Lecture 3: Introduction to Computer Graphics

细 Text RONISEN to 22333 once to join, then text your message

Feel free to share your questions...

Neural Rendering

Current Image
Explicit: Reconstruct 3D
(Introduction to Graphics Lectures)

Implicit: Neural Representation
(Generative Models Lectures

Recap

- How do we define geometry/shape of an object?
- How do we define a camera model? - 3D object to 2D image
- How do we define material property? - glossy, metallic

Geometry: How do we represent shape of an object?

2.5D representation:

1) Depth \& Normal map

Explicit representation:
2) Mesh
3) Voxels
4) Point Cloud

Implicit representation:
5) Surface Representation (SDF)

3D Representations (Explicit)

	Voxel	Point cloud	Polygon mesh
Memory efficiency	Poor	Not good	Good
Textures	Not good	No	Yes
For neural networks	Easy	Not easy	Not easy

We adopt polygon mesh for its high potential

Surface Representation: Signed Distance Function (SDF) - implicit representation via level set

$\operatorname{SDF}(X)=0$, when X is on the surface. $\operatorname{SDF}(X)>0$, when X is outside the surface $\operatorname{SDF}(X)<0$, when X is inside the surface

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.

How do we define a camera model? - 3D object to 2D image

In general, there are three different coordinate systems...

so you need the know the transformations between them

- Relationship between image \& camera coord. Systems.
- Camera Calibration matrix
- Camera Intrinsics
- Can be obtained from image meta data.

General mapping of a pinhole camera

Another way to write the mapping

$\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$

where

$$
\mathbf{t}=-\mathbf{R C}
$$

3.2.1 Camera Parameterization

We use a perspective pinhole camera model and assume constant intrinsic camera parameters that have been calibrated in advance using established calibration procedures [114]. We denote the projective mapping for observation $i \in N_{k}$ and keyframe $k \in K$ as: $\pi_{i}^{k}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and represent the extrinsic component (camera pose) of this mapping in world coordinates by a unit quaternion $\mathbf{q}_{i}^{k} \in S O(3)$ and a translation vector $\mathbf{t}_{i}^{k} \in \mathbb{R}^{3}$. Note that we use a redundant representation (i.e., the camera pose of an observation neighboring multiple keyframes is represented once per keyframe) to enable memory efficient optimization, one keyframe at a time, while enforcing consistency via additional soft constraints.

Computer Vision for 3D reconstruction

Multi-View Stereo

Problem: Given a set of N images of an object, i1, i2, ... iN, and a set of camera parameters P1, P2, ... , PN, reconstruct the 3D object.

Classical approach and recent deep learning-based approach share a lot of similarity.

Structure from Motion (SfM)

Problem: Given a set of N images of an object, $\mathrm{i} 1, \mathrm{i} 2, \ldots \mathrm{iN}$, and a set of camera parameters P1,P2, .., PN, reconstruct the 3D object.

First find the set of camera parameters P1, P2, ... , PN.

Where in the course will we encounter it?

... entire $2^{\text {nd }}$ half of the course!

BRDF

Definition: The bidirectional reflectance distribution function (BRDF) represents how much light is reflected into each outgoing direction ω_{r} from each incoming direction

Types of BRDF

- Diffuse/Lambertian: light is reflected equally in all directions. Represented by Albedo.
- Shiny surfaces:
- Spatially invariant (whole object has same amount of glossiness): Phong Reflectance model.
- Spatially variant (glossiness varies for different part of the object): Microfacet model (Cook-Torrance model)

Other types:

- Isotropic vs anisotropic (metals)
- Subsurface scattering (human skin) (whiter skin -> more scattering, darker skin -> more specular reflections)

Photometric Stereo

Problem: Given N images of an object, i1, i2, ... iN, captured with a fixed camera and N different lighting direction, reconstruct the surface geometry.

- Calculate surface normal.
- Integrate normal to depth.

Past Works assume:

- Directional point light source
- Dark room
- Diffuse Reflection

Recent works do not require these assumptions + they also reconstruct BRDF!

Captured Images: Right

"Shape \& Material Capture at Home", Lichy, Wu, Sengupta, Jacobs, CVPR 2021 "Real-Time Light-Weight Near-Field Photometric Stereo", Lichy, Sengupta, Jacobs, CVPR 2022

Computer Vision for 3D reconstruction

Current Image
Explicit: Reconstruct 3D

- Reconstruct only geometry (Multiview Stereo, Structure from Motion)
- Inverse Rendering (geometry + BRDF)

Computer Graphics for Rendering

Current Image
Explicit: Ray-Tracing, Image-based Rendering

Basics of Ray Tracing

Rendering: Reality

- Eye acts as pinhole camera
- Photons from light hit objects

Rendering: Reality

- Eye acts as pinhole camera
- Photons from light hit objacts
- Bounce everywhere
- Extremely few
- hit eye, form image

Synthetic Pinhole Camera

Useful abstraction: virtual image plane

aperture (virtual camera origin, \approx eye)

Rendering: Ray Tracing

Reverse of reality

- Shoot rays through image plane
- See what they hit

- Embarrassingly parallel

Local Illumination

Simplifying assumptions:

- Ignore everything except eye, light, and object
- No shadows, reflections, etc

Big Hero 6 (2014)

Control (2019)

Why Slow?

Naïve algorithm: O(NR)

- R: number of rays
- N : number of objects

But rays can be cast in parallel

- each ray O(N)

Basic Algorithm

For each pixel:

- Shoot ray from camera through pixel
- Find first object it hits
- If it hits something
- Shade that pixel
- Shoot secondary rays

Find First Object Hit By Ray?

Collision detection: find all values of t where ray hits object boundary

Take smallest positive value of t
Skipping: How to detect collision? How to do it fast and memory efficient?

- So we understand how to shoot rays and how to determine the intersection between ray and scene and choose the nearest point (this problem is often known as visibility test)
- Next question is:
- How do we define lighting in a scene?
- How do we assign shading/color to each pixel?
- How do we find the effect of illumination at each 3D point in space?
- Next question is:
- How do we define lighting in a scene?
- How do we assign shading/color to each pixel?
- How do we find the effect of illumination at each 3D point in
- HDR (High Dynamic Range) Environment Map
- Basically a HDR panorama
- Captured by placing a mirror ball
- Awesome for rendering in Graphics
- Bad for Inverse Rendering, as lots of parameter
- Spherical Harmonics
- Effect of lighting on an object can be represent as a 27 dimensional vector (9 each for RGB channels)
- Lighting is represented using spherical harmonics basis functions.
- Popular in Computer Vision
- Many other representation exists
- Recent SOTA methods: approximate HDR Environment map as lowresolution (often 16x32) LDR Envrionment map

- Next question is:
- How do we define lighting in a scene?
- How do we assign shading/color to each pixel?
- How do we find the effect of illumination at each 3D point in space?

Global Illumination \&

Path Tracing

Computer Graphics and Imaging UC Berkeley CS184/284A

Ray Tracer Samples Radiance
Along A Ray

Reflection at a Point

Differential irradiance incoming: $\quad d E\left(\omega_{i}\right)=L\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i}$
Differential radiance exiting (due to $d E\left(\omega_{i}\right)$) $d L_{r}\left(\omega_{r}\right)$

BRDF

Definition: The bidirectional reflectance distribution function (BRDF) represents how much light is reflected into each outgoing direction ω_{r} from each incoming direction

NB: ω_{i} points away from surface rather than into surface, by convention.

$$
f_{r}\left(\omega_{i} \rightarrow \omega_{r}\right)=\frac{\mathrm{d} L_{r}\left(\omega_{r}\right)}{\mathrm{d} E_{i}\left(\omega_{i}\right)}=\frac{\mathrm{d} L_{r}\left(\omega_{r}\right)}{L_{i}\left(\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i}} \quad\left[\frac{1}{\mathrm{sr}}\right]
$$

The Reflection Equation

How do you perform this integration?

How do you sample all incoming lighting directions?

$$
L_{r}\left(\mathrm{p}, \omega_{r}\right)=\int_{H^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{r}\right) L_{i}\left(\mathrm{p}, \omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i}
$$

Solving the Reflection Equation

$$
L_{r}\left(\mathrm{p}, \omega_{r}\right)=\int_{H^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{r}\right) L_{i}\left(\mathrm{p}, \omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i}
$$

Monte Carlo estimate:

- Generate directions ω_{j} sampled from some distribution $p(\omega)$
- Choices for $p(\omega)$
- Uniformly sample hemisphere
- Importance sample BRDF (proportional to BRDF)
- Importance sample lights (sample position on lights)
- Compute the estimator
$\underset{\operatorname{cs} 184 / 284 \mathrm{~A}}{ } \quad \frac{1}{N} \sum_{j=1}^{N} \frac{f_{r}\left(\mathrm{p}, \omega_{j} \rightarrow \omega_{r}\right) L_{i}\left(\mathrm{p}, \omega_{j}\right) \cos \theta_{j}}{p\left(\omega_{j}\right)}$

Recall: Hemisphere vs Light Sampling

Sample hemisphere uniformly
Sample points on light

Global Illumination:

 Deriving the Rendering Equation
Again: Reflection Equation

Challenge: This is Actually A Recursive Equation

Reflected radiance depends on incoming radiance

But incoming radiance depends on reflected radiance (at another point in the scene)

Recursive Ray Tracing

Transport Function \& Radiance Invariance

Definition: the Transport Function, $\operatorname{tr}(\mathrm{p}, \omega)$, returns the first surface intersection point in the scene along ray (p, ω)

Radiance invariance along rays: $L_{o}\left(\operatorname{tr}\left(\mathrm{p}, \omega_{i}\right),-\omega_{i}\right)=L_{i}\left(\mathrm{p}, \omega_{i}\right)$
"Radiance arriving at p from direction ω_{i} is equal to the radiance leaving p^{\prime} in direction $-\omega_{i}$ "

The Rendering Equation

L_{e} is light emitted by the point p itself! (This term Re-write the reflection equation: is 0 unless p is an emitter, one that emits light!)

$$
L_{o}\left(\mathrm{p}, \omega_{o}\right)=L_{e}\left(\mathrm{p}, \omega_{o}\right)+\int_{H^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{i}\left(\mathrm{p}, \omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i}
$$

Using the transport function: $\quad L_{i}\left(\mathrm{p}, \omega_{i}\right)=L_{o}\left(\operatorname{tr}\left(\mathrm{p}, \omega_{i}\right),-\omega_{i}\right)$

The Rendering Equation
$L_{o}\left(\mathrm{p}, \omega_{o}\right)=L_{e}\left(\mathrm{p}, \omega_{o}\right)+\int_{H^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{o}\left(\operatorname{tr}\left(\mathrm{p}, \omega_{i}\right),-\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i}$

Note: recursion is now explicit
How to solve?

Solving the rendering equation with Light Transport operator.

$$
\begin{aligned}
& L_{o}\left(\mathrm{p}, \omega_{o}\right)=L_{e}\left(\mathrm{p}, \omega_{o}\right)+\int_{H^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{o}\left(\operatorname{tr}\left(\mathrm{p}, \omega_{i}\right),-\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \\
& \text { Using operators. } \\
& \text { Operators = higher order functions. } \\
& L_{o}=L_{e}+(R \circ T)\left(L_{o}\right) \\
& \text { - Reflection operator: } \\
& R(g)\left(\mathrm{p}, \omega_{o}\right) \equiv \int_{H^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{o}\right) g\left(\mathrm{p}, \omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \\
& R\left(L_{i}\right)=L_{o} \\
& \text { - Transport operator: } \\
& T(f)\left(\mathrm{p}, \omega_{o}\right) \equiv f(\operatorname{tr}(\mathrm{p}, \omega),-\omega) \\
& T\left(L_{o}\right)=L_{i}
\end{aligned}
$$

Define full one-bounce light transport operator: $K=R \circ T$

$$
L_{o}=L_{e}+K\left(L_{o}\right)
$$

Solving the Rendering Equation

- Rendering equation:

$$
\begin{aligned}
& L=L_{e}+K(L) \quad \quad \mathrm{L} \text { is outgoing reflected } \\
& (I-K)(L)=L_{e}
\end{aligned}
$$

- Solution desired:

$$
L=(I-K)^{-1}\left(L_{e}\right)
$$

- How to solve?

Solution Intuition

For scalar functions, recall:

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots \\
& \text { converges for }-1<x<1
\end{aligned}
$$

Similarly, for operators, it is true that

$$
\begin{aligned}
& (I-K)^{-1}=\frac{1}{I-K}=I+K+K^{2}+K^{3}+\cdots \\
& \text { (Neumann series) } \\
& \text { converges for }\|K\|<1
\end{aligned}
$$

where $\|K\|<1$ means that the "energy" of the radiance function decreases after applying K. This is intuitively true for valid scene models based on energy dissipation (though not trivial to prove, see Veach \& Guibas).

Rendering Equation Solution

$$
\begin{aligned}
L & =(I-K)^{-1}\left(L_{e}\right) \\
& =\left(I+K+K^{2}+K^{3}+\cdots\right)\left(L_{e}\right) \\
& =L_{e}+K\left(L_{e}\right)+K^{2}\left(L_{e}\right)+K^{3}\left(L_{e}\right)+\cdots \\
& \uparrow{ }_{\text {Emitted }} \text { 1-bounce }
\end{aligned} \underset{\text { 2-bounce }}{\uparrow} \underset{\text { 3-bounce }}{ }
$$

Intuitive: Sum of successive bounces of light

This calculates the steady-state surface light field over the scene.
$\left(K\right.$ OK OK)(Le) $=3^{\text {rd }}$ bounce only

Emitted light + $1^{\text {st }}$ bounce

Emitted light $+1^{\text {st }}+2^{\text {nd }}$ bounce

Emitted light $+1^{\text {st }}+2^{\text {nd }}+3^{\text {rd }}$ bounce

Emitted light $+1^{\text {st }}+2^{\text {nd }}+3^{\text {rd }}+4^{\text {th }}$ bounce

Emitted light $+1^{\text {st }}$ to $5^{\text {th }}$ bounce

Emitted light $+1^{\text {st }}$ to $6^{\text {th }}$ bounce

Direct illumination +16 round of globat-illumination (17th bounce

Cornell Box - Photograph vs Rendering

Photograph (CCD) vs. global illumination rendering

Light Paths

1-Bounce Path Connecting Ray to Light

Camera
Light

1-Bounce Paths Connecting Ray to Light

Camera
Light

2-Bounce Path Connecting

 Ray to Light

Camera

Light

2-Bounce Paths Connecting

 Ray to Light

Camera
Light

2-Bounce Paths Connecting

 Ray to Light

Camera
Light

3-Bounce Paths Connecting
Ray to Light

Camera

Light

3-Bounce Path Connecting Ray to Light

Camera
Light

3-Bounce Path Connecting Ray to Light

Camera
Light

3-Bounce Path Connecting Ray to Light

Camera
Light

3-Bounce Path Connecting Ray to Light

Camera
Light

3-Bounce Path Connecting Ray to Light

Camera
Light

3-Bounce Path Connecting Ray to Light

Camera
Light

32 samples (paths) per pixel

1024 samples (paths) per pixel

Discussion: Global Illumination Rendering

Sum over all paths of all lengths

Challenges:

- How to generate all possible paths?
- How to sample space of paths efficiently?
"Real-time Ray-tracing" research spearheaded by NVIDIA focus on developing algorithms and GPU architecture that can lead to real-time \& memory efficient rendering.

How does $\mathrm{Al} / \mathrm{ML}$ help in accelerating rendering?

How is this related to Neural Rendering?

To render new images from reconstructed 3D

3D Intrinsic Components

Current Image

Use Computer Graphics to render new images from reconstructed 3D components.

Change:

- Viewpoint
- Lighting
- Reflectance
- Background
- Attributes
- Many others...

To generate training data

Using Computer Graphics to generate realistic synthetic data for training Deep Networks in Computer Vision.

- Easy to obtain large scale data.
- Better Graphics = less domain gap with real world

Our Dataset
ScanNet Images

Self-supervised learning from real images

- Rendering is recursive, thus not differentiable.
- You can not backprop loss gradient through a ray-tracer!
- So what do you do?
- Make some easy assumption - Direct illumination only (good for faces, not for scenes)
- Differentiable Rendering (Active Research Area in Graphics
 community!)

Recap

Current Image

3D Intrinsic Components
Questions that you should answer now:

- How do you represent 3D geometry, camera, BRDF, and lighting?
- How do we generate new images from these components.

Questions that we have not answered:

- How do we reconstruct 3D components from image(s) ?
- You learn a bit in NeRF
- Mostly covered in any advanced 3D Vision Course.
- Are you interested to learn more about this?

Next few lectures: Generative models for direct image based rendering.

Important Deadlines

- 590: Assignment 1 due next Thursday, Aug 25.
- 590/790: Please sign up on your paper presentation/review preference!
- 590: If you want to switch to 790 , please submit the form (sent in email).
- 590: You will have 5 assignments instead of 4 (but easier! Trust me!)
- 590/790: Start forming your project group. If attempting self project, please come and talk to me!
- Slack Channel setup by Michael Womick

Slide Credits

- UC Berkeley CS 184/284a - Spring 2021 (Ren Ng, Angjoo Kanazawa)
- U Texas CS 354 - Spring 2022 (Sarah Abraham)
- Many amazing research papers!

