
Lecture 5: Generative 
Adversarial Networks (GANs)





Next few lectures: Generative models for direct image 
based rendering.
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Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Decoder

Features

Encoder

Loss: L2 distance between input and reconstructed data.

Loss Function

Reconstructed 
input data

Does not use any 
labels! Just raw data!

Input data
Input Data

(Regular, non-variational) Autoencoders
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Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layersFeatures need to be 

lower dimensional 
than the data

Not probabilistic: No way to sample new data from learned model



Try to make z gaussian



Few Math recap: What is Expectation?

• Sample zi from the latent space (gaussian).
• Pass zi through decoder to reconstruct image x’i
• Loss can be computed as binary cross-entropy loss between the real 

images and the generated images = sum{x’i * log (xi)} 
(Some implementation also use regular MSE loss).
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Generative

Adversarial Network



“The most interesting idea in the
last ten years in machine learning.”

— Yann LeCun (Facebook AI Research)





Generative Adversarial Networks
Setup: Assume we have data xi drawn from distribution pdata(x).
Want to sample from pdata.

Goodfellow et al, “Generative Adversarial Nets”, NeurIPS 2014

Idea: Introduce a latent variable z with simple prior p(z).

Sample 𝑧 ∼ 𝑝(𝑧) and pass to a Generator Network x = G(z)

Then x is a sample from the Generator distribution pG. Want pG = pdata!



Generator

Network takes a random input
and produces a sample from the 
data distribution as output
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Generator

z ⇠ random noise

Similar as decoder for VAE.



Discriminator

Network classifies input as “real” or “fake”



Discriminator

Network classifies input as “real” or “fake”

“fake” inputs come from the generator
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In practice  we assume:
‘real’ label = 1
‘fake’ label = 0

While training discriminator, we want:
real images to be classified as 1
Fake images to be classified as 0

While training generator, we want the 
discriminator to classify fake images as 
real (label=1).



Two-Player Game
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distributiondata distribution

discriminator



optimize by alternating between minimizing
and maximizing respective sub-objectives.
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gradient signal is strong for good fake samples

D(G(z))=1 means the discriminator 
thinks the fake image is real!
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gradient signal is weak for bad fake samples

This kind of problem is often known as vanishing gradient

At the beginning of the training most fake samples are bad! 
Then gradient is small, and the generator do not receive 
much information from discriminator to update itself!
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for number of training iterations do

samples
for k steps do

noise 
real examples

from 
from

the discriminator by

noise prior 
dataset 
gradient ascent

sample m
sample m
update

end for

noise samples from noise priorsample m 
update generator by stochastic gradient ascent

end for

GAN
training
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for number of training iterations do

for
samples

k steps do
m noise 
m real examples

from 
from
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dataset 
gradient ascent

sample
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update
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for number of training iterations do

for k steps do
sample m noise samples from noise prior

m real examples from dataset
the discriminator by gradient ascent

sample 
update

end for

noise samples from noise priorsample m 
update generator by stochastic gradient ascent

end for



for number of training iterations do

sample m
for k steps do

noise samples from noise prior
sample m real examples from dataset
update the discriminator by gradient ascent

end for

noise samples from noise priorsample m 
update generator by stochastic gradient ascent

end for



• end for

• sample m noise samples from
noise prior update generator by
stochastic gradient ascent

• end for

update the discriminator by gradient ascent



for number of training iterations do

samples
for k steps do
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for number of training iterations do

for k steps do
sample m noise samples from noise prior 
sample m real examples from dataset
update the discriminator by gradient ascent

end for

m noise samples from noise priorsample
update generator by stochastic gradient ascent

end forupdate generator using modified objective
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Generative Adversarial
Networks



z_dim, data_dim = 8, 2
hidden_dim = 100
batch_size = 10 
lr = 1e-3

G_model = nn.Sequential(nn.Linear(z_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, data_dim))

D_model = nn.Sequential(nn.Linear(data_dim, hidden_dim),
nn.ReLU(), 
nn.Linear(hidden_dim, 1), 
nn.Sigmoid())

G_optimizer = optim.Adam(G_model.parameters(),

lr = lr)

D_optimizer = optim.Adam(D_model.parameters(),

lr = lr)

GAN
training
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z_dim, data_dim = 8, 2
hidden_dim = 100
batch_size = 10 
lr = 1e-3

G_model = nn.Sequential(nn.Linear(z_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, data_dim))

D_model = nn.Sequential(nn.Linear(data_dim, hidden_dim),
nn.ReLU(), 
nn.Linear(hidden_dim, 1), 
nn.Sigmoid())

G_optimizer = optim.Adam(G_model.parameters(),
lr = lr)

D_optimizer = optim.Adam(D_model.parameters(),
lr = lr)

for iters in range(epochs_num): 

for t, real_batch in \

enumerate(real_samples.split(batch_size)):

z = real_batch.new_empty((real_batch.size(0),
z_dim)).normal_()

fake_batch = G_model(z)

real_D_scores = D_model(real_batch) 
fake_D_scores = D_model(fake_batch)

if t%2 == 0:
loss = -fake_D_scores.log().mean() 
G_optimizer.zero_grad() 
loss.backward()
G_optimizer.step() 

else:
loss = (- (1 - fake_D_scores).log().mean()

- real_D_scores.log().mean()) 
D_optimizer.zero_grad() 
loss.backward()
D_optimizer.step()

GAN
training



How is the quality of generated images assessed?

Two simple properties for evaluation metric:
• Fidelity: We want our GAN to generate high quality images.
• Diversity: Our GAN should generate images that are inherent in the training dataset.

Feature Distance: 
• Use a pre-trained image classification model (neural network).
• Pass an image through the model and use the activation of intermediate layers as features.
• Calculate any distance metric (L2/L1) between the features of generated image and GT real 

image.
• LPIPS metric (Learned Perceptual Image Patch Similarity).

But often, we do not have the GT image to compare with.

What do we do?



FID (Frechet Inception Distance)

Frechet Distance between two univariate gaussian distribution

Frechet Distance between two multi-variate gaussian distribution

Frechet Inception Distance (FID), X and Y are features of Inception V3 classification model 
for real and fake images respectively.

Note: The loss is between set of real and fake images, not individual real and fake image!



results typically assessed visually



Important Deadlines
• 590: Assignment 2 announced, due Sept 8.

• 590/790: Paper presentation/review schedule announced

• 790: Deadline to register your project group, Sept 1! 1 points 

deducted per late day!

• 790: Project Proposal presentation is due Sept 20!



Slide Credits

• EECS 6322 Deep Learning for Computer Vision, Kosta Derpanis (York 
University)
• EECS 498 Deep Learning for Computer Vision, Justin Johnson (U. 

Michigan)
• Many amazing research papers!


