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What are neural fields?

Signed Distance Function (SDF)Neural Network 
(Φ)

Φ:ℝ! → ℝ

(x,y,z)
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What we want to 
reconstruct:

What we can 
measure:

The bridge:
forward maps
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What do we learn in NeRF?



6Mildenhall et al. 2020



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

3D volume

𝑡!

Camera

Ray

colors
weights

𝐜 ≈ ∑
%&'

(
𝑇%𝛼%𝐜%

𝑇% = ∏
)&'

%*'
(1 − 𝛼))

𝑡!

𝑡" 𝑇#

𝐜! ,𝛼#
𝑡#final rendered 

color along ray

Computing the color for 
a set of rays through the 
pixels of an image yields 
a rendered image

Slight modification: 𝛼 is not directly stored in the 
volume, but instead is derived from a stored volume 
density sigma (σ) that is multiplied by the distance 
between samples delta (δ):

𝛼% = 1 − exp(−𝜎%𝛿%)



Putting it all together
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What do we learn in NeRF?



• Coordinate-based modeling of RGB and Densities
Instead of SDFs
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DeepSDF Extensions: NeRF

Mildenhall et al. 2020
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Network Architecture: Overcoming Spectral Bias

[Baatz et al. 2021]

The signals we want are high frequency!
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[Vaswani et al. 2017]

Network Architecture: Input Encodings

Positional Encodings
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Network Architecture: Input Encodings

Random Fourier Encodings

Non-axis aligned sine embeddings

[Tancik et al. 2020]

Super Gaussian Encodings

[Ramasinghe et al. 2021]

Gaussian embeddings

One-blob Encodings

[Müller et al. 2020]
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Network Architecture: Activation Functions

[Sitzmann et al. 2021] [Ramasinghe et al. 2021]
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Hybrid representation

Features:

• are also parameters that can be updated while training the NeRF. (slight increase in memory, significantly 
faster training & inference)

• are individual NeRFs trained on a small section of a scene (for large city-size scene)

• are priors obtained from ConvNets, e.g. VGG-features (used for generalization)
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Hybrid representation: It’s all about Data Structures!

Why hybrid representation?

- Reduce the size of neural network -> fast inference & rendering.
- Helps in rendering large scale scenes.
- Helps in generalization.
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Uniform Grids
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BlockNeRF (Tanick et al) – CVPR 2022

Train a small NeRF for each block in a city. These NeRFs are the ‘features’ in hybrid representation.
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BlockNeRF (Tanick et al) – CVPR 2022
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Sparse Grid
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NeRFusion (Zhang et al) – CVPR 2022

Features = ConvNet features (from Image Encoder)
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Point Clouds (Irregular Grids)
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Mesh (Unstructured Grids)
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Multiplanar Images
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EG3D (Chan et al) – CVPR 2022

Features = StyleGANv2 features



31

Hash Grids
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Instant NGP: Lightening fast NeRF inference

Features = Trainable Parameters We will read this paper in details!
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Overfitting case: Inference = Fitting via Gradient Descent
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,…+ }{

RENDER𝜽

SDF + Color MLPs

SRN𝝓

Fitting

Rendering

Normal map RGB

Sitzmann et al:  Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurIPS 2020.

min RENDER𝜽(SRN𝝓, 𝜉#) − ℐ#



What if we have incomplete observations?
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RENDER𝜽

SDF + Color MLPs

SRN𝝓

Sitzmann et al:  Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurIPS 2020.

min RENDER𝜽(SRN𝝓, 𝜉#) − ℐ#

+

ℐ, 𝜉No 3D inform.

Normal map RGB



Inferring Neural Fields
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Neural Scene 
Representation Neural Renderer

If only a single observation is available, or if only part of the scene has been observed, 
Inference needs to be prior-based – i.e., we need to learn to reconstruct.

?



General Framework: Encoder-Decoder
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Neural Scene 
Representation Neural Renderer

Decoder

Inference

Latent Variables {𝑧!}!"#$Encoder



What are the latent variables?
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Neural Scene 
Representation Neural RendererInference

Encoder Latent Variables {𝑧!}!"#$

Latent Variables  = hybrid representation -> helps in generalization



Key Consideration: Locality.

40Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022

Global Conditioning Local Conditioning



Global Latent Codes

41Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022

Global Conditioning Local Conditioning



Global conditioning



Global conditioning
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?Latent code 𝑧



Global conditioning

441[Schmidhuber et al. 1992, Schmidhuber et al. 1993, Stanley et al. 2009, Ha et al., 2016]

Hypernetwork1

Latent code 𝑧



Global Latent Codes: Enables reconstruction from partial observations!

45Scene Representation Networks: Continuous 
3D-Structure-Aware Neural Scene Representations, NeurIPS 2019.

Differential Volumetric Rendering,
Niemeyer et al., CVPR 2020

DeepSDF, Occupancy Networks, IM-Net



Global Latent Codes: Enables reconstruction from partial observations!

46Scene Representation Networks: Continuous 
3D-Structure-Aware Neural Scene Representations, NeurIPS 2019.

Differential Volumetric Rendering,
Niemeyer et al., CVPR 2020

DeepSDF, Occupancy Networks, IM-Net

Key limitation: Simple, non-compositional scenes.
But: Latent Space for full objects (interpolation etc)



Local Latent Codes

47Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022

Global Conditioning Local Conditioning



From point clouds: Conditioning on Feature Voxel grids
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Convolutional Occupancy Networks [Peng et al. 2020]
Local Implicit Grid Representations for 3D Scenes [Jiang et al. 2020]
Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion [Chabra et al. 2020] 
Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction [Chibane et al. 2020]

Local Conditioning = Hybrid Representation!



From point clouds: Conditioning on Feature Voxel grids
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Generalizes to Compositional Scenes!
But: cubic memory complexity :/

We studies many different hybrid representation that are more memory efficient



How to locally condition if sensor 
domain different than field domain?
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Local Conditioning: Pixel-Aligned Features.
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PiFU, Saito et al., ICCV 2019.
PixelNeRF, Yu et al., CVPR 2021
Grf: Learning a general radiance field…, Trevithick et al.

Key idea: Project a 3D point to the 2D image and use 
2D ConvNet features as the hybrid representation.



Local Conditioning: Pixel-Aligned Features.
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PiFU, Saito et al., ICCV 2019.
PixelNeRF, Yu et al., CVPR 2021
Grf: Learning a general radiance field…, Trevithick et al.

Generalizes much better than global conditioning (like SRNs, DVR).
No persistent 3D representation.

All priors are learned in image space.



How to infer latent codes?
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Neural Scene 
Representation Neural RendererInference

Encoder Latent Variables {𝑧!}!"#$



Encoding vs. Auto-Decoding

54Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022

Encoding Auto-Decoding
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Auto-Decoder

GT

Backpropagate

During Training: Optimize for both NN parameters and Code

We have seen this in our DeepSDF lecture!



Auto-Decoding for inverse graphics
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RENDER

Latent code 𝑧$



Auto-Decoding for inverse graphics
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RENDER

Latent code 𝑧$

�̂� = argmin
'

RENDER (Φ) − ℐ

3D-structured, resolution-invariant!
Samples need not lie on regular grids!



Out-of-distribution generalization
Auto-decoding often generalizes better than auto-encoding
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3D structure enables generalization 
to out-of-distribution camera poses!

�̂� = argmin
'

RENDER𝜽(SRN()*+%('), 𝜉) − ℐ

Reconstruction

CNN encoder

Input



Auto-encoding:

• Do not generalize well to out-of-
distribution inputs, mainly due to lack of 
ConvNets ability to generalize.

• No optimization required at inference 
time, just 1 forward pass -> very fast

Auto-decoding:

• Generalized better to out-of-distribution 
inputs

• We need to run an optimization at 
inference time -> slow



Outline

• Network Architecture
• Hybrid Representation
• Generalization
• Editing/Manipulation
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Can we operate directly on Neural Fields?

?



Geometric Manipulation of Neural Fields

Input Coordinate 
Remapping

Editing via Network 
Parameters

Fθ(x)x

x′ = Φ(x) θ′ = Ψ(θ)



Geometric Manipulation of Neural Fields

Input Coordinate 
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Editing via Network 
Parameters

Explicit geometry

Neural Fields
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Input Coordinate 
Remapping

Editing via Network 
Parameters

Explicit geometry

Neural Fields



Input Coordinate Remapping through Explicit Geometry

T

“The knowledge is in the network”



[Ost et al., CVPR’21]

Dynamic Scene Manipulation through Local Frames

https://arxiv.org/pdf/2011.10379v3.pdf


Geometric Manipulation of Neural Fields

Input Coordinate 
Remapping

Editing via Network 
Parameters

Explicit geometry

Neural Fields



Scene Manipulation via Neural Flow Fields

Li et al., CVPR’21



Scene Manipulation via Neural Flow Fields

Li et al., CVPR’21

• Temporal photometric consistency

• Data prior (2D flow prediction net)



Scene Manipulation via Neural Flow Fields
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Geometric Manipulation of Neural Fields

Input Coordinate 
Remapping

Editing via Network 
Parameters

Explicit geometry

Neural Fields



“Deformed Implicit Field: Modeling 3D Shapes with 
Learned Dense Correspondence”, Deng et al. CVPR 2021.

Vary parameters of the neural 
network to deform the final 3D 
shape represented by SDF.



Beyond Geometry



Optimization-based Editing: Style

Zhang et al., 2022



Optimization-based Editing: Style

Zhang et al., 2022



Smart data structure to 
enable fast rendering

Generalization, rather than 
overfitting/optimization.

NeRF for multi-view 
stereo: 3D reconstruction 
from multiple images.

NeRF for Inverse 
Rendering: Predicting 
shape + material.

Misc papers:
• From sparse views
• Robotics Application
• Deformable objects (faces)
• Compositionality



Slide Credits

• ”Introduction to Computer Vision”, Noah Snavely, Cornell Tech, Spring 
2022
• “Understanding and Extending Neural Radiance Field”, Jon Barron MIT 

& Tu Munich Lecture.
• “Neural Fields in Computer Vision”, CVRP 2022 Tutorial.
• Shubham Tulsiani, “Learning for 3D Vision”, Spring 2022, CMU
• Leo Guibas, JJ Park, “Neural Models for 3D geometry”, Spring 2022, 

Stanford.

https://neuralfields.cs.brown.edu/cvpr22

