.
Specifically, for outputs common to both controllers, the
teams exchange their layer’s deviation bounds; for an external
signal to a controller from a second layer, the second layer
team passes the allowed discrete values if the signal is an
input in the second layer, or the deviation bounds if it is an
output in the second layer.

After this communication step, each team develops a model
of the system according to their layer’s perspective , sets
its controller’s uncertainty guardband, designs the SSV con-
troller using MATLAB synthesis routines [14], and validates
it. Finally, the designs of all the layers are combined, vali-
dated as a group, and deployed. This process can work across
companies. Alternatively, a team can do without any extra
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information for their external signals. In this case, the team
should increase their uncertainty guardband. This works be-
cause SSV controllers withstand inaccurate assumptions.

4. PROTOTYPING Yukta

We prototype a multilayer Yukta system in a challenging
environment: an ODROID XU3 board [15], which has an 8-
core Samsung Exynos 5422 processor running Ubuntu 15.04.
The system has the HMP (Heterogeneous Multi-Processing)
task scheduler built for ARM big.LITTLE technology [16].
It has a cluster of four little cores (in-order, low power Cor-
tex A7), and a cluster of four big cores (out-of-order, high
performance Cortex A15). Figure 5 shows our experimental
platform. The number of active cores in either cluster can
vary from 1 to 4. The big cluster frequency can vary from
0.2 to 2.0GHz, and the little cluster frequency from 0.2 to
1.4GHz, both in steps of 0.1 GHz.

The prototyped two-layer SSV controllers are shown in Fig-
ure 6. One controller controls hardware parameters (hardware
controller), and another controls thread scheduling parameters
(software/OS controller). Tables 1 and 2 show the inputs and
outputs for the hardware and software controllers respectively.
Our goal for the hardware controller is to minimize E x D
while keeping power and temperature below certain limits.
Our goal for the software controller is to simply minimize
E x D. Since our goals involve minimizing ExD, we also
design optimizer modules for each controller.

First, we follow the System Identification methodology [17]
and use experimental data to obtain models of each layer. Our
models have a dimension of four — i.e., they predict the value
of an output using the past 4 values of outputs, the current
and past 3 values of inputs.

Table 1: Parameters of the hardware SSV controller.

Goal Inputs Outputs

Signals Weights Signals Bounds

Minimize E X D subject to  #big cores Performance +£20%

1
Powery,;, < Poweij.’;‘, #little cores 1 Powery;g +10%
Powerjiy. < Powerjjiy,, frequencyy;, 1 Powery e +10%
and Temp < Temp”** frequencyjiye 1 Temp +10%

Table 2: Parameters of the software SSV controller.

Inputs Outputs
Signals Weights Signals Bounds
#threadsy;, 2 Performance;;; . +20%
Avg #threads per non-idle 2 Performancey;, +20%
core in clustery;g
Avg #threads per non-idle 2 A SpareComputep;g jire +20%

core in cluster;;;.

Since the overhead of changing hardware inputs are com-
parable, we set all the input weights to be 1. Similarly, for
the OS controller we assign the same weight to all inputs.
However, we want the software controller to react more con-
servatively to output changes than the hardware controller.
This is because applications change the number of threads
dynamically in an unpredictable manner for the controller —
e.g., some threads block on I/0. We do not want the controller
to react immediately and cause oscillations. Consequently,
we set the weight of all inputs to 2 (Table 2), which happens
to be twice the weight of the hardware controller’s inputs.

Among the hardware outputs, the power of both clusters
and the temperature are critical for the integrity of the board.



Decide Set

Select inputs and Tk et
- specify discretizati htain o esign
Begin svl)“l_i) “‘“‘“F‘,’ won |l e vternal P uncertainty o
Select outputs and S model suardband | |controller
I . specify deviation bounds S1EI @ o4 =
_ayer o e
Layer 2 oller
- Select nputs and Dea Controller <
o 2ty ccide fac . Set .
3 specify discretization o nterface Obtain ot Design
Begin ot oz el - external lel I uncertainty 1 ol
[pat=tls uts 4 Giomals mode by controller
t specify deviation bounds signals guardband
|

Figure 4: Process to design a Yukta multilayer SSV controller.
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Figure 6: Prototyped controllers on the ODROID XU3.

Hence, we assign them a bounds range that is 10% of their
maximum range. Since performance(measured in total com-
mitted Billions of Instructions Per Second) is less critical, we
set its bounds as £20%.

The OS controller monitors three outputs: performance
of the big and little cluster threads, and difference in Spare
Compute Capacity (SC) between the two clusters. Briefly,
with a higher difference in SC, the controller will move more
threads from the little to the big cluster We define a cluster’s
SC as, SC = #idle_cores_on — (#threads — #cores_on). As
all outputs have similar importance, we set their deviation
bounds to £20% of their maximum range — like the non-
critical hardware outputs.

Each controller reads all the inputs actuated by the other as
external signals. Finally, we provide the uncertainty guard-
bands. Recall that uncertainty is the result of limitations in
how the model describes the real system, and of unpredictabil-
ity in the system. An example of the latter is aspects of the
HMP scheduler, which sometimes packs multiple threads on
a core while leaving another idle. Based on the model train-
ing data, we pick a guardband of +40% for the hardware
controller. The uncertainty guardband used for the software
controller should be higher because thread assignment is di-
rectly affected by an unpredictable event: dynamic changes
in the number of application threads. Therefore, we set its
guardband to +50%.

Industry-grade heuristic controllers, in contrast, have an
order of magnitude more parameters. For example, to control
the same outputs the Samsung Exynos 5422 uses several tens
of interdependent settings that require tuning. Our approach
eliminates the need for this extensive tuning.

S. EXPERIMENTAL SETUP

We implement four two-level controllers shown in Figure 7.
In Coordinated heuristic, the OS controller is similar to the
HMP task scheduler from ARM, Linaro and Samsung [16],
except that it is modified to optimize ExD. This OS-hardware
scheme is representative of industry-standard controllers in
big. LITTLE systems, and we use it as a baseline. The Decou-
pled heuristic scheme takes uncoordinated decisions at each
layer. Its hardware controller is similar to the Performance
power governor in Linux.

Figure 5: Prototype ODROID XU3.
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Figure 7: Two-level controllers evaluated.

We design two schemes based on our proposed Yukta
methodology. The first, Yukta: HW SSV+OS heuristic, uses
an SSV hardware controller from Section 4 and a heuristic-
based OS controller like the one in Coordinated heuristic. The
second, Yukta: HW SSV+0OS SSV, uses SSV controllers in
hardware and software, as designed in Section 4.

Our evaluation uses 8-threaded PARSEC [18] programs
(blackscholes, bodytrack, facesim, fluidanimate, raytrace,
x264, canneal, streamcluster) and 8 copies of SPEC06 [19]
programs (h264ref, mcf, omnetpp, gamess, gromacs, dealll).
For training, we use: swaptions and vips from PARSEC, astar
and perlbench, milc and namd from SPEC.

6. EVALUATION

Figure 9 compares our four two-layer controller schemes
in minimizing £ X D running our applications. The bars from
left to right correspond to individual SPEC applications, the
average of the SPEC applications (SAv), individual PARSEC
applications, the average of the PARSEC applications (PAv),
and the average of all the applications (Avg). Each application
has a bar for each of the four controller schemes. The bars
are normalized to Coordinated heuristic.

Figure 9 shows that Decoupled heuristic has higher E x
D than Coordinated heuristic. On average, decoupling the
controllers results in a 52% higher E x D. On the other hand,
using Yukta causes E X D to decrease. On average, Yukta: HW
SSV+OS heuristic has a 37% lower E x D than Coordinated
heuristic. Furthermore, having both SSV controllers as in
Yukta: HW SSV+0OS SSV results in an average E x D that is
50% lower than Coordinated heuristic. Thus, SSV controllers
offer substantial improvements over existing systems.

For execution times (not shown), the trends are similar.
Decoupled heuristic increases the execution time by 30% on
average. On the other hand, Yukta: HW SSV+0S SSV reduces
the time by 29% on average, and Yukta: HW SSV+0S SSV by
even more, namely a substantial 38% on average.

To analyze the impact of the Yukta controllers, we focus
on the execution of the blackscholes application (labeled bla
in Figure 9). This application begins with a single thread and
later executes 8 parallel threads. Figure 8 shows the power
consumed by the big cluster in blackscholes as a function of
time, for the four controller schemes. Recall that the limit in
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sustained power is 3.3W.

In Decoupled heuristic (Figure 8(b)), there are many oscil-
lations. In this scheme, the hardware controller increases the
number of cores and their frequency to the maximum, while
the OS controller assigns threads round-robin. This causes
the power to go over the limit and trigger the emergency sys-
tem that reduces the frequency and shuts off some cores. The
power then drops to low values, and the hardware controller
again increases the number of cores and their frequency to
the maximum. The result is continuous power oscillation.

Coordinated heuristic (Figure 8(a)) drastically reduces the
amplitude and number of these variations. This is thanks to
the coordination between the two controllers: the hardware
controller knows the distribution of the active threads, and
the OS controller knows the number, type, and frequency of
the active cores.

As we move to Yukta: HW SSV+0OS heuristic (Figure 8(c))
and, especially, Yukta: HW SSV+0S SSV (Figure 8(d)), the
number of peaks and valleys decreases. Moreover, the power
during the steady-state periods gets closer to 3.3W. The Yukta
designs control power much better due to their robust design.

The differences in power control translate directly into
performance.With Decoupled heuristic, the application takes
nearly 320 seconds to complete. With Coordinated heuristic,
the application completes in 270 seconds. Finally, in Yukta:
HW SSV+0S heuristic and Yukta: HW SSV+0S SSV, the
steady-state performance keeps increasing, and the applica-
tion completes sooner, in 205 and 180 seconds, respectively.

These results show that the Yukta approach achieves much
higher resource efficiency over state-of-the-art for multilayer
computers, while being modular in design.

7. CONCLUSION

To address the challenge of computer resource manage-
ment in increasingly constrained environments, this paper
presented a new approach to build coordinated multilayer
formal controllers for computer systems. The approach uses
SSV controllers from robust control theory. These controllers
can read External Signals from other controllers to coordinate
multilayer operation. They accept Uncertainty Guardbands,

which incorporate the effects of interference between the dif-
ferent controllers. We called this approach Yukta. It is the
first work to use robust control theory for multilayer compute
resource management. To assess its effectiveness, we proto-
typed it in an 8-core big. LITTLE board. On average, Yukta
reduced the Ex D and the execution time of applications by
50% and 38%, respectively, over state-of-the-art.
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