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What are neural fields?

Neural Network Signed Distance Function (SDF)
(P)



Neural Field General Framework
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What do we learn in NeRF?
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Fully-connected
neural network
9 layers,
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Volume rendering estimation: integrating color along a
ray Ray

Rendering model for ray r(t) = o + td. /

n
C= Z Ticxici
/ i=1

final rendered \

color along ray weights

colors

3D volume

How much light is blocked earlier along ray: ‘
i—1

Camera

a; =1 —exp(—0;0;)

Slight modification: a is not directly stored in the
volume, but instead is derived from a stored volume
density sigma (o) that is multiplied by the distance
between samples delta ():

Computing the color for
a set of rays through the
pixels of an image yields
a rendered image
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Outline

* Network Architecture
* Hybrid Representation
* Generalization

* Editing/Manipulation
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What do we learn in NeRF?
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Fully-connected
neural network
9 layers,
256 channels



DeepSDF Extensions: NeRF

e Coordinate-based modeling of RGB and Densities
Instead of SDFs
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Network Architecture: Overcoming Spectral Bias

[Baatz et al. 2021]

The signals we want are high frequency!
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Network Architecture: Input Encodings

Positional Encodings
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Network Architecture: Input Encodings

Random Fourier Encodings

A% T Y [Tancik et al. 2020]
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Non-axis aligned sine embeddings
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One-blob Encodings Super Gaussian Encodings
[Muller et al. 2020] [Ramasinghe et al. 2021]
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Network Architecture: Activation Functions

A) Network ®
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[Sitzmann et al. 2021]
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* Hybrid Representation
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Hybrid representation

Ray Query Point Feature Grid Interpolation Tiny Neural Network @
Features:

e are also parameters that can be updated while training the NeRF. (slight increase in memory, significantly
faster training & inference)

« areindividual NeRFs trained on a small section of a scene (for large city-size scene)

e are priors obtained from ConvNets, e.g. VGG-features (used for generalization)
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Hybrid representation: It’s all about Data Structures!

; -

Ray Query Point Feature Grid Interpolation Tiny Neural Network @

Why hybrid representation?
- Reduce the size of neural network -> fast inference & rendering.

- Helps in rendering large scale scenes.
- Helps in generalization.
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Uniform Grids

Pros:

Easy to implement

Algorithmically fast access [O(1)]
Established operations like convolutions
Simple topology

Cons:

e Expensive in memory and bandwidth
o Limited by Nyquist

[PIFu (Saito et al.), Neural Volumes (Lombardi et al.), etc]
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BlockNeRF (Tanick et al) — CVPR 2022

[Tancik et al.]

Train a small NeRF for each block in a city. These NeRFs are the ‘features’ in hybrid representation.
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BlockNeRF (Tanick et al) — CVPR 2022

.gg;‘d »\

.




Sparse Grid

~ Pros:

Memory Efficient

Algorithmically efficient access [O(log(n))]
e GPU-compatible data structures
Established operations like sparse 3D convs

Cons:

o Need to manage a complex data structure
Topology hard to generate

Still limited by Nyquist

Sparse support region

[DeepLS (Chabra et al.), NSVF (Liu et al.), NGLOD (Takikawa et al.), etc]
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NeRFusion (Zhang et al) — CVPR 2022

Posed Images
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Point Clouds (lrregular Grids)

Pros:

o Not limited by Nyquist
e Can be densely supported in space
e Expressive

Cons:
O
\/ e Often needs complex data structures for fast
o access and interpolation

o Heavily affected by choice of kernel

[Liu et al. 2019, LDIF (Genova et al.), 3DILG (Zhang et al.) etc]
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Mesh (Unstructured Grids)

Pros:

o Not limited by Nyquist
o Can use the rich sets of tools in mesh processing

Cons:

e Isa mesh
o Non-trivial data access especially in 3D

[DefTet (Gao et al.), NeuralBody (Peng et al.), etc]
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Multiplanar Images

Pros:

e More compact than 3D dense grids
o Compatibility with 2D pipelines

Cons:

e Resolution bias on plane axis

[Convolutional OccNet (Peng et al), EG3D (Chan et al.), etc]
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EG3D (Chan et al) — CVPR 2022

Intermediate latent, 512 scalars
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[Chan et al.]

Features = StyleGANv2 features
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Hash Grids

Pros:

e Densely supported

o Disaggregate resolution from
memory cost

e No complex data structures

o Performant memory access if
codebook is small enough

\

Cons:

Codebook o Multiresolution and large codebooks

needed for collision resolution
e Features not spatially local

[Instant-NGP (Muller et al.)]
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Instant NGP: Lightening fast NeRF inference

L S

Features = Trainable Parameters We will read this paper in details!
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* Generalization



Overfitting case: Inference = Fitting via Gradient Descent

Fitting

Q
/“’v %
LA

L SDF + Color MLPs

J

SRN RENDER

min ||RENDER . (SRNy, §;) — 74|

ormal map RGB
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Sitzmann et al: Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurlPS 2020.



What if we have incomplete observations?

e+ 1] -

No 3D inform. (j ) f)

SDF + Color MLPs

SRNg, RENDER _
Normal map RGB

min||RENDER ,(SRNy, &) — 7|

Sitzmann et al: Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations, NeurlPS 2020.
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Inferring Neural Fields

,? Neural Scene Neural Renderer —
Representation !

If only a single observation is available, or if only part of the scene has been observed,
Inference needs to be prior-based —i.e., we need to learn to reconstruct.
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General Framework: Encoder-Decoder

Encoder Latent Variables {z;}), Decoder

LT T T]
°te Neural Scene Neural Renderer
Inference LT T 1] Representation
LT T T]
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What are the latent variables?

Latent Variables {z;}Y_,

Latent Variables = hybrid representation -> helps in generalization

39



Key Consideration: Locality.

Z
Latent Code l
X —» (O
Query
coordinate Neural Field

Global Conditioning

Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022

Discrete Data Structure

g(x)
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Query \\VM‘M

coordinate Neural Field

Local Conditioning



Global Latent Codes

Z
Latent Code l
X —» (O
Query
coordinate Neural Field

Global Conditioning

Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022



Global conditioning

Latent Conditioning based SDFs

< [ 1L
zE]RI f@ B R
N

xGRgl

fo:R3x R 5 R

Generalizable Signed Distance Field:
(latent code, position) = (distance)

Each object is represented by a corresponding latent code (only d parameters per instance)

The same neural net parameters across all objects



Global conditioning

Latent code z D
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Global conditioning

Hypernetwork’

Latent code z

[Schmidhuber et al. 1992, Schmidhuber et al. 1993, Stanley et al. 2009, Ha et al., 2016]
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Global Latent Codes: Enables reconstruction from partia/ observations!

DeepSDF, Occupancy Networks, IM-Net -

\;‘;/

Differential Volumetric Rendering,
Scene Representation Networks: Continuous Niemeyer et al., CVPR 2020 45
3D-Structure-Aware Neural Scene Representations, NeurlPS 2019.




Global Latent Codes: Enables reconstruction from partia/ observations!

Key limitation: Simple, non-compositional scenes.
But: Latent Space for full objects (interpolation etc)



Local Latent Codes

Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022

Discrete Data Structure
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From point clouds: Conditioning on Feature Voxel grids

Trilinear 3D Locatlon p Occupancy

Input x 4 A: Interpolation ? PfObabl“W
=3
o I | Features fo(p, ¥ p x)
aE B PointNet .
. " . Encoder 7 , ()

. . : Occupancy
| Network
¥y 3D Feature Volume . s ;

/ 3D Feature Volume

Local Conditioning = Hybrid Representation!

Convolutional Occupancy Networks [Peng et al. 2020]
Local Implicit Grid Representations for 3D Scenes [Jiang et al. 2020]

Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion [Chabra et al. 2020]
Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction [Chibane et al. 2020]
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From point clouds: Conditioning on Feature Voxel grids

Generalizes to Compositional Scenes!
But: cubic memory complexity :/

We studies many different hybrid representation that are more memory efficient



How to locally condition if sensor
domain different than field domain?



Local Conditioning: Pixel-Aligned Features.

Key idea: Project a 3D point to the 2D image and use
2D ConvNet features as the hybrid representation.

\ f Volume Rendering
Input View W o /\
d) > — (RGBo) L /L

Ray Distance

)
, v W) / ,
\\/ :‘ﬁ\x d “ ._g't' 2

CNN Encoder Target View Rendering Loss

‘ \>|§

PiFU, Saito et al., ICCV 2019.
PixelNeRF, Yu et al., CVPR 2021

Grf: Learning a general radiance field..., Trevithick et al. -



Local Conditioning: Pixel-Aligned Features.

Generalizes much better than global conditioning (like SRNs, DVR).
No persistent 3D representation.
All priors are learned in image space.



How to infer latent codes”?

Encoder

Inference

Latent Variables {z;}),

ﬁ

) i )

53



Encoding vs. Auto-Decoding

Encoder
“JB0

i
@ "‘m /3‘&

X —>

Query  ORORA
coordinate Neural Field
Encoding

Neural Fields in Visual Computing and Beyond, Xie et al., EG STAR 2022

Latent Codes
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Neural Fleld

Query
coordinate

Auto-Decoding



We have seen this in our DeepSDF lecture!

Auto-Decoder

Backpropagate
NN
C d 4 )
Oue SDF==| | GT
N /
(X,y,2)

During Training: Optimize for both NN parameters and Code
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Auto-Decoding for inverse graphics

Latent code z,

RENDER

56



Auto-Decoding for inverse graphics

3D-structured, resolution-invariant!
Samples need not lie on regular grids!

\

LN DR

Latent code z, 4 X IR TN
L~/

RENDER

Z = arg min||RENDER (P) — J||
Z
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Out-of-distribution generalization

Auto-decoding often generalizes better than auto-encoding

‘RENDER (SRN¢=HN1/)(Z),€) — JH ’ % CNN encoder

Z = arg min
Z

Input Reconstruction

A | A

‘@

30D structure enables generalization
lo out-or-distribution camera poses/ .




Auto-encoding: Auto-decoding:

* Do not generalize well to out-of- * Generalized better to out-of-distribution

distribution inputs, mainly due to lack of inputs
ConvNets ability to generalize.

* No optimization required at inference * We need to run an optimization at
time, just 1 forward pass -> very fast inference time -> slow



Outline

* Editing/Manipulation



Can we operate directly on Neural Fields?
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Y p
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Geometric Manipulation of Neural Fields

x (T Foo

x' = P(x) ' = Y(O)

Input Coordinate Editing via Network
Remapping Parameters



Geometric Manipulation of Neural Fields

Explicit geometry

Input Coordinate Editing via Network
Remapping Parameters

Neural Fields



Geometric Manipulation of Neural Fields

Explicit geometry

*

Input Coordinate Editing via Network
Remapping Parameters

Neural Fields



Input Coordinate Remapping through Explicit Geometry

T
Y i p
T

Ty i p

“The knowledge is in the network”



Dynamic Scene Manipulation through Local Frames

_(a) Reference (b) Learned Object Nodes

(c) Learned Background (d) Y_lgyg Reconstruction

-. (;) Novl- —cene

g

[Ost et al., CVPR’21]



https://arxiv.org/pdf/2011.10379v3.pdf

Geometric Manipulation of Neural Fields

Explicit geometry

Input Coordinate Editing via Network

Remapping f Parameters

Neural Fields




Scene Manipulation via Neural Flow Fields

Cjonlr) = [ T5(0)0,(0ins 0)) 5(rins (1), )

Li et al., CVPR’21 where Tisj (t) — ri(t) £s fi—m’ (rz(t))



Scene Manipulation via Neural Flow Fields

* Temporal photometric consistency

Lobo =Y > |ICjsi(r:) — Ci(rs)|]3
r; jeN(2)
* Data prior (2D flow prediction net)

Lgeo = Z Z [[Pi—sj (i) — Pisj(r:))]]1-

ri je{itl}

Li et al.,, CVPR’21
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Geometric Manipulation of Neural Fields

Explicit geometry

*

Input Coordinate Editing via Network
Remapping Parameters

Neural Fields



Hyper-Net W DIF-Net @

- —

Vary parameters of the neural
s network to deform the final 3D
shape represented by SDF.

Template Field
T-R3—>R

Figure 2. Overview of our proposed method. For a shape code
a, Hyper-Net W predicts (a part of) the weights of DIF-Net &,
which further predicts the SDF for the shape. DIF-Net ® con-
sists of Deform-Net D which predicts a 3D deformation field and
a correction field for the shape, and network 7' for generating a
template implicit field shared across all shapes.

“Deformed Implicit Field: Modeling 3D Shapes with
Learned Dense Correspondence”, Deng et al. CVPR 2021.



Beyond Geometry



Optimization-based Editing: Style

Zhang et al., 2022



Optimization-based Editing: Style

g i o . .

‘! optimization
NN search

minimizing cosine distance

Zhang et al., 2022



WEEK 12

[1]Plenoxels: Radiance Fields without
Neural Networks.

[1] Raul Chun-

Tue Nov {1 Faster Inference [2]Instant Neural Graphics Primitives with a I[-lzlinlinc'r;'?\c(;mas
Multiresolution Hash Encoding.
[1]GRE: Learning a General Radiance Field
for 3D Scene Representation and [1] Chin Tsen
Thrs Nov 3 Generalization Rendering. 2] Austin Ha%e
[2]pixelNeRF: Neural Radiance Fields from
One or Few Images.
WEEK 13
[1]IBRNet: Learning Multi-View Image-
Based Rendering. yh]o‘ilun Myeong
Tue Nov 8 Multi-View [2JMVSNeRF: Fast Generalizable Radiance [2] Pierre-
Field Reconstruction from Multi-View ol .
Stereo. Nicolas Perrin
[1]NeROIC: Neural Object Capture and
Rendering_from Online Image Collections . [1] Basar Demir
Thrs Nov 10 Inverse Rendering [2]SAMURAI: Shape And Material from [2] Chin Tsen
Unconstrained Real-world Arbitrary Image g
collections.
WEEK 14
[1]SparseNeuS: Fast Generalizable Neural
Tue Nov 15 Misc Surface Reconstruction from Sparse views. |[1] Austin Hale
' [2]Dex-NeRF: Using a Neural Radiance field |[2] lan Thomas
to Grasp Transparent Objects.
[1]Nerfies: Deformable Neural Radiance
Fields. [1] Basar Demir
Thrs Nov 17 | Misc. [2]GIRAFFE: Representing Scenes as [2] Pierre-

Compositional Generative Neural Feature
Fields.

Nicolas Perrin

Smart data structure to

~enable fast rendering

Generalization, rather than
overfitting/optimization.

NeRF for multi-view
stereo: 3D reconstruction
from multiple images.

NeRF for Inverse
Rendering: Predicting
shape + material.

Misc papers:

* From sparse views

e Robotics Application

* Deformable objects (faces)

-+ Compositionality



Slide Credits

* “Introduction to Computer Vision”, Noah Snavely, Cornell Tech, Spring
2022

* “Understanding and Extending Neural Radiance Field”, Jon Barron MIT
& Tu Munich Lecture.

e “Neural Fields in Computer Vision”, CVRP 2022 Tutorial.
e Shubham Tulsiani, “Learning for 3D Vision”, Spring 2022, CMU

* Leo Guibas, JJ Park, “Neural Models for 3D geometry”, Spring 2022,
Stanford.



https://neuralfields.cs.brown.edu/cvpr22

