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Side Topic: Stereo Photography



Stereo Photography

Viewing Devices



Queen Victoria at World Fair, 1851

Stereo Photography



“Keystone Depth”, Xuan Luo et. al.

Stereo cameras were invented in the 1850s and hundreds of thousands of antique stereographs are available 
today. We introduce KeystoneDepth, a collection of 37,239 antique stereographs of historical scenes captured 
between 1864 and 1966 with clean rectified stereo image pairs, disparity maps, and meta data.



Stereo Photography



Issue: Narrow Baseline

~1.5 cm~6.5 cm
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Right





Problem Statement 

3D scene 
representation

…
Output

…
Output Input



Challenges

……
InputOutput Output

Extrapolation

Large disocclusion

Non-Lambertian Effects

Reflections, transparencies, etc.





Input views

Scene
Representation

Neural prediction of scene representations

Output views

…

Neural Net

Multiplane 
Images

NeRF: a cloud of tiny 
colored particles



Stereo Magnification: Learning View 
Synthesis using Multiplane Images
Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, 
Noah Snavely

SIGGRAPH 2018



Multiplane Images (MPIs)

Reference 
Viewpoint

Each plane is at a fixed 
depth and encoded by 

an RGBA image



Multiplane Camera (1937)

Image credits: Disney https://www.youtube.com/watch?v=kN-eCBAOw60 (from 1957)

https://www.youtube.com/watch?v=kN-eCBAOw60


View Synthesis using Multiplane Images
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Volume Rendering in NeRF

In NeRF, we model a 3D 
scene with a ‘cloud of tiny 
colored particles’.



What is Volume Rendering?

• Assume a cloud of tiny colored particles in 3D. Each particle has a RGB 
color and a density.
• Take a pixel on image plane, and shoot a ray from the camera center, 

through the pixel and into the ‘cloud of tiny colored particles’
• What should be the color for that pixel?

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝



Radiative Transfer Equation



Emission-Absorption Model (Ignoring Scattering)



Absorption-only Volume Rendering

What if we have a non-homogenous medium?
In non-homogenous medium, coefficient of 
absorption 𝜎 varies with location

Can you prove this?



Transmittance



Absorption-only Volume Rendering



Absorption-only Volume Rendering



Emission-Absorption Volume Rendering



Emission-Absorption Volume Rendering
Special Case: Homogenous non-emitting medium



Emission-Absorption Volume Rendering
Special Case: Homogenous emitting medium



Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium



Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium

Assumption: Ignore light from outside medium.

Volume Rendering Model to be used in NeRF

For NeRF this means: the object 
you are trying to render only 
emits light, There is no lighting 
being emitted by the background.



Computational Volume Rendering: Ray Marching



Computational Volume Rendering: Ray Marching



Computational Volume Rendering: Ray Marching



Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium



Enabling Background Radiance





Volume Rendering in NeRF

Le(.) = RGB color of cloud of tiny particles.
𝜎 = density of tiny colored particles
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NeRF == 
Differentiable 

Rendering with a 
Neural Volumetric

Representation
5
1



Barron et al 2021, Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
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Neural Volumetric Rendering



Neural Volumetric Rendering

5
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querying the radiance value 
along rays through 3D space

What color?



Neural Volumetric Rendering

5
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continuous, differentiable 
rendering model without 

concrete ray/surface intersections



Neural Volumetric Rendering
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using a neural network as a 
scene representation, rather 

than a voxel grid of data

Scene 
properties(𝑥, 𝑦, 𝑧)

Multi-layer 
Perceptron (Neural 

Network)



NeRF: Representing Scenes 
as Neural Radiance Fields for 
View Synthesis
ECCV 2020
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Given a set of sparse views of an 
object with known camera poses

3D reconstruction viewable 
from any angle

Optimize a NeRF
model



Volumetric formulation for NeRF

6
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Scene is a cloud of colored fog

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



Volumetric formulation for NeRF
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Consider a ray traveling through the scene, and a point 
at distance 𝑡 along this ray. We look up its color 𝐜(𝑡), 
and its opacity (alpha value) α(𝑡)

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡



Volumetric formulation for NeRF
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But 𝑡 may also be blocked by earlier points along the 
ray. 𝑇(𝑡): probability that the ray didn’t hit any particles 
earlier.
𝑇(𝑡) is called “transmittance”

𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

3D volume

𝑡%
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𝑡#final rendered 

color along ray

Computing the color for 
a set of rays through the 
pixels of an image yields 
a rendered image

Slight modification: 𝛼 is not directly stored in the 
volume, but instead is derived from a stored volume 
density sigma (σ) that is multiplied by the distance 
between samples delta (δ):

𝛼! = 1 − exp(−𝜎!𝛿!)



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
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Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

colors
weights

𝐜 ≈ ∑
!"#

$
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color along ray
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How do we store the values of 
𝐜, 𝜎 at each point in space?



(Recap) Volume Rendering in NeRF

Le(.) = RGB color of cloud of tiny particles.
𝜎 = density of tiny colored particles





Toy problem: storing 2D image data

7
0

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

Usually we store an image as a 
2D grid of RGB color values



Toy problem: storing 2D image data
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(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

What if we train a simple fully-connected 
network (MLP) to do this instead?

𝐹'



Naive approach fails!

7
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Ground truth image Neural network output fit 
with gradient descent



Problem:
● “Standard” coordinate-based MLPs cannot 

represent high frequency functions.

7
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Solution:

● Pass input coordinates through a 
high frequency mapping first.

7
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Example mapping: “positional encoding”



Positional encoding

Raw encoding of a number x “Positional encoding” of a number x



Problem solved!

7
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Ground truth image Neural network output without
high frequency mapping

Neural network output with
high frequency mapping



NeRF = volume rendering + 
coordinate-based network

7
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How do we store the values 
of 𝐜, 𝜎 at each point in space

79
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How do we store the values of 𝐜, 𝜎
at each point in space
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How do we store the values of 𝐜, 𝜎
at each point in space
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How do we store the values of 𝐜, 𝜎
at each point in space
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How do we store the values of 𝐜, 𝜎
at each point in space
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How do we store the values of 𝐜, 𝜎
at each point in space
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How do we store the values of 𝐜, 𝜎
at each point in space
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How do we store the values of 𝐜, 𝜎
at each point in space
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Extension: view-dependent field

87

𝑡%𝑡%

3D point and direction

𝐜, 𝜎
MLP

Po
sit

io
na

l 
en

co
di

ng

Include the ray direction in 
the input to the MLP à
allows for capturing and 

rendering view-dependent 
effects (e.g., shiny surfaces)



Modeling view dependent effects



Putting it all together



∇∥ − ∥!
Train network using gradient 

descent 
to reproduce all input views of 

scene 
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Volume rendering of 
MLP colors/densities

Ground truth
image





Importance Sampling



Results
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NeRF encodes convincing 
view-dependent effects using 

directional dependence
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NeRF encodes convincing view-dependent 
effects using directional dependence
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NeRF encodes detailed scene 
geometry with occlusion effects

97



NeRF encodes detailed scene geometry with occlusion effects
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NeRF encodes detailed scene 
geometry

99



Summary

• Represent the scene as volumetric colored “fog”
• Store the fog color and density at each point as an MLP 

mapping 3D position (x, y, z) to color c and density σ
• Render image by shooting a ray through the fog for each 

pixel
• Optimize MLP parameters by rendering to a set of known 

viewpoints and comparing to ground truth images



Next Class:

• Details of NeRF neural network architecture
• Hybrid Representation in NeRF
• Generalization with NeRF
• Conditional Generation / Editing with NeRF
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