Lecture 4: Generative Models

Variational <u>Autoencoders</u>

Unsupervised method for learning feature vectors from raw data x, without any labels

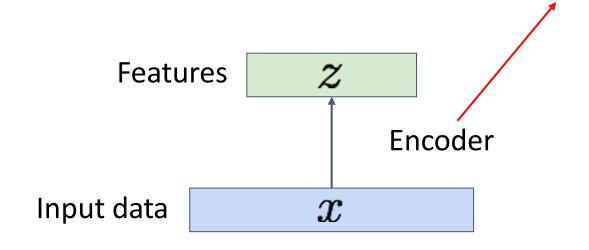
Problem: How can we learn this feature transform from raw data?

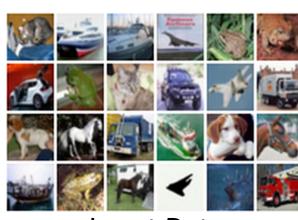
Features should extract useful information (maybe object identities, properties, scene type, etc) that we can use for downstream tasks

Originally: Linear + nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN



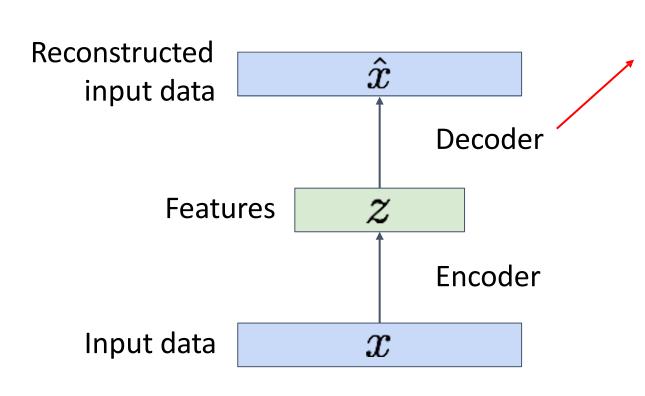


Input Data

Problem: How can we learn this feature transform from raw data?

Idea: Use the features to <u>reconstruct</u> the input data with a **decoder**

"Autoencoding" = encoding itself

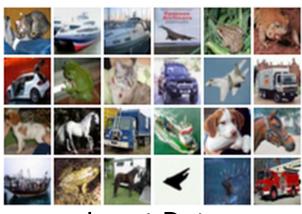


Originally: Linear +

nonlinearity (sigmoid)

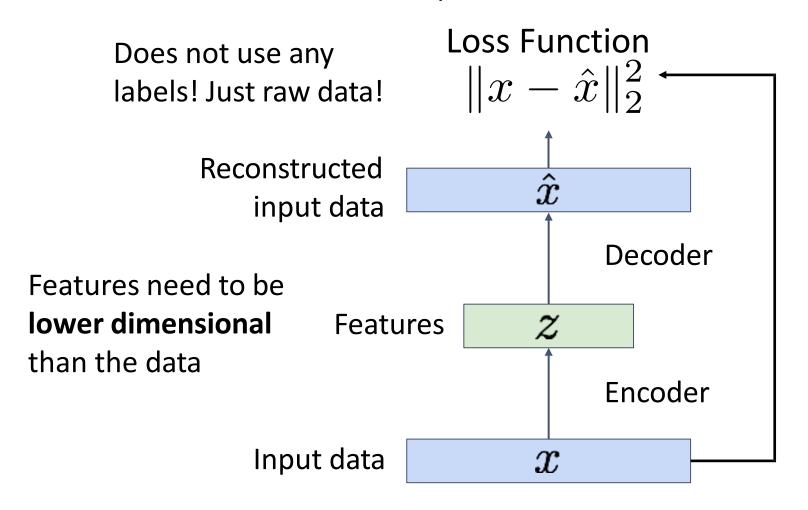
Later: Deep, fully-connected

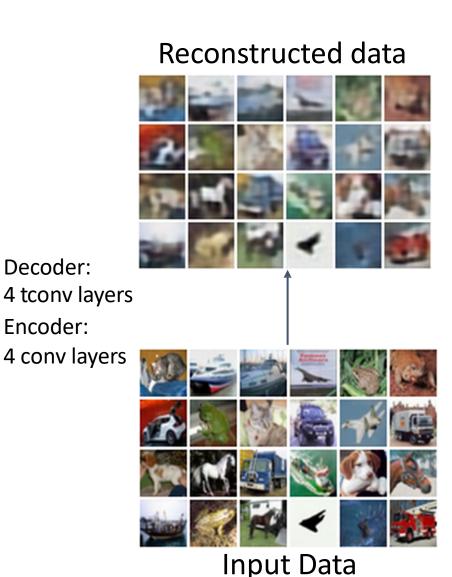
Later: ReLU CNN (upconv)



Input Data

Loss: L2 distance between input and reconstructed data.

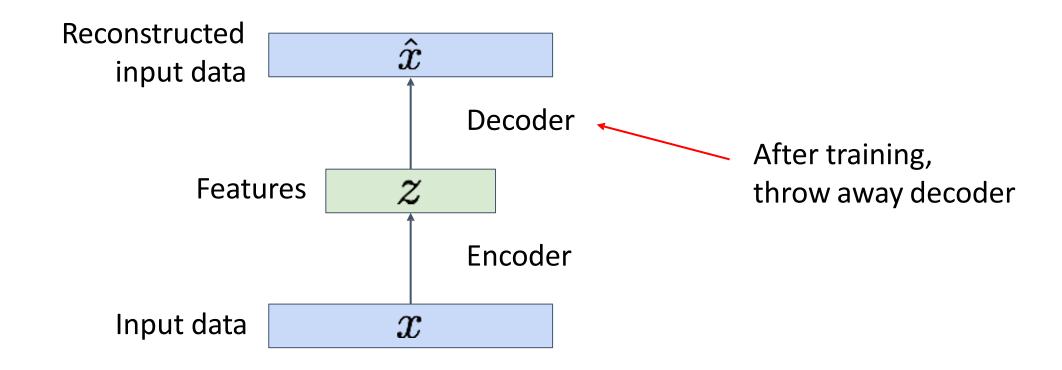




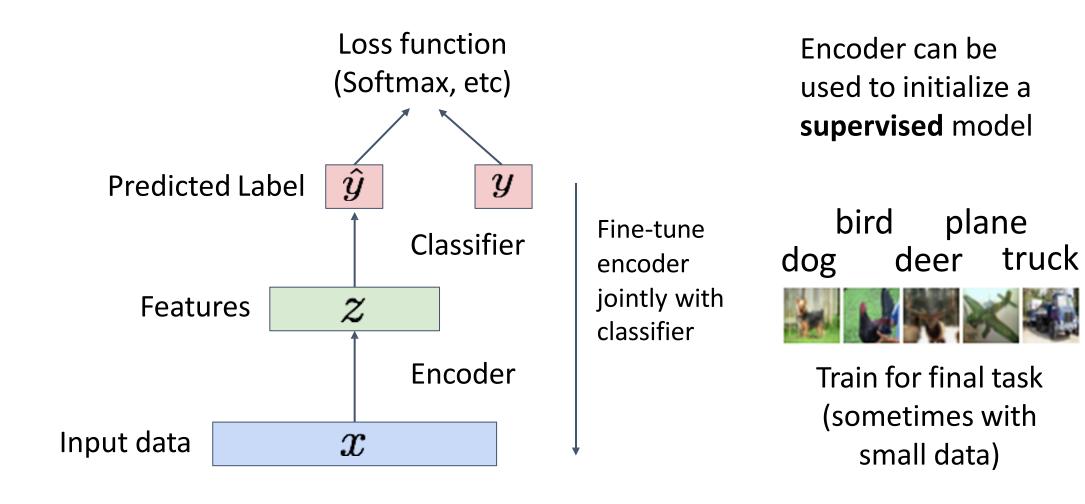
Decoder:

Encoder:

After training, throw away decoder and use encoder for a downstream task

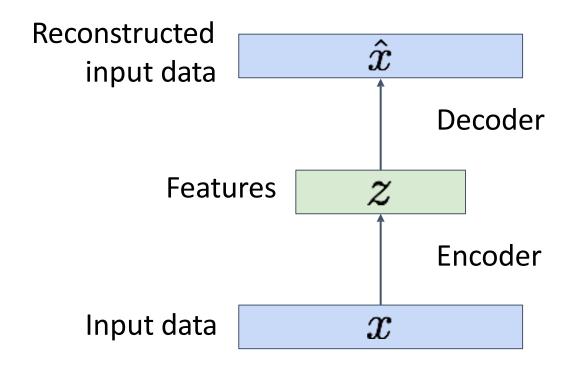


After training, throw away decoder and use encoder for a downstream task



Autoencoders learn **latent features** for data without any labels! Can use features to initialize a **supervised** model

Not probabilistic: No way to sample new data from learned model



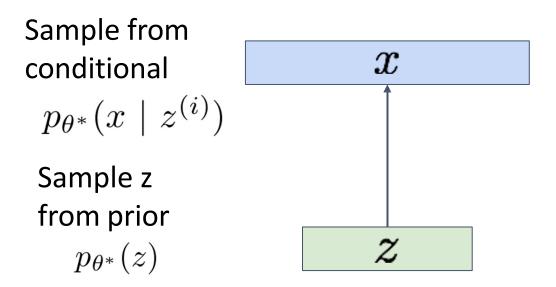
Probabilistic spin on autoencoders:

- 1. Learn latent features z from raw data
- 2. Sample from the model to generate new data

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation \mathbf{z}

Intuition: x is an image, **z** is latent factors used to generate **x**: attributes, orientation, etc.

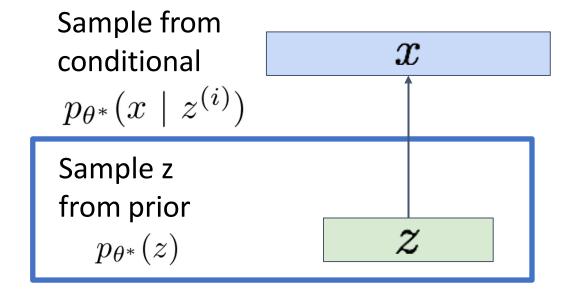
After training, sample new data like this:



Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation \mathbf{z}

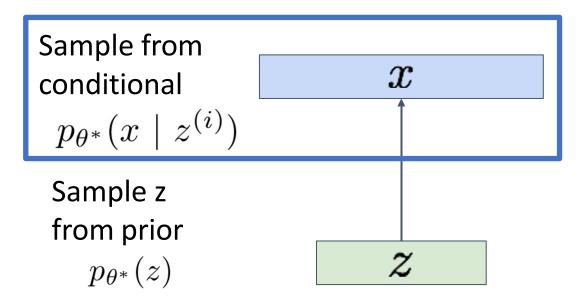
Intuition: x is an image, **z** is latent factors used to generate **x**: attributes, orientation, etc.

After training, sample new data like this:



Assume simple prior p(z), e.g. Gaussian

After training, sample new data like this:



Represent p(x|z) with a neural network (Similar to **decoder** from autencoder)

Assume simple prior p(z), e.g. Gaussian

Decoder must be **probabilistic**: Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample from conditional $p_{\theta^*}(x \mid z^{(i)})$ Sample z from prior $p_{\theta^*}(z)$ Z

How to train this model?

Basic idea: maximize likelihood of data

If we could observe the z for each x, then could train a *conditional generative model* p(x|z)

We don't observe z, so need to marginalize

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz = \int p_{\theta}(x|z) p_{\theta}(z) dz$$

Ok, can compute this with decoder network

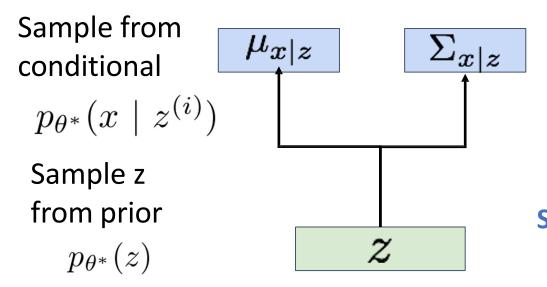
Ok, we assumed Gaussian prior for z

Problem: Impossible to integrate over all z!

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$



How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes Rule

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)}$$

Ok, compute with decoder network

Ok, we assumed Gaussian prior for z

Problem: No way to compute this!

Solution: Train another network (encoder) that learns

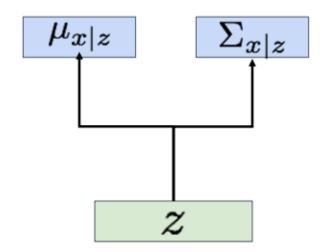
$$q_{\phi}(z\mid x)\approx p_{\theta}(z\mid x)$$

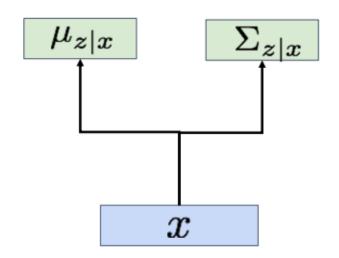
Decoder network inputs latent code z, gives distribution over data x

Encoder network inputs data x, gives distribution over latent codes z

$$p_{\theta}(x \mid z) = N(\mu_{x\mid z}, \Sigma_{x\mid z}) \quad q_{\phi}(z \mid x) = N(\mu_{z\mid x}, \Sigma_{z\mid x})$$

$$q_{\phi}(z \mid x) = N(\mu_{z|x}, \Sigma_{z|x})$$





If we can ensure that $q_{\phi}(z \mid x) \approx p_{\theta}(z \mid x),$

then we can approximate

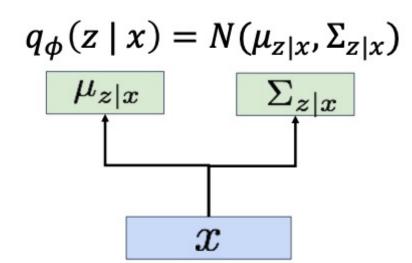
$$p_{\theta}(x) \approx \frac{p_{\theta}(x \mid z)p(z)}{q_{\phi}(z \mid x)}$$

Idea: Jointly train both encoder and decoder

Jointly train **encoder** q and **decoder** p to maximize the **variational lower bound** on the data likelihood

$$\log p_{\theta}(x) \ge E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Encoder Network



Decoder Network

$$p_{\theta}(x \mid z) = N(\mu_{x\mid z}, \Sigma_{x\mid z})$$

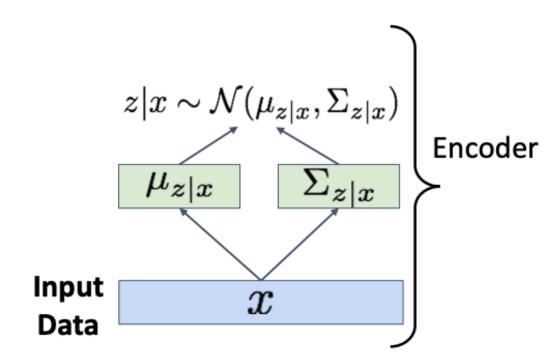
$$\mu_{x\mid z} \qquad \Sigma_{x\mid z}$$

Skipping the proof of how the lower bound is computed. reading 1, reading 2

Train by maximizing the variational lower bound

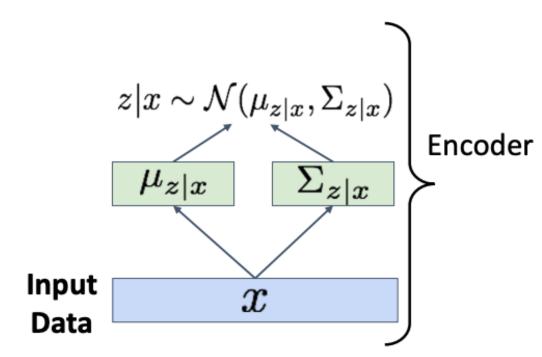
$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

 Run input data through encoder to get a distribution over latent codes



$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!



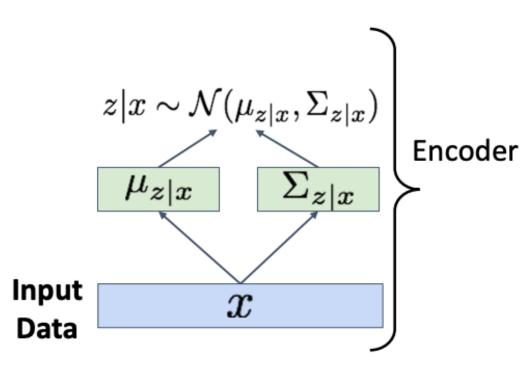
Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!

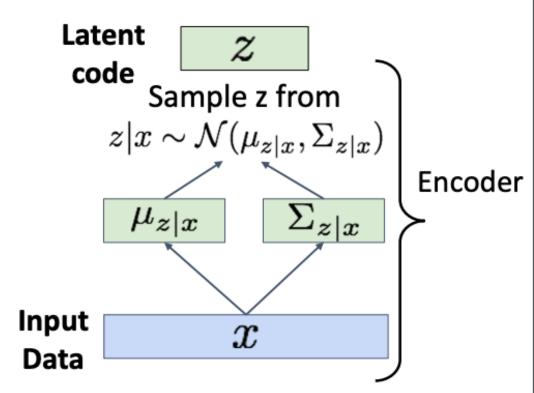
$$\begin{split} -D_{KL}\left(q_{\phi}(z|x),p(z)\right) &= \int_{Z} q_{\phi}(z|x) \log \frac{p(z)}{q_{\phi}(z|x)} dz \\ &= \int_{Z} N(z;\mu_{z|x},\Sigma_{z|x}) \log \frac{N(z;0,I)}{N(z;\mu_{z|x},\Sigma_{z|x})} dz \\ &= \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log \left(\left(\Sigma_{z|x}\right)_{j}^{2}\right) - \left(\mu_{z|x}\right)_{j}^{2} - \left(\Sigma_{z|x}\right)_{j}^{2}\right) \end{split}$$

Closed form solution when q_{ϕ} is diagonal Gaussian and p is unit Gaussian! (Assume z has dimension J)



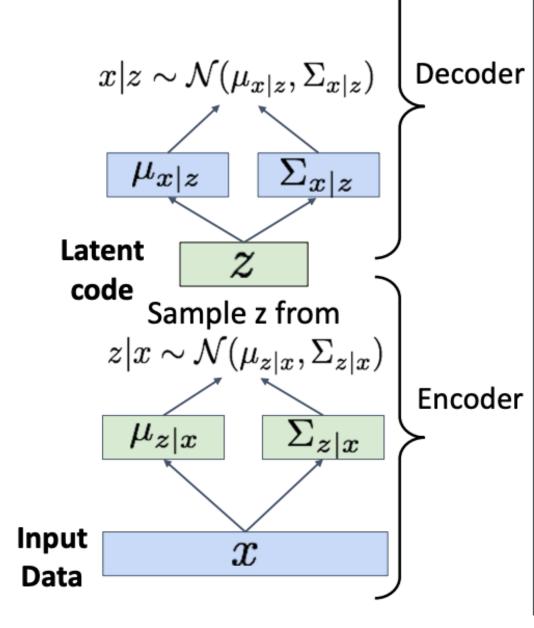
$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output



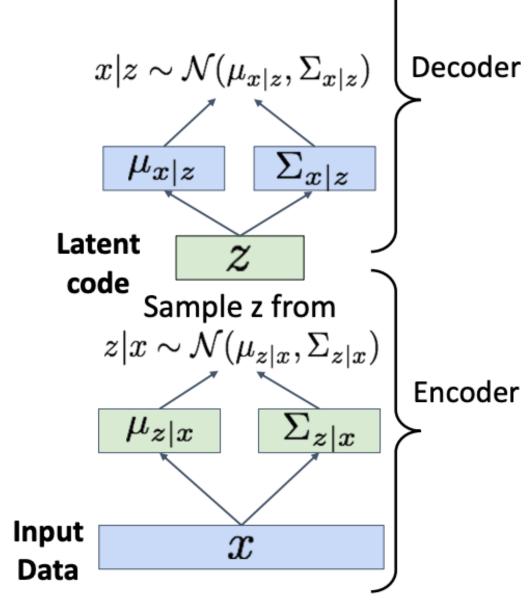
$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- 3. Sample code z from encoder output
- Run sampled code through decoder to get a distribution over data samples



$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

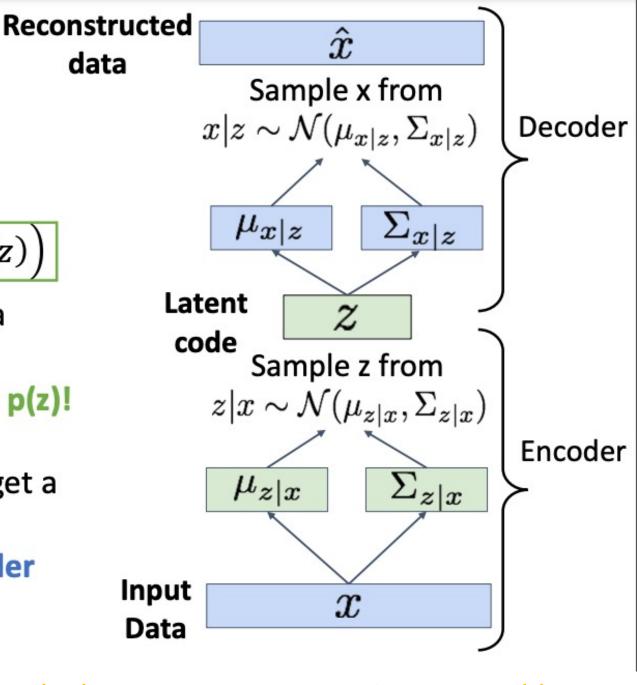
- Run input data through encoder to get a distribution over latent codes
- Encoder output should match the prior p(z)!
- Sample code z from encoder output
- Run sampled code through decoder to get a distribution over data samples
- 5. Original input data should be likely under the distribution output from (4)!



Train by maximizing the variational lower bound

$$E_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

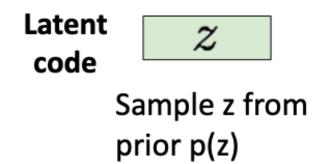
- Run input data through encoder to get a distribution over latent codes
- 2. Encoder output should match the prior p(z)!
- Sample code z from encoder output
- Run sampled code through decoder to get a distribution over data samples
- 5. Original input data should be likely under the distribution output from (4)!
- Can sample a reconstruction from (4)



We minimize the reconstruction loss and make the latent space Z as gaussian as possible.

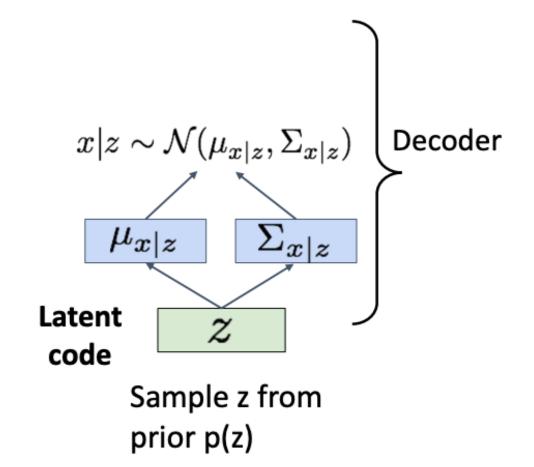
After training we can generate new data!

1. Sample z from prior p(z)



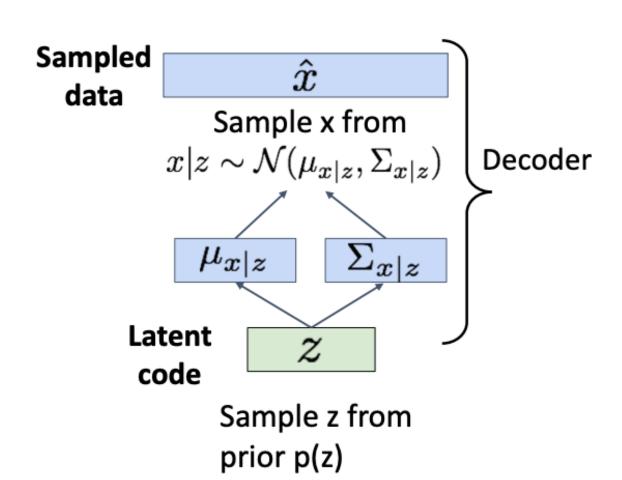
After training we can generate new data!

- Sample z from prior p(z)
- Run sampled z through decoder to get distribution over data x

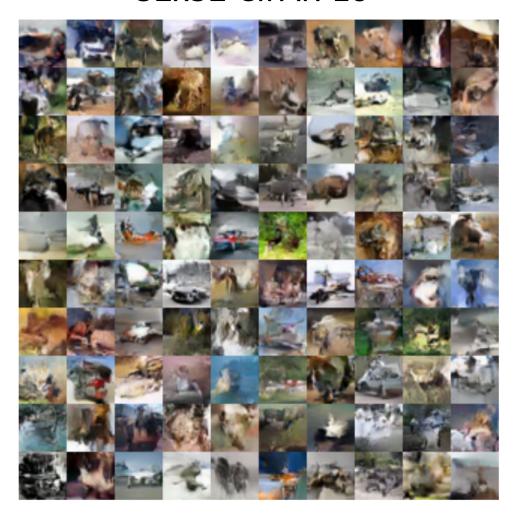


After training we can generate new data!

- Sample z from prior p(z)
- Run sampled z through decoder to get distribution over data x
- Sample from distribution in (2) to generate data



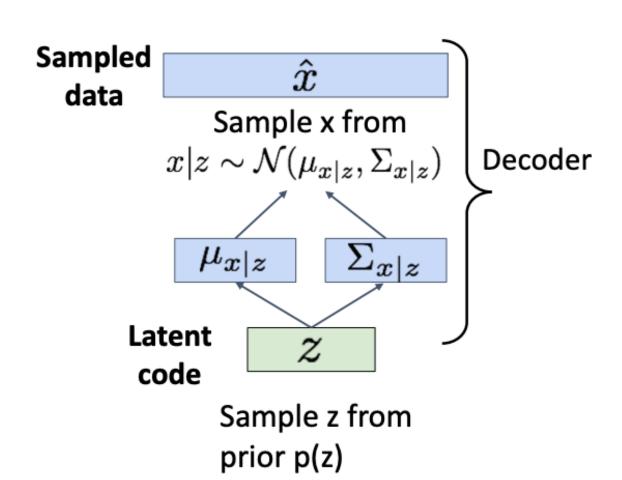
32x32 CIFAR-10



Labeled Faces in the Wild

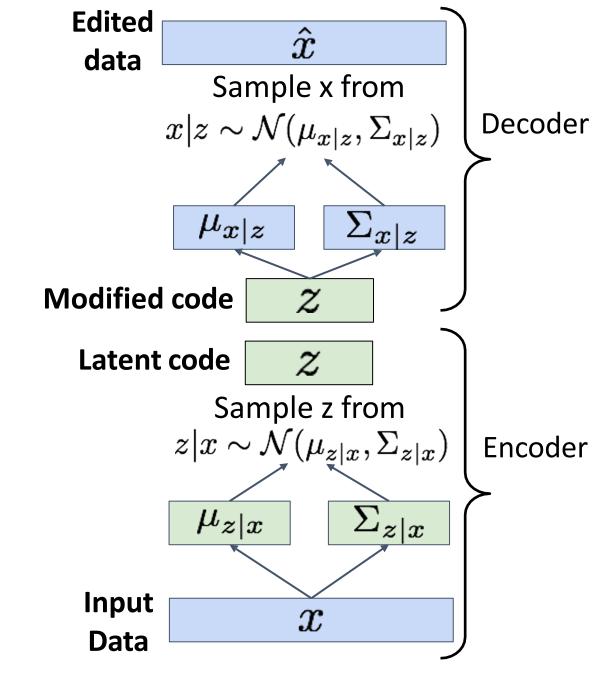
After training we can generate new data!

- Sample z from prior p(z)
- Run sampled z through decoder to get distribution over data x
- Sample from distribution in (2) to generate data



After training we can edit images

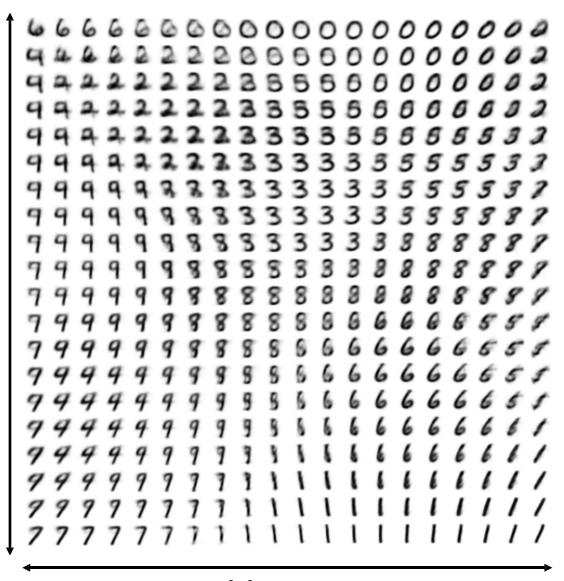
- 1. Run input data through **encoder** to get a distribution over latent codes
- 2. Sample code z from encoder output
- 3. Modify some dimensions of sampled code
- 4. Run modified z through **decoder** to get a distribution over data samples
- 5. Sample new data from (4)



The diagonal prior on p(z) causes dimensions of z to be independent

"Disentangling factors of variation"

Vary z₁



The diagonal prior on p(z) causes dimensions of z to be independent

"Disentangling factors of variation"

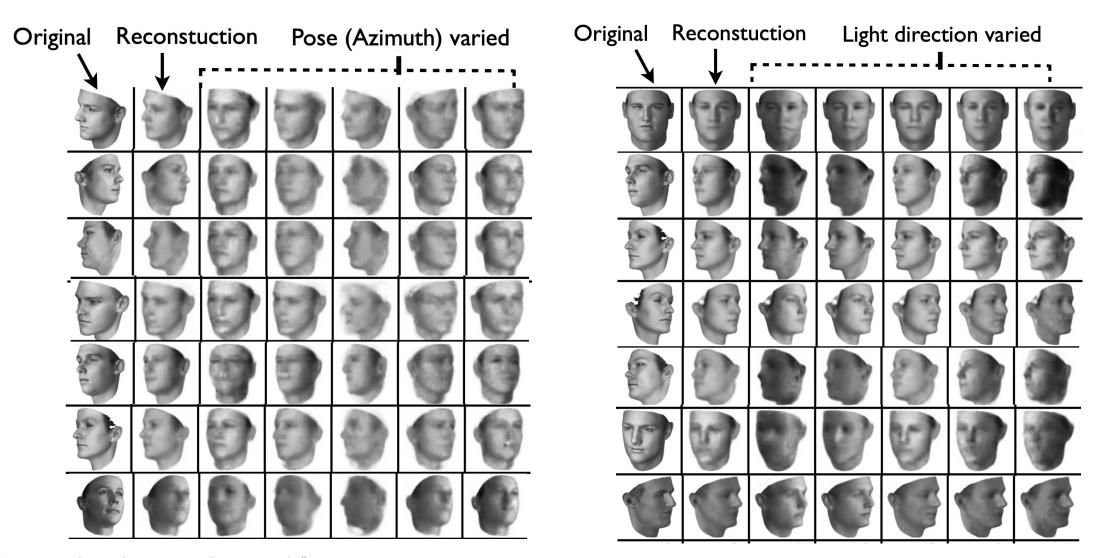
Degree of smile Vary **z**₂

Head pose

Vary **z**₁

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

Variational Autoencoders: Image Editing



Variational Autoencoder: Summary

Probabilistic spin to traditional autoencoders => allows generating data

Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:

- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:

- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian, e.g., Gaussian Mixture Models (GMMs)
- Incorporating structure in latent variables, e.g., Categorical Distributions
- Diffusion model: iterative VAE?

So far: Two types of generative models

Autoregressive models

- Directly maximize p(data)
- High-quality generated images
- Slow to generate images
- No explicit latent codes

Variational models

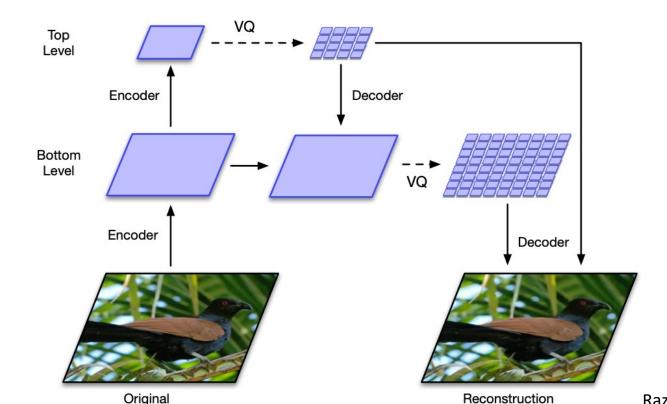
- Maximize lower-bound on p(data)
- Generated images often blurry
- Very fast to generate images
- Learn rich latent codes

Can we combine them and get the best of both worlds?

Combining VAE + Autoregressive: Vector-Quantized Variational Autoencoder (VQ-VAE2)

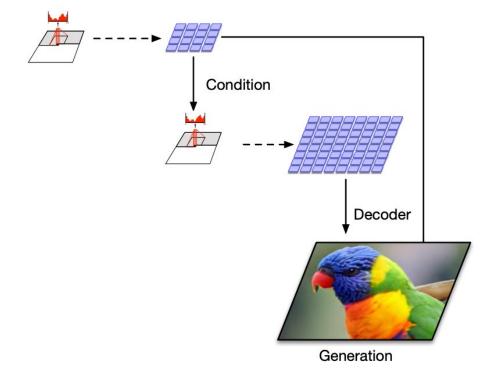
Train a VAE-like model to generate multiscale grids of latent codes

VQ-VAE Encoder and Decoder Training



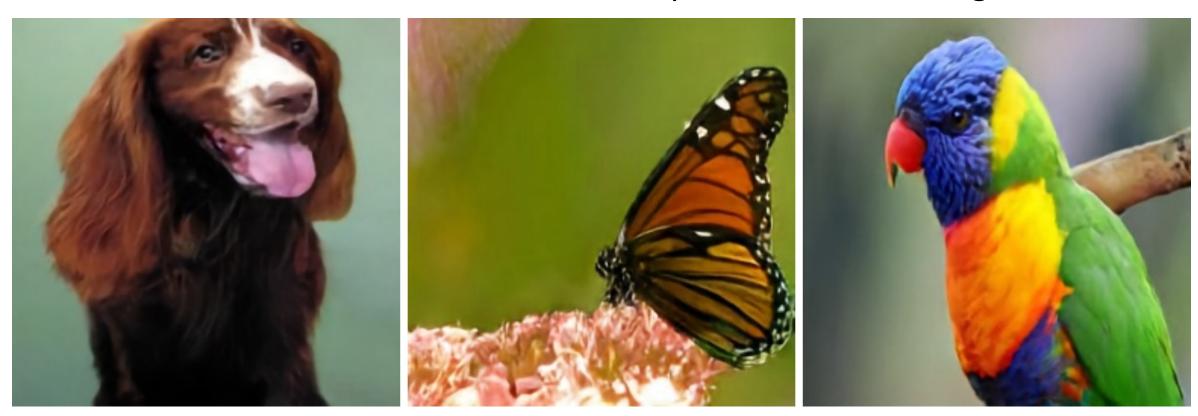
Use a multiscale PixelCNN to sample in latent code space

Image Generation



Razavi et al, "Generating Diverse High-Fidelity Images with VQ-VAE-2", NeurIPS 2019

256 x 256 class-conditional samples, trained on ImageNet



256 x 256 class-conditional samples, trained on ImageNet

Redshank

Pekinese

Papillon

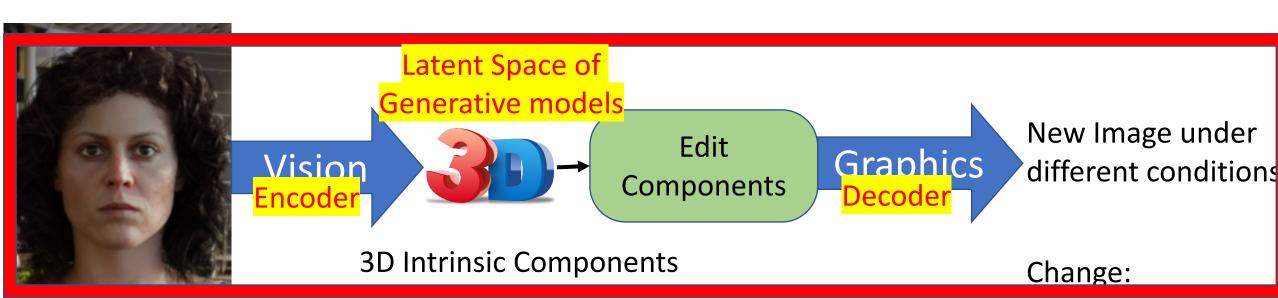
Drake

Spotted Salamander

1024 x 1024 generated faces, trained on FFHQ

1024 x 1024 generated faces, trained on FFHQ

Next few lectures: Generative models for direct image based rendering.



Current Image

Implicit: Use a Neural Network (Conditional Generative networks) Often, end-to-end.

- Viewpoint
- Lighting
- Reflectance
- Background
- Attributes
- Many others...

Taxonomy of Generative Models

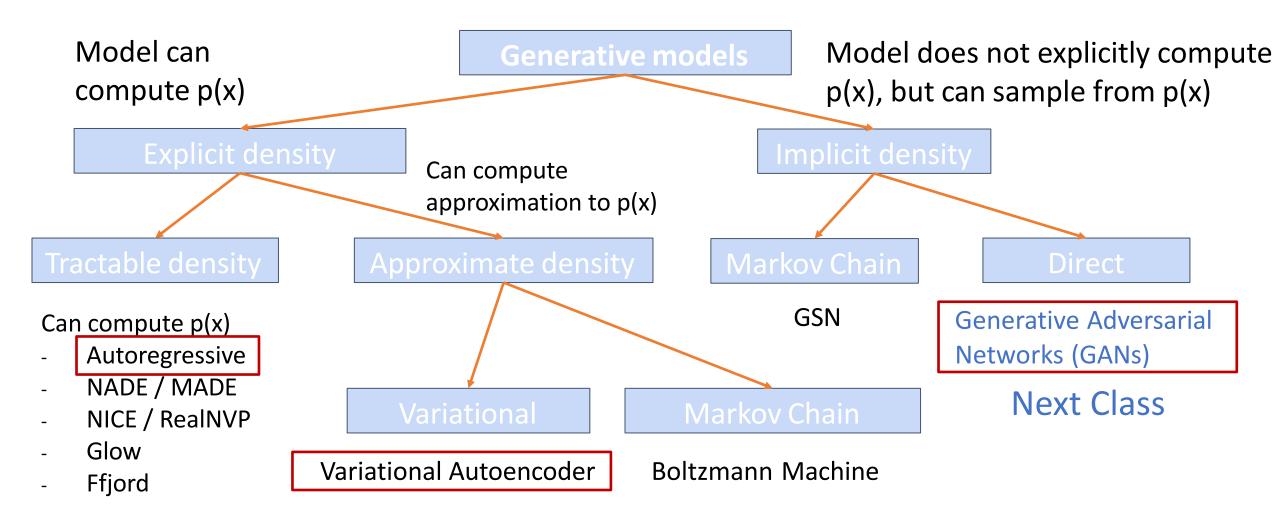


Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credits

- EECS 6322 Deep Learning for Computer Vision, Kosta Derpanis (York University)
- EECS 498 Deep Learning for Computer Vision, Justin Johnson (U. Michigan)
- Many amazing research papers!