Lecture 4: Generative Models



Variational Autoencoders



(Regular, non-variational) Autoencoders

Unsupervised method for learning feature vectors from raw data x, without any labels

Problem: How can we learn this feature transform from raw data?

Features should extract useful

information (maybe object identities,

properties, scene type, etc) that we
can use for downstream tasks

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected

Later: ReLU CNN
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(Regular, non-variational) Autoencoders

Problem: How can we learn this feature transform from raw data?
Idea: Use the features to reconstruct the input data with a decoder

“Autoencoding” = encoding itself
Originally: Linear +
nonlinearity (sigmoid)

Recc?nstructed 4 Later: Deep, fully-connected
input data 3 / Later: ReLU CNN (upconv)
Decoder —
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: Ap WY T

Encoder gsﬁ'zw
Input data €T -E - .;E

Input Data




(Regular, non-variational) Autoencoders

Loss: L2 distance between input and reconstructed data.

Does not use any Loss Function

Ve 2 <
labels! Just raw datal Hx — 37“2
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(Regular, non-variational) Autoencoders

After training, throw away decoder and use encoder for a downstream task

Reconstructed x
input data CU
Features 2

Encoder
Input data €T

Decoder
\ After training,

throw away decoder



(Regular, non-variational) Autoencoders

After training, throw away decoder and use encoder for a downstream task

Predicted Label

Loss function
(Softmax, etc)

AN

Classifier

Features

Encoder

Input data

Fine-tune
encoder
jointly with
classifier

Encoder can be
used to initialize a
supervised model

bird plane
dog deer truck

el o R

Train for final task
(sometimes with
small data)



(Regular, non-variational) Autoencoders

Autoencoders learn latent features for data without any labels!
Can use features to initialize a supervised model
Not probabilistic: No way to sample new data from learned model

Reconstructed —
input data ZB
Decoder
Features z
Encoder

Input data €T




Variational Autoencoders

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014



Variational Autoencoders

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Assume training data{aﬁ(i) }7{\;1 IS

generated from unobserved (latent)
representation z

Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.



Variational Autoencoders

Assume training data{aﬁ(i) }ff\il IS

generated from unobserved (latent)
representation z

After training, sample new data like this: Intuition: x is an image, z is latent
factors used to generate x:
Sample from attributes, orientation, etc.
conditional CL'

pe-(z | %)

Sample z
from prior

po-(2) <




Variational Autoencoders

After training, sample new data like this:

Sample from
conditional X

pe-(z | 2V)

Sample z
from prior

Assume simple prior p(z), e.g. Gaussian

po~(2)




Variational Autoencoders

After training, sample new data like this:

Sample from

n Represent p(x|z) with a neural network
conditional

(Similar to decoder from autencoder)

pe-(z | 2")

Sample z
from prior

po- (2) Z

Assume simple prior p(z), e.g. Gaussian




Variational Autoencoders

Decoder must be probabilistic: How to train this model?
Decoder inputs z, outputs mean Ly,
and (diagonal) covariance }; Basic idea: maximize likelihood of data
Sample x from Gaussian with mean If we could observe the z for each x, then could
Ux|; and (diagonal) covariance Yy, train a conditional generative model p(x|z)
Sample from o
conditional M|z Zm|z We don’t observe z, so need to marginalize
(¢)
(T | 2
po-(w | 21%) pe(x) = fpe (x,z)dz =e (x|z)pe (2)Hiz
Sample z
from prior
po~ (2) Z Ok, we assumed Gaussian prior for z

Problem: Impossible to integrate over all z!



Variational Autoencoders

Decoder must be probabilistic: How to train this model?
Decoder inputs z, outputs mean ), Basic idea: maximize likelihood of data

and (diagonal) covariance };
Another idea: Try Bayes Rule

Sample x from Gaussian with mean
Ux|; and (diagonal) covariance Yy, h)G (x | Z)lPe (Z)

Peo (X) - ﬁ
6(z | x)
Sample from T Za:lz

conditional Ok, compute with decoder network
po=(T | Z(i)) Ok, we assumed Gaussian prior for z
Sample z Problem: No way to compute this!
from prior Solution: Train another network (encoder) that learns

po- (2) Z q4(z | x) = pg(z | x)



Variational Autoencoders

Decoder network inputs Encoder network inputs
latent code z, gives

distribution over data x

data x, gives distribution
over latent codes z

Pe (x I Z) = N(ﬂxlz: lez) d¢ (Z I x) = N(ﬂz|x: 2:z|x)

Hz|z

2:Blz

Hz|x
»

|

’ Zl‘zlw }

If we can ensure that
q¢(z | x) = pe(z | x),

then we can approximate
pe(x | 2)p(2)
d¢ (z | x)

po(x) =

Idea: Jointly train both
encoder and decoder



Variational Autoencoders

Jointly train encoder g and decoder p to maximize
the variational lower bound on the data likelihood

log pg (x) = E;.-q4 21 108 e (x12)] — Dis, (44 (z1%),p(2))

Encoder Network Decoder Network
d¢ (z|x) = N(ﬂz|xr zzlx) po(x | z) = N(ﬂx|zr lez)
Hz|x Zzlx Hx|z Zmlz
i 2

Skipping the proof of how the lower bound is computed.
reading 1, reading 2



https://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/variational-inference-i.pdf
https://fangdahan.medium.com/derivation-of-elbo-in-vae-25ad7991fdf7

Variational Autoencoders

Train by maximizing the
variational lower bound
Ez~q¢(z|x) [log pg (x[2)] — Dk, (qcp (z|x), P(Z))

1. Runinput data through encoder to get a
distribution over latent codes

Input T

Encoder

.

Data .



Variational Autoencoders

Train by maximizing the
variational lower bound

Ez~aq4(zix) 108 D6 (x12)] —| Dy, (44 (z1%), p(2) )

1. Run input data through encoder to get a

distribution over latent codes
2. Encoder output should match the prior p(z)!

Input
Data

Encoder

-




Variational Autoencoders

Train by maximizing the Closed form solution when
variational lower bound q¢ is diagonal Gaussian and
p is unit Gaussian!
E;~q4(zix)[108 P (x|2)] —|Dg; (q¢ (zIx),p(z)) (Assume z has dimension J)
1. Run input data through encoder to get a ~
distribution over latent codes
2. Encoder output should match the prior p(z)! 2|z ~ N(.u'zla:a szc)
B p(z) / \ Encoder
~Dia (a9 el).p@) = | aglabe)tog sz i (S| S
N(z;0,1) v
= N(Z; Uy, Zz1x ) | d
jz, (2 Hzpx, Z71x) log T oo
1 2 2 2 T
=32, (1+108((2)7) = ()] — () Data J




Variational Autoencoders

Train by maximizing the
variational lower bound

Ez~q,(zlx)[108 Po (x12)] — Dg1, (44 (z12),p (2) )

Run input data through encoder to get a

distribution over latent codes
2. Encoder output should match the prior p(z)!
3. Sample code z from encoder output

Latent
code

Input
Data

2

Sample z from
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E;~q4 (21 [108 o (x12)] — Dics (44 (212), p(2) )
1.

w

Variational Autoencoders

Train by maximizing the
variational lower bound

Run input data through encoder to get a
distribution over latent codes

Encoder output should match the prior p(z)!
Sample code z from encoder output

Run sampled code through decoder to get a
distribution over data samples

CL‘|Z ™~ N(y’azlza 23cz:lz)

AN

Hz|z Za:lz
v

Latent >

J
code )
Sample z from

ZlIL‘ ™~ N(y’zh:, Ez:l:z:)
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Variational Autoencoders

Train by maximizing the
variational lower bound

Ez~q¢(z|x) [log pg (x|2)]|—|Dky (qcp (zIx),p(z))

Run input data through encoder to get a
distribution over latent codes

2. Encoder output should match the prior p(z)!

Sample code z from encoder output

4. Run sampled code through decoder to get a
distribution over data samples

5. Original input data should be likely under
the distribution output from (4)!

w

Latent
code

Input
Data
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Reconstructed

Variational Autoencoders  9ata

Train by maximizing the
variational lower bound

E;~qq (21 [108 Do (x12)]|— Dis, (4 (21%),p(2) )

Run input data through encoder to get a

distribution over latent codes

Encoder output should match the prior p(z)!

Sample code z from encoder output

4. Run sampled code through decoder to get a
distribution over data samples

5. Original input data should be likely under
the distribution output from (4)!

6. Can sample a reconstruction from (4)
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Variational Autoencoders: Generating Data

After training we can
generate new data!

1. Sample z from prior p(z)

Latent >
code

Sample z from
prior p(z)



Variational Autoencoders:

After training we can
generate new data!

1. Sample z from prior p(z)
2. Run sampled z through decoder to
get distribution over data x

Generating Data

£L'|Z ™~ N(.U’:clza 2:r:lz)
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Variational Autoencoders:

After training we can
generate new data!

Sample z from prior p(z)

Run sampled z through decoder to
get distribution over data x
Sample from distribution in (2) to
generate data

Generating Data

Sampled =

data &
Sample x from

£II|Z ™~ N(/'La:lza Emlz)

N

Hzx|z Za:|z
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Latent >
code

Sample z from
prior p(z)
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Variational Autoencoders: Generating Data

32x32 CIFAR-10 Labeled Faces in the Wild

#
oD .

Figures from (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017.



Variational Autoencoders:

After training we can
generate new data!

Sample z from prior p(z)

Run sampled z through decoder to
get distribution over data x
Sample from distribution in (2) to
generate data

Generating Data

Sampled =

data &
Sample x from

£II|Z ™~ N(/'La:lza Emlz)

N
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Variational Autoencoders

After training we can edit images

1. Runinput data through encoder to get a
distribution over latent codes

2. Sample code z from encoder output

3. Modify some dimensions of sampled code

4. Run modified z through decoder to get a
distribution over data samples

5. Sample new data from (4)
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Vary z,

Variational Autoencoders

The diagonal prior on p(z) causes
dimensions of z to be independent
“Disentangling factors of variation”

Vary z,

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014



Variational
Autoencoders

Degree of smile

dimensions of z to be independent

The diagonal prior on p(z) causes Vary 7 ;S;;g 'i‘i'i‘gq N

ARARAARAS
“Disentangling factors of variation” ! :Sx)axl:i:qq-g‘q ’
T

SRR

Vary z;
Head pose

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders: Image Editing
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i et al, “Deep Convolutional Inverse Graphics Networks”, NeurlPS 2014




Variational Autoencoder: Summary

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
Principled approach to generative models
Allows inference of g(z|x), can be useful feature representation for other tasks

Cons:
Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixelRNN/PixelCNN
Samples blurrier and lower quality compared to state-of-the-art (GANSs)

Active areas of research:
More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs)
Incorporating structure in latent variables, e.g., Categorical Distributions
Diffusion model: iterative VAE?



So far: Two types of generative models

Autoregressive models Variational models

- Directly maximize p(data) - Maximize lower-bound on p(data)
- High-quality generated images - Generated images often blurry

- Slow to generate images - Very fast to generate images

- No explicit latent codes - Learn rich latent codes

Can we combine them and get the best of both worlds?



Combining VAE + Autoregressive:
Vector-Quantized Variational Autoencoder (VQ-VAE2)

Train a VAE-like model to generate

, _ Use a multiscale PixelCNN to
multiscale grids of latent codes

sample in latent code space

VQ-VAE Encoder and Decoder Training , a "
mage Generation

L
i
Encoder I l Decoder l Condition

Generation

Original Reconstruction Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurlPS 2019



Combining VAE + Autoregressive: VQ-VAE?2

256 x 256 class-conditional samples, trained on ImageNet
-

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurlPS 2019



Combining VAE + Autoregressive: VQ-VAE?2

256 x 256 class-conditional samples, trained on ImageNet

Redshank

Pekinese

Papillon

Drake

Spotted Salamander

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurlPS 2019



Combining VAE + Autoregressive: VQ-VAE?2
1024 x 1024 generated faces, trained on FFHQ

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurlPS 2019



Combining VAE + Autoregressive: VQ-VAE?2
1024 x 1024 generated faces, trained on FFHQ

//

Razavi et al, “Generating Diverse High-Fidelity Images with VQ-VAE-2”, NeurlPS 2019



Next few lectures: Generative models for direct image
based rendering.

Latent Space of

Generative models
- Edit New Image under
| 1014 1 oy e c
a Components Decoder different condition:

3D Intrinsic Components

Change:
Current Image / \ . ?-/ilger\]/:i;:]cgnt
* Reflectance

* Background
Implicit: Use a Neural Network * Attributes
(Conditional Generative networks) * Many others...
@ften, end-to-end. /




Taxonomy of Generative Models

Model can Model does not explicitly compute
compute p(x) p(x), but can sample from p(x)

Can compute
approximation to p(x)

Can compute p(x) GSN Generative Adversarial
Autoregressive Networks (GANSs)
NADE / MADE
NICE / RealNVP Next Class
Glow — _

Ffijord Variational Autoencoder Boltzmann Machine

Figure adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.



Slide Credits

* EECS 6322 Deep Learning for Computer Vision, Kosta Derpanis (York
University)

e EECS 498 Deep Learning for Computer Vision, Justin Johnson (U.
Michigan)

* Many amazing research papers!



