Lecture: Neural Fields Part 2



Neural Field General Framework
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* Motivation for NeRF: View synthesis
* Introduction Volume Rendering
* Neural Radiance Fields (NeRFs)



Outline

* Motivation for NeRF: View synthesis



Side Topic: Stereo Photography
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Stereo Photography
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Stereo Photography

Queen Victoria at World Fair, 1851



“Keystone Depth”, Xuan Luo et. al.

Stereo cameras were invented in the 1850s and hundreds of thousands of antique stereographs are available
today. We introduce KeystoneDepth, a collection of 37,239 antique stereographs of historical scenes captured
between 1864 and 1966 with clean rectified stereo image pairs, disparity maps, and meta data.




Stereo Photography




Issue: Narrow Baseline

1 ~6.5 cm | ~T1.5 cm
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Problem Statement
3D scene
representation
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Challenges

Extrapolation Non-Lambertian Effects

Large disocclusion
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Soft 3D Multiplane image methods Neural Volumes

(Penner & Zhang 2017) Stereo Magnification (Zhou et al. 2018) (Lombardi et al. 2019)
Pushing the Boundaries... (Srinivasan et al. Direct gradient descent to
hi hni Local Light Field Fusion (Mildenhall et al. 2 optimize an RGBA volume,
matching techniques DeepView (Flynn et al. 2019) regularized by a 3D CNN
Single-View... (Tucker & Snavely 2020)

Culmination of non-deep stereo

' Typical deep learning pipelines - im: |
go into a 3D CNN, big RGBA 3D vo )}
comes out

Input Sampled View




Neural prediction of scene representations

Output views
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Neural Net
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Scene
f Representation

Multiplane NeRF: a cloud of tiny S
Images colored particles *




Stereo Magnification: Learning View
Synthesis using Multiplane Images

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
Noah Snavely

SIGGRAPH 2018



Multiplane Images (MPIs)

Each plane is at a fixed
<—depth and encoded by
an RGBA image

Reference ..
Viewpoint v



Multiplane Camera (1937)

Image credits: Disney https://www.youtube.com/watch?v=kN-eCBAOw60 (from 1957)


https://www.youtube.com/watch?v=kN-eCBAOw60

View Synthesis using Multiplane Images
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View Synthesis using Multiplane Images

Synthesized image
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Homography I

« Transformation relating two images undergoing a rotation about the camera center
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« Estimating a 2D homography from a pair of images
« Fundamental task in computer vision

« Essential part of monocular SLAM systems
« Rotation only movements
« Detecting a planar space
« Scenes in which objects are very far from the viewer
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* Introduction Volume Rendering



Instance-specific SDFs
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Signed Distance Field (for a single instance):
(position) = (distance)

if 6 layer network with 1000-dim feature space, about 6M parameters per instance!



Latent Conditioning based SDFs
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Generalizable Signed Distance Field:
(latent code, position) = (distance)

Each object is represented by a corresponding latent code (only d parameters per instance)

The same neural net parameters across all objects



Volume Rendering in NeRF

5D Input Output
Position + Direction Color + Density

(xy29¢ —>|]|]|:|—> RGBo)
F@ \ . Ray 1
\,g,eﬂ%’g%&,/;/L In NeRF, we model a 3D

scene with a ‘cloud of tiny

/ ﬂ\ / colored particles’.
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What is Volume Rendering?

* Assume a cloud of tiny colored particles in 3D. Each particle has a RGB
color and a density.

* Take a pixel on image plane, and shoot a ray from the camera center,
through the pixel and into the ‘cloud of tiny colored particles’

* What should be the color for that pixel?

Rayr(t) = o+ td

Camera



Radiative Transter Equation

Absorption Out-scattering

et £

dL(x,0) =|— 04(X)L(xX,0)dz — 05(x)L(x,d)dz | Losses
+ 04(X)Le(Xx,W)dz + 05(X)Ls(x,0)dz| Gains

Emission In-scattering



Emission-Absorption Model (Ignoring Scattering)

@ Will drop the subscript moving forward
Oq =0



Absorption-only Volume Rendering
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L(xp + wz,w) \L(XQ, w)
Q: What if we have a homogenous medium? (uniform coefficient)

dL(x,w) = —ocL(x,w)dz

Can you prove this? What if we have a non-homogenous medium?

L(XQ - Wz, w) . GB_UZL(XO7 w) In non-homogenous medium, coefficient of
absorption o varies with location

Transmittance




Transmittance T(x,y) = e Jimo 0CHetdl T (g )

Transmittance

T(X ) What fraction of radiance at x in direction of y, reachesy ?
Y (along a straight line under absorption-only model)

Homogenous Medium: 6—0Hx—y||

e ft”:xo_y” o(x+twt)

1 T.
b& Ot

e ——

Non-Homogenous Medium:

distance



Absorption-only Volume Rendering

Z

L(xo + wz,w) 1\L(xo,w)
)

L(xg + wz,w) =T(xq,%Xg + wz)L(xg,w)




Absorption-only Volume Rendering

L(x,w) =T(x,%x,)L(x,,w)

PR

Radiance from ‘outside’ the medium
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Emission-Absorption Volume Rendering

L(x,w)=T(x,x,)L(x,,w)

+/O T(x, xt)a(xt)Le(xt,w)df

wgnses oy e e

Accumulated Emitted Radiance from inside



Emission-Absorption Volume Rendering
Special Case: Homogenous non-emitting medium

Transmittance

A Distance travelled in medium

A

L(x,w)=T(x,x,)L(x,,w)

T(x,x,) =e 72



Emission-A
Special Case:

nsorption Volume Rendering

Homogenous emitting medium




Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium
Qg 3 . L(x,w) = ./0 T(x,%x¢)0(x;)Le(x¢,w)dt

L(x,w) = e "2 L(x,,w)

T(x,x¢)0(Xy)Le(Xy,w)d gﬁ
+ [ 1 o) Le (et <Q
L(x,w) = e "2 L(x,,w) L(x,w)

Let’s ignore light from outside medium (for now)

= (1—e 7%)C

—ocA
+ ( 1—e )C Emission from a homogenous segment of length A
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Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium

Volume Rendering Model to be used in NeRF

Assumption: Ignore light from outside medium.

Lix,w)=(1—e2)C

Emission from a homogenous segment of length A

For NeRF this means: the object
you are trying to render only
emits light, There is no lighting
being emitted by the background.



Computational Volume Rendering: Ray Marching

L(x,w)=T(x,x,)L(x,,w)

N N
L(X, w) = Z (contribution from ith segment) =) L(X, w) = Z T'(x, Xy, ) x (emission from ith segment)
=1 i=1
Approximate with a discrete sum .
Xt, :ithsample along ray at depth t; 1 Lix,w) = <1 = )C

At :distance between successive samples

L(X7 (,d> . ZT<X7 Xti,)'<1 — et At)Le(Xti)w)




Computational Volume Rendering: Ray Marching

1. Draw uniform samples along a ray (N segments, or N+1 points)
2. Compute transmittance between camera and each sample
3. Aggregate contributions across segments to get overall radiance (color)




Computational Volume Rendering: Ray Marching

ECY

1. Draw non-uniform samples along a ray
2. Compute transmittance between camera and each sample
3. Aggregate contributions across segments to get overall radiance (color)




Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium
Qg 3 . L(x,w) = ./0 T(x,%x¢)0(x;)Le(x¢,w)dt

L(x,w) = e "2 L(x,,w)

T(x,x¢)0(Xy)Le(Xy,w)d gﬁ
+ [ 1 o) Le (et <Q
L(x,w) = e "2 L(x,,w) L(x,w)

Let’s ignore light from outside medium (for now)

= (1—e 7%)C

—ocA
+ ( 1—e )C Emission from a homogenous segment of length A



Enabling Background Radiance




Computational Volume Rendering: A summary

o, = o(Xy,)

L€ (th ) w)

N
L(x,w) = ZT(X, X, ) (1 — e‘”'iAt)Le(Xt,i,w)

?;:1 P AR RIS IS e AT IR PR

If we can compute:

a) (per-point) density

b) (per-point, direction) emitted light,
we can render any ray through the medium
— L(x,w) Equivalently, we can render an image from any camera viewpoint
(using H*W rays)

Note: Differentiable process w.r.t. the density, emitted light

and also camera parameters if density, emission are differentiable
functions of position, direction



Volume Rendering in NeRF

N

L(X7 w) . Z T(X> th;.)' (1 — eatiAt)Le (Xti 9 CU)

L.(.) = RGB color of cloud of tiny particles.
o = density of tiny colored particles



Summary

Emission-Absorption Model

N
L(x,w) = > T(x,%¢,) (1 — €73 Lo (x4, w)
i=1

T(X, va-zi) — T(x‘ Xt, )C_(UtiAt)

A computational algorithm



Outline

* Neural Radiance Fields (NeRFs)



NeRF ==
Differentiable
Rendering with a
Neural Volumetric

Representation
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Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields




Neural Volumetric Rendering



Rendering

querying the radiance value
along rays through 3D space

What color?



Volumetric

continuous, differentiable
rendering model without
concrete ray/surface intersections




Neural

using a neural network as a
scene representation, rather
than a voxel grid of data

Scene
properties

(x,¥,7)

Multi-layer
Perceptron (Neural
Network)



NeRF: Representing Scenes
as Neural Radiance Fields for
View Synthesis
ECCV 2020

@ @7 Google %\J
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Optimize a NeRF
model

Given a set of sparse views of an 3D reconstruction viewable
object with known camera poses from any angle



Volumetric formulation for NeRF

Scene is a cloud of colored fog

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral 2



Volumetric formulation for NeRF

Rayr(t) = o0+ td

Camera Consider a ray traveling through the scene, and a point
at distance t along this ray. We look up its color ¢(t),
and its opacity (alpha value) a(t)



Volumetric formulation for NeRF

P[no hits before t] = T(t)

But ¢ may also be blocked by earlier points along the
ray. T (t): probability that the ray didn't hit any particles
earlier.

T(t) is called “transmittance”



Volume rendering estimation: integrating color along a
ray Ray

Rendering model for ray r(t) = o + td. /

n
C= Z Ticxici
/ i=1

final rendered \

color along ray weights

colors

3D volume

How much light is blocked earlier along ray: ‘
i—1

Camera

a; =1 —exp(—0;0;)

Slight modification: a is not directly stored in the
volume, but instead is derived from a stored volume
density sigma (o) that is multiplied by the distance
between samples delta ():

Computing the color for
a set of rays through the
pixels of an image yields
a rendered image




Volume rendering estimation: integrating color along a
ray

Rendering model for ray r(t) = o + td.

n Ray
c~ ) Tia;c; S/
final rendered colors tn
color along ray weights

3D volume

How much light is blocked earlier along ray:
1—1
T; = 'H1(1 — a;)
]=

a; =1 —exp(—0;9;)



Volume rendering estimation: integrating color along a
ray

Rendering model for ray r(t) = o + td.

n

c= ) Tqc; /
/ i=1 \ N

final rendered

color along ray weights

colors

How do we store the values of
Cc, o at each point in space?

How much light is blocked earlier along ray: I'

1—1
Ti=[1(1-qa)
j=1

Camera

a; =1 —exp(—0;0;)



(Recap) Volume Rendering in NeRF

N
L(X7 w) . Z T(X> th;.)' (1 — egtiAt)Le (Xti 9 (U)

L.(.) = RGB color of cloud of tiny particles.
o = density of tiny colored particles






Toy problem: storing 2D image data

(r,9,b)

Usually we store an image as a
2D grid of RGB color values



Toy problem: storing 2D image data

(x,7) -»Iil-» (r,g.b)

What if we train a simple fully-connected
network (MLP) to do this instead?



Naive approach fails!

Ground truth image Neural network output fit
with gradient descent



Problem:

. “Standard” coordinate-based MLPs cannot
represent high frequency functions.



Solution:

. Pass input coordinates through a
high frequency mapping first.



Example mapping: “positional encoding”

~{il>

sin(2v), cos 2V
sin(4v), cos(4v) *Ill*y



Positional encoding

Raw encoding of a number x

"Positional encoding” of a number x



Problem solved!

Ground truth image Neural network output without Neural network output with
high frequency mapping high frequency mapping



NeRF = volume rendering +
coordinate-based network
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C, O

Bbuip dus
|[eUOI}SOd




C, O
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C, O
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C, O
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C, O
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C, O
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encoding

©
c
o
b=
(%]
O
a

Include the ray direction in
the input to the MLP -
allows for capturing and

rendering view-dependent

effects (e.g., shiny surfaces)




Modeling view dependent effects

(c) Radiance Distributions

(2,9, 2,0, ) —>III—>(7~, g,b,0)
o e e ——

Spatial Viewing Output Output
location direction F 9 color density
Fully-connected
neural network
9 layers,
256 channels



Ray 2

Ray Distance
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Volume rendering of  Ground truth
MLP colors/densities image
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Importance Sampling

Ray

treat weights as probability 3D volume

distribution for new samples



Results
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NeRF encodes convincing view-dependent
effects using directional dependence







NeRF encodes detailed scene geometry with occlusion effects







Summary

* Represent the scene as volumetric colored “fog”

* Store the fog color and density at each point as an MLP
mapping 3D position (x, vy, z) to color c and density o

* Render image by shooting a ray through the fog for each
pixel

* Optimize MLP parameters by rendering to a set of known
viewpoints and comparing to ground truth images



Next Class:

* Details of NeRF neural network architecture
* Hybrid Representation in NeRF

* Generalization with NeRF

* Conditional Generation / Editing with NeRF



Slide Credits

* “Introduction to Computer Vision”, Noah Snavely, Cornell Tech, Spring
2022

* “Understanding and Extending Neural Radiance Field”, Jon Barron MIT
& Tu Munich Lecture.

e “Neural Fields in Computer Vision”, CVRP 2022 Tutorial.
e Shubham Tulsiani, “Learning for 3D Vision”, Spring 2022, CMU

* Leo Guibas, JJ Park, “Neural Models for 3D geometry”, Spring 2022,
Stanford.



https://neuralfields.cs.brown.edu/cvpr22

