
Lecture X: Denoising Diffusion Models

Me, teaching Diffusion Models that I 
knew nothing about two weeks ago! 

My Class L



Next few lectures: Generative models for direct image based
rendering.

3D Intrinsic Components

Vision GraphicsEdit 
Components

Current Image

New Image under 
different conditions

Change:
• Viewpoint
• Lighting
• Reflectance
• Background
• Attributes
• Many others…

Implicit: Use a Neural Network
(Conditional Generative networks)
Often, end-to-end.

Latent Space of 
Generative models

Encoder Decoder
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Slide Courtesy:

Denoising Diffusion-based Generative Modeling: Foundations and Applications, 
CVPR 2022 tutorial, 
Karsten Kreis, Ruiqi Gao, Arash Vahdat

https://cvpr2022-tutorial-diffusion-models.github.io/

@karsten_kreis @ArashVahdat@RuiqiGao
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Deep Generative Learning
Learning to generate data

Train

Sample

Neural NetworkSamples from a Data Distribution
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Autoregressive 
Models

The Landscape of Deep Generative Learning

Normalizing 
Flows

Variational 
Autoencoders

Denoising 
Diffusion ModelsGenerative 

Adversarial Networks
Energy-based 

Models
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Denoising Diffusion Models
Emerging as powerful generative models, outperforming GANs

“Diffusion Models Beat GANs on Image Synthesis”
Dhariwal & Nichol, OpenAI, 2021

“Cascaded Diffusion Models for High Fidelity Image Generation”
Ho et al., Google, 2021



Image Super-resolution
Successful applications

Saharia et al., Image Super-Resolution via Iterative Refinement, ICCV 2021 7



Text-to-Image Generation

“Hierarchical Text-Conditional Image Generation with CLIP Latents”
Ramesh et al., 2022

“a teddy bear on a skateboard in times square” A group of teddy bears in suit in a corporate office celebrating 
the birthday of their friend. There is a pizza cake on the desk.
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“Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding”, Saharia et al., 2022

ImagenDALL·E 2



Text-to-Image Generation

“High-Resolution Image Synthesis with Latent Diffusion Models” Rombach et al., 2022
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Stable Diffusion

Stable Diffusion Applications: Twitter Mega Thread

https://ommer-lab.com/research/latent-diffusion-models/
https://twitter.com/daniel_eckler/status/1572210382944538624


Q: What is a diffusion model?

78
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Denoising Diffusion Models
Learning to generate by denoising

Denoising diffusion models consist of two processes:

• Forward diffusion process that gradually adds noise to input

• Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data Noise

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021



Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise

x0 x1 x2 x3 x4 … xT

19

mean variance

Sample: 

✏t�1 ⇠ N (0, I)
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Diffusion Kernel

Data Noise

x0 x1 x2 x3 x4 … xT

19

mean variance

Sample: 
✏t�1 ⇠ N (0, I)

<latexit sha1_base64="hcne9/AuhBV1sXEeCxBNxVTT7Hc="></latexit>

where, 

(Diffusion Kernel)Define,

For sampling: where

values schedule (i.e., the noise schedule) is designed such that and

You will need to prove this in your assignment
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What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel but what about ?

We can sample by first sampling and then sampling (i.e., ancestral sampling).

The diffusion kernel is Gaussian convolution.

xt

q(x0) q(x1) q(x2) q(x3) q(xT)

Diffused Data Distributions

…

Data Noise

Diffused 
data dist.

21

Input 
data dist.

Diffusion 
kernel

Joint 
dist.



Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that

Generation:

Sample

In general, is intractable.

Can we approximate ? Yes, we can use a Normal distribution if is small in each forward diffusion step.

xt

q(x1) q(x2) q(x3)

Diffused Data Distributions

…

Iteratively sample

True Denoising Dist.

q(x0)

q(x0|x1)

q(xT)

q(xT-1|xT)q(x1|x2) q(x2|x3) q(x3|x4)

22
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Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

Data Noise

Trainable network
(U-net, Denoising Autoencoder)

x0 x1 x2 x3 x4 … xT

Autoencoder predicts the mean of 
the  denoised image x(t-1) given x(t).



How do we train? (summary version)

What is the loss function? (Ho et al. NeurIPS 2020 )

U-Net autoencoder takes x(t) as input and 
simply predict a noise. The goal of the 
training is to generate a noise pattern that 
is unit normal. Very similar to VAE, right?



Summary
Training and Sample Generation
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Intuitively: During forward process we add noise to image. During reverse process we try to 
predict that noise with a U-Net and then subtract it from the image to denoise it.



Implementation Considerations
Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent

Time Representation
Fully-connected 

Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization 
layers. (see Dharivwal and Nichol NeurIPS 2021)

28



Diffusion Parameters
Noise Schedule

Above, and control the variance of the forward diffusion and reverse denoising processes respectively.

Often a linear schedule is used for , and is set equal to . Slowly increase the amount of added noise.

Kingma et al. NeurIPS 2022 introduce a new parameterization of diffusion models using signal-to-noise ratio (SNR), and
show how to learn the noise schedule by minimizing the variance of the training objective.

We can also train while training the diffusion model by minimizing the variational bound (Improved DPM by Nichol and
Dhariwal ICML 2021) or after training the diffusion model (Analytic-DPM by Bao et al. ICLR 2022).

Data Noise

29



Freq.

Large t

In the forward diffusion, the high frequency content is perturbed faster.

Recall that sampling from is done using where

What happens to an image in the forward diffusion process?

Freq.

Small t

Freq.

Fourier Transform

30



Content-Detail Tradeoff

Data Noise

Reverse denoising process (generative)

x0 x1 x2 x3 x4 … xT

The denoising model is 
specialized for generating the 
low-frequency content (i.e., 

coarse content)

The denoising model is 
specialized for generating the 
high-frequency content (i.e., 

low-level details)

31

The weighting of the training objective for different timesteps is important!
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Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs.

However, in diffusion models:

• The encoder is fixed

• The latent variables have the same dimension as the data

• The denoising model is shared across different timestep

• The model is trained with some reweighting of the variational bound.

Vahdat and Kautz, NVAE: A Deep Hierarchical Variational Autoencoder, NeurIPS 2020
Sønderby, et al.. Ladder variational autoencoders, NeurIPS 2016.
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Summary
Denoising Diffusion Probabilistic Models

- Diffusion process can be reversed if the variance of the gaussian noise added at each step of the diffusion is small enough.

- To reverse the process we train a U-Net that takes input: current noisy image and timestamp, and predicts the noise map..

- Training goal is to make sure that the predicted noise map at each step is unit gaussian (Note that in VAE we also required the 

latent space to be unit gaussian).

- During sampling/generation, subtract the predicted noise from the noisy image at time t to generate the image at time t-1 

(with some weighting).

The devil is in the details:

• Network architectures

• Objective weighting

• Diffusion parameters (i.e., noise schedule)

“Elucidating the Design Space of Diffusion-Based Generative Models” by Karras et al. for important design decisions.
To be presented in the class!









How do we obtain the ”Score Function”?







Denoising Score Matching
Implementation Details

Forward diffusion process (fixed)

x0 xTxt… …

q(x0) q(xT )

More sophisticated model parametrizations and loss 
weightings are possible!

Karras et al., “Elucidating the Design Space of Diffusion-
Based Generative Models”, arXiv, 2022

To be discussed in detail in paper presentation
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Advanced Techniques
Questions to address with advanced techniques

• Q1: How to accelerate the sampling process?

• Advanced forward diffusion process

• Advanced reverse process

• Hybrid models & model distillation

• Q2: How to do high-resolution (conditional) generation?

• Conditional diffusion models

• Classifier(-free) guidance

• Cascaded generation



Q: How to accelerate sampling process?

78



What makes a good generative model?

Generative 
Adversarial 

Networks (GANs)

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs, ICLR 2022 79

Denoising
Diffusion
Models

Often requires 1000s of 
network evaluations!

The generative learning trilemma

Likelihood-based models 
(Variational Autoencoders 

& Normalizing flows)

High 
Quality 
Samples

Mode 
Coverage/ 
Diversity

Fast 
Sampling



What makes a good generative model?
The generative learning trilemma

Tackle the trilemma by accelerating diffusion models

High 
Quality 
Samples

Mode 
Coverage/ 
Diversity

Fast 
Sampling

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs, ICLR 2022 80



How to accelerate diffusion models?

Reverse process maps noise back to data where
diffusion model is trained

Diffusion model
• Naïve acceleration methods, such as reducing diffusion

time steps in training or sampling every k time step in
inference, lead to immediate worse performance.

• We need something cleverer.

• Given a limited number of functional calls, usually
much less than 1000s, how to improve performance?

[Image credit: Ben Poole, Mohammad Norouzi]
Simple forward process slowly maps data to noise

81



Denoising diffusion implicit models (DDIM)
Non-Markovian diffusion process

Main Idea

Design a family of non-Markovian diffusion processes and corresponding reverse processes.

The process is designed such that the model can be optimized by the same surrogate
objective as the original diffusion model.

Therefore, can take a pretrained diffusion model but with more choices of sampling procedure.

Song et al., “Denoising Diffusion Implicit Models”, ICLR 2021. 86



Denoising diffusion implicit models (DDIM)
Non-Markovian diffusion process

86

Define a family of forward processes that meets the above requirement:

The corresponding reverse process is

Regular diffusion model

Intuitively, given noisy xt we first predict the corresponding clean image x0 and then use if to obtain a sample xt-1



Denoising diffusion implicit models (DDIM)
Non-Markovian diffusion process

The corresponding reverse process is

Intuitively, given noisy xt we first predict the corresponding clean image x0 and then use if to obtain a sample xt-1

- Different choice of 𝜎 results in different generative process without re-training the model

- When  𝜎 = 0 for all t,  we have a deterministic generative process, with randomness from
only t=T (the last step).
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Advanced reverse process
Approximate reverse process with more complicated distributions

Simple forward process slowly maps data to noise

Reverse process maps noise back to data where
diffusion model is trained

Diffusion model• Q: is normal approximation of the reverse process still
accurate when there’re less diffusion time steps?
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Advanced approximation of reverse process
Normal assumption in denoising distribution holds only for small step

Requires more complicated functional approximators!
Xiao et al., “Tackling the Generative Learning Trilemma with Denoising Diffusion GANs”, ICLR 2022.
Gao et al., “Learning energy-based models by diffusion recovery likelihood”, ICLR 2021.

Denoising Process with Uni-modal Normal Distribution

NoiseData

NoiseData
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Denoising diffusion GANs
Approximating reverse process by conditional GANs

Xiao et al., “Tackling the Generative Learning Trilemma with Denoising Diffusion GANs”, ICLR 2022.

Compared to a one-shot GAN generator:

• Both generator and discriminator are 
solving a much simpler problem.

• Stronger mode coverage

• Better training stability
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Advanced modeling
Latent space modeling & model distillation

Simple forward process slowly maps data to noise

Reverse process maps noise back to data where
diffusion model is trained

Diffusion model• Can we do model distillation for fast sampling?

• Can we lift the diffusion model to a latent space that is faster to diffuse?

• Both generator and discriminator are solving a much simpler problem.



Progressive distillation
• Distill a deterministic DDIM sampler to the same model architecture.
• At each stage, a “student” model is learned to distill two adjacent sampling steps of the

“teacher” model to one sampling step.

• At next stage, the “student” model from previous stage will serve as the new “teacher” model.

Distillation stage
Salimans & Ho, “Progressive distillation for fast sampling of diffusion models”, ICLR 2022. 100



Latent-space diffusion models
Variational autoencoder + score-based prior

Encoder

Decoder

Data

Reconst.

Latent Space Forward Diffusion

Latent Space Generative Denoising

Variational Autoencoder Denoising Diffusion Prior

Main Idea

Encoder maps the input data to an embedding space 

Denoising diffusion models are applied in the latent space

Vahdat et al., “Score-based generative modeling in latent space”, NeurIPS 2021.
Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR 2022.

102



Latent-space diffusion models
Variational autoencoder + score-based prior

Encoder

Decoder

Data

Reconst.

Latent Space Forward Diffusion

Latent Space Generative Denoising

Variational Autoencoder Denoising Diffusion Prior

12

Advantages:

(1) The distribution of latent embeddings close to Normal distribution è Simpler denoising, Faster Synthesis!

(2) Augmented latent space è More expressivity!

(3) Tailored Autoencoders è More expressivity, Application to any data type (graphs, text, 3D data, etc.) !
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Q: How to do high-resolution conditional generation?
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Impressive conditional diffusion models
Text-to-image generation

DALL·E 2
“a propaganda poster depicting a cat dressed as french 

emperor napoleon holding a piece of cheese”

IMAGEN
“A photo of a raccoon wearing an astronaut helmet, 

looking out of the window at night.”

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022.
Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022.



Impressive conditional diffusion models
Super-resolution & colorization

Super-resolution Colorization

Saharia et al., “Palette: Image-to-Image Diffusion Models”, arXiv 2021. 107



Impressive conditional diffusion models
Panorama generation

108

← Generated Input Generated →
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Conditional diffusion models
Include condition as input to reverse process

Incorporate conditions into U-Net

• Scalar conditioning: encode scalar as a vector embedding, simple spatial addition or
adaptive group normalization layers.

• Image conditioning: channel-wise concatenation of the conditional image.

• Text conditioning: single vector embedding – spatial addition or adaptive group norm /
a seq of vector embeddings - cross-attention.

Reverse process:

Variational 
upper bound:



Classifier guidance
Using the gradient of a trained classifier as guidance

Recap: What is a score function?



Classifier guidance
Using the gradient of a trained classifier as guidance

Applying Bayes rule to obtain conditional score function

Classifier

Guidance scale: value >1 amplifies 
the influence of classifier signal.

Slide Credits of guidance: https://benanne.github.io/2022/05/26/guidance.html

https://benanne.github.io/2022/05/26/guidance.html


Classifier guidance
Using the gradient of a trained classifier as guidance



Classifier gradient

Classifier guidance
Using the gradient of a trained classifier as guidance

Score model

110

- Train unconditional Diffusion model

- Take your favorite classifier, depending on the conditioning type

- During inference / sampling mix the gradients of the classifier with the predicted 
score function of the unconditional diffusion model.



Classifier guidance
Problems of classifier guidance

• At each step of denoising the input to the classifier is a noisy image xt . Classifier is never trained on noisy 
image. So one needs to re-train classifier on noisy images! Can’t use existing pre-trained classifiers.

• Most of the information in the input x is not relevant to predicting y, and as a result, taking the gradient of 
the classifier w.r.t. its input can yield arbitrary (and even adversarial) directions in input space.

Guidance scale: value >1 amplifies 
the influence of classifier signal.

Classifier



Classifier-free guidance
Get guidance by Bayes’ rule on conditional diffusion models

We proved this in 
classifier guidance.

Score function 
for unconditional 
diffusion model

Score function 
for conditional 
diffusion model



Classifier-free guidance
Get guidance by Bayes’ rule on conditional diffusion models

Score function for 
unconditional 
diffusion model

Score function for 
conditional 
diffusion model



Classifier-free guidance
Get guidance by Bayes’ rule on conditional diffusion models

Score function for 
unconditional 
diffusion model

Score function for 
conditional 
diffusion model

In practice: 

• Train a conditional diffusion model p(x∣y), with conditioning dropout: some 
percentage of the time, the conditioning information y is removed (10-20% 
tends to work well). 

• The conditioning is often replaced with a special input value representing 
the absence of conditioning information. 

• The resulting model is now able to function both as a conditional 
model p(x∣y), and as an unconditional model p(x), depending on whether 
the conditioning signal is provided.

• During inference / sampling simply mix the score function of conditional 
and unconditional diffusion model based on guidance scale.



Classifier-free guidance
Trade-off for sample quality and sample diversity

Non-guidance

Ho & Salimans, “Classifier-Free Diffusion Guidance”, 2021. 113

Guidance scale = 1 Guidance scale = 3

Large guidance weight (𝜔) usually leads to better individual sample quality but less sample diversity.



Classifier-free guidanceClassifier guidance

Guidance scale Classifier
Score function for 
unconditional 
diffusion model

Score function for 
conditional 
diffusion model

X Need to train a separate ”noise-robust” classifier + 
unconditional diffusion model.

X Gradient of the classifier w.r.t. input yields arbitrary 
values.

+ Train conditional & unconditional diffusion model 
jointly via drop-out.

+ All pixels in input receive equally ‘good’ gradients.

Rather than constructing a generative model from classifier, we construct a classifier from a generative model!

Most recent papers use classifier-free guidance! Very simple yet very powerful idea!
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Cascaded generation
Pipeline

Cascaded Diffusion Models outperform Big-GAN in FID and IS and VQ-VAE2 in Classification Accuracy Score.

Ho et al., “Cascaded Diffusion Models for High Fidelity Image Generation”, 2021.

Similar cascaded / multi-resolution image generation also exist in GAN (Big-GAN & StyleGAN)

Super-Resolution Diffusion Models

Class Conditioned Diffusion Model



Problem:

• During training super-resolution models are trained on original low-res images from the dataset.

• During inference, these low-res images are generated by class conditioned diffusion model, which has 
artifacts and poor quality than original low-res images used for training.

115

Noise conditioning augmentation
Reduce compounding error

Solution: Noise conditioning augmentation.

• During training, add varying amounts of Gaussian noise (or blurring by Gaussian kernel) to the low-res images.

• During inference, sweep over the optimal amount of noise added to the low-res images.

• BSR-degradation process: applies JPEG compressions noise, camera sensor noise, different image interpolations for 
downsampling, Gaussian blur kernels and Gaussian noise in a random order to an image.

Ho et al., “Cascaded Diffusion Models for High Fidelity Image Generation”, 2021.
Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021.

Mismatch
issue
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Summary
Questions to address with advanced techniques

• Q1: How to accelerate the sampling process?

• Advanced forward diffusion process

• Advanced reverse process

• Hybrid models & model distillation

• Q2: How to do high-resolution (conditional) generation?

• Conditional diffusion models

• Classifier(-free) guidance

• Cascaded generation



Applications (1):
Image Synthesis, Controllable Generation, 

Text-to-Image
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GLIDE
OpenAI

Samples generated with classifier-free guidance (256x256)

• A 64x64 base model + a 64x64 → 256x256 super-resolution model.

• Tried classifier-free and CLIP guidance. Classifier-free guidance works better than CLIP guidance.

Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021. 120



CLIP guidance
What is a CLIP model?

• Trained by contrastive cross-entropy loss:

• The optimal value of is

Radford et al., “Learning Transferable Visual Models From Natural Language Supervision”, 2021.
Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021.
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CLIP guidance
Replace the classifier in classifier guidance with a CLIP model

• Sample with a modified score:

CLIP model

Radford et al., “Learning Transferable Visual Models From Natural Language Supervision”, 2021.
Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021.
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GLIDE
OpenAI

Text-conditional image inpainting examples

• Fine-tune the model especially for inpainting: feed randomly occluded images with an additional mask channel as 
the input.

Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021. 123



DALL·E 2
OpenAI

1kx1k Text-to-image generation.

Outperform DALL-E (autoregressive transformer).

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 124



DALL·E 2
Model components

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022.
126

Prior: produces CLIP image embeddings conditioned on the caption.
Decoder: produces images conditioned on CLIP image embeddings and text.



DALL·E 2
Model components

126

Why conditional on CLIP image embeddings?

CLIP image embeddings capture high-level semantic meaning.

Latents in the decoder model take care of the rest. 

The bipartite latent representation enables several text-guided image manipulation tasks.



DALL·E 2
Model components (1/2): prior model

Prior: produces CLIP image embeddings conditioned on the caption.

• Option 1. autoregressive prior: quantize image embedding to a seq. of discrete codes and predict them autoregressively.

• Option 2. diffusion prior: model the continuous image embedding by diffusion models conditioned on caption.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 127



DALL·E 2
Model components (2/2): decoder model

Decoder: produces images conditioned on CLIP image embeddings (and text).

• Cascaded diffusion models: 1 base model (64x64), 2 super-resolution models (64x64 → 256x256, 256x256 → 1024x1024).

• Largest super-resolution model is trained on patches and takes full-res inputs at inference time.

• Classifier-free guidance & noise conditioning augmentation are important.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 128



DALL·E 2
Bipartite latent representations

Bipartite latent representations

: CLIP image embeddings

: inversion of DDIM sampler 
(latents in the decoder model)

Near exact 
reconstruction

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 129



DALL·E 2
Image variations

Fix the CLIP embedding

Decode using different decoder latents

130



DALL·E 2
Image interpolation

Interpolate image CLIP embeddings .

Use different to get different interpolation trajectories.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 131



DALL·E 2
Text Diffs

Change the image CLIP embedding towards the difference of the text CLIP embeddings of two prompts.

Decoder latent is kept as a constant.
132



Imagen
Google Research, Brain team

• An unprecedented degree of photorealism

• SOTA automatic scores & human ratings

• A deep level of language understanding

• Extremely simple

• no latent space, no quantization

A brain riding a rocketship heading towards the moon.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 133

Input: text; Output: 1kx1k images



Imagen
Google Research, Brain team

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 134



Imagen
Google Research, Brain team

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 135



Imagen
Google Research, Brain team

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 136



Imagen
Google Research, Brain team

A cute hand-knitted koala wearing a sweater with 'CVPR' written on it.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 137



Imagen

Key modeling components:

• Cascaded diffusion models

• Classifier-free guidance and
dynamic thresholding.

• Frozen large pretrained language
models as text encoders. (T5-XXL)

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 138



Imagen

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 138

Key observations:

• Beneficial to use text conditioning for all
super-res models.

• Noise conditioning augmentation weakens 
information from low-res models, thus
needs text conditioning as extra
information input.

• Scaling text encoder is extremely efficient.

• More important than scaling diffusion
model size.

• Human raters prefer T5-XXL as the text encoder
over CLIP encoder on DrawBench.



Imagen
Dynamic thresholding

• Large classifier-free guidance weights → better text alignment, worse image quality

Better text alignment

Be
tt

er
sa

m
pl

e
qu

al
it

y

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 140



Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 141

Imagen
Dynamic thresholding

• Large classifier-free guidance weights → better text alignment, worse image quality

• Hypothesis : at large guidance weight, the generated images are saturated due to the very
large gradient updates during sampling

• Solution – dynamic thresholding: adjusts the pixel values of samples at each sampling step to be
within a dynamic range computed over the statistics of the current samples.



Imagen
Dynamic thresholding

• Large clas

dates during• Hypothesi 
sampling

ynamic• Solution –
range com

sifier-free guidance weights → better text alignment, worse image quality

s : at high guidance weight, the generated images are saturated due to the very large gradient up

dynamitic thresholding: adjusts the pixel values of samples at each sampling step to be within a d 
puted over the statistics of the current samples.

Static thresholding

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 142

Dynamic thresholding



Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 143

Imagen
DrawBench: new benchmark for text-to-image evaluations

• A set of 200 prompts to evaluate text-to-image models across multiple dimensions.

• E.g., the ability to faithfully render different colors, numbers of objects, spatial relations, text in the scene, unusual 
interactions between objects.

• Contains complex prompts, e.g, long and intricate descriptions, rare words, misspelled prompts.



Imagen
DrawBench: new benchmark for text-to-image evaluations

• A set of 200 prompts to evaluate text-to-image models across multiple dimensions.

• E.g., the ability to faithfully render different colors, numbers of objects, spatial relations, text in the scene, unusual 
interactions between objects.

• Contains complex prompts, e.g, long and intricate descriptions, rare words, misspelled prompts.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 144



Imagen
Evaluations

Imagen got SOTA automatic evaluation scores 
on COCO dataset

Imagen is preferred over recent work by human raters in sample 
quality & image-text alignment on DrawBench.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 145



Stable Diffusion
Latest & Publicly available text-to-image generation

To be discussed in detail in paper presentation



Stable Diffusion
Latest & Publicly available text-to-image generation

HW assignment: Use stable diffusion API to 
generate ‘interesting’ image from text prompt. 
All submissions will be rated for top 3!



Applications (2):
Image Editing, Image-to-Image, 
Super-resolution, Segmentation

151



Diffusion Autoencoders
Learning semantic meaningful latent representations in diffusion models

Preechakul et al., “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation”, CVPR 2022. 146

To be discussed in detail in paper presentation



Diffusion Autoencoders
Learning semantic meaningful latent representations in diffusion models

Changing the semantic latent .

Preechakul et al., “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation”, CVPR 2022. 147

Very similar to StyleGAN based editing. Zsem is the latent representation similar to the W/W+ space of StyleGAN



Diffusion Autoencoders
Learning semantic meaningful latent representations in diffusion models

Preechakul et al., “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation”, CVPR 2022. 148



Super-Resolution
Super-Resolution via Repeated Refinement (SR3)

Image super-resolution can be considered as training 
high-resolution image

where y is a low-resolution image and x is the corresponding

Train a score model for x conditioned on y using:

The conditional score is simply a U-Net with xt and y (resolution image) concatenated.

Saharia et al., Image Super-Resolution via Iterative Refinement, 2021 152



Super-Resolution
Super-Resolution via Repeated Refinement (SR3)

Saharia et al., Image Super-Resolution via Iterative Refinement, 2021 153



Image-to-Image Translation
Palette: Image-to-Image Diffusion Models

Many image-to-image translation applications can be considered as training where y is the input image.

For example, for colorization, x is a colored image and y is a gray-level image.

Train a score model for x conditioned on y using:

The conditional score is simply a U-Net with xt and y concatenated.

Saharia et al., Palette: Image-to-Image Diffusion Models, 2022 154



Image-to-Image Translation
Palette: Image-to-Image Diffusion Models

Saharia et al., Palette: Image-to-Image Diffusion Models, 2022 155



Conditional Generation
Iterative Latent Variable Refinement (ILVR)

A simple technique to guide the generation process of an unconditional diffusion
model using a reference image.

Given the conditioning (reference) image y the generation process is modified to
pull the samples towards the reference image.

Choi et al., ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models, ICCV 2021 156

To be discussed in detail in paper presentation

Low-pass filter
Downsampling / Upsampling by a factor of N



Conditional Generation
Iterative Latent Variable Refinement (ILVR)

Choi et al., ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models, ICCV 2021
157



Semantic Segmentation
Label-efficient semantic segmentation with diffusion models

Can we use representation learned from diffusion models for downstream applications such as semantic segmentation?

Baranchuk et al., Label-Efficient Semantic Segmentation with Diffusion Models, ICLR 2022 158

Denoising Diffusion 
Model (U-Net)

Only train this 
component



Semantic Segmentation
Label-efficient semantic segmentation with diffusion models

The experimental results show that the proposed method outperforms Masked Autoencoders, GAN and VAE-based models.

Baranchuk et al., Label-Efficient Semantic Segmentation with Diffusion Models, ICLR 2022 159



Image Editing
SDEdit

Key Idea:

- Latent Distribution of stroke and real images do not overlap.
- But once we apply forward diffusion on them, their distribution 

start overlapping as finally it becomes gaussian noise.

Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022 160

Goal: Given a stroke painting with color, generate a photorealistic image

Use a pre-trained unconditional diffusion model for real image



Image Editing
SDEdit

Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022 161



Video Synthesis, Medical Imaging, 
3D Generation, Discrete State Models

166



Video Generation

Ho et al., “Video Diffusion Models”, arXiv, 2022
Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022
Yang et al., “Diffusion Probabilistic Modeling for Video Generation”, arXiv, 2022
Höppe et al., “Diffusion Models for Video Prediction and Infilling”, arXiv, 2022
Voleti et al., “MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation”, arXiv, 2022 167

Samples from a text-conditioned video diffusion model, conditioned on the string fireworks.



Video Generation

167

Video Generation Tasks:

• Unconditional Generation (Generate all frames)

• Future Prediction (Generate future from past fames)

• Past Prediction (Generate past from future fames)

• Interpolation (Generate intermediate frames)

Ho et al., “Video Diffusion Models”, arXiv, 2022
Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022
Yang et al., “Diffusion Probabilistic Modeling for Video Generation”, arXiv, 2022
Höppe et al., “Diffusion Models for Video Prediction and Infilling”, arXiv, 2022
Voleti et al., “MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation”, arXiv, 2022



Video Generation

167

Learn one model for everything:

• Architecture as one diffusion model over all frames concatenated.

• Mask frames to be predicted; provide conditioning frames; vary 
applied masking/conditioning for different tasks during training.

• Use time position encodings to encode times.

(image from: Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022)



Video Generation

167
(image from: Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022)

Architecture Details:

Data is 4D (image height, image width, #frames, channels) •

• Option (1): 3D Convolutions. Can be computationally expensive.

Additional Advantage:

Ignoring the attention layers, the
model can be trained additionally
on pure image data!

• Option (2): Spatial 2D Convolutions + Attention Layers along frame axis.



Video Generation
Results

(video from: Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022, 
https://plai.cs.ubc.ca/2022/05/20/flexible-diffusion-modeling-of-long-videos/)

Long term video generation in hierarchical manner:

• 1. Generate future frames in sparse manner, conditioning on frames far back

• 2. Interpolate in-between frames

Test Data:

Generated:

170

1+ hour coherent video 
generation possible!



Solving Inverse Problems in Medical Imaging

sparse-view CT undersampled MRI

(image from: Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022)

Inverse Problem:
Reconstruct original image from sparse measurements.

Forward CT or MRI imaging process (simplified):

Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022 171



Solving Inverse Problems in Medical Imaging

(image from: Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022)

Outperforms even fully-supervised methods.

High-level idea: Learn Generative Diffusion Model as “prior”; then guide synthesis conditioned on sparse observations:

Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022 172



High-level idea: Learn Generative Diffusion Model as “prior”; then guide synthesis conditioned on sparse observations:

(Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022)

Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022 173

Solving Inverse Problems in Medical Imaging
Lots of Literature

• Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022

• Chung and Ye, “Score-based diffusion models for accelerated MRI”, Medical Image Analysis, 2022

• Chung et al., “Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction”, CVPR, 2022

• Peng et al., “Towards performant and reliable undersampled MR reconstruction via diffusion model sampling”, arXiv, 2022

• Xie and Li, “Measurement-conditioned Denoising Diffusion Probabilistic Model for Under-sampled Medical Image Reconstruction”, arXiv, 2022

• Luo et al, “MRI Reconstruction via Data Driven Markov Chain with Joint Uncertainty Estimation”, arXiv, 2022

• …



174

3D Shape Generation

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021
Luo and Hu, “Diffusion Probabilistic Models for 3D Point Cloud Generation”, CVPR, 2021

(image from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021)

• Point clouds as 3D shape representation can be diffused easily and intuitively

• Denoiser implemented based on modern point cloud-processing networks (PointNets & Point-VoxelCNNs)



3D Shape Generation

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021, 
https://alexzhou907.github.io/pvd)

• Point clouds as 3D shape representation can be diffused easily and intuitively

• Denoiser implemented based on modern point cloud-processing networks (PointNets & Point-VoxelCNNs)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 175



3D Shape Generation
Shape Completion

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021, 
https://alexzhou907.github.io/pvd)

• Can train conditional shape completion diffusion model (subset of points fixed to given conditioning points):

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 176



3D Shape Generation
Shape Completion – Multimodality

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021, 
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 177



3D Shape Generation
Shape Completion – Multimodality – On Real Data

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021, 
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 178
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Towards Discrete State Diffusion Models

q(xt|xt-1) = N (xt;
p

1 - /3tx t - 1 , /3tI)

Data Noise

Fixed forward diffusion process:

x0 xTxt… …

• So far:

Continuous diffusion and denoising processes.

But what if data is discrete? Categorical? 
Continuous perturbations are not possible!

(Text, Pixel-wise Segmentation Labels, 
Discrete Image Encodings, etc.)

Reverse generative process: tp✓(x t - 1|xt) = N (x t - 1;µ✓(x t , t), o-2I)
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Discrete State Diffusion Models

• Categorical diffusion: q(xt|xt-1) = Cat(xt; p = x t - 1Q t)

xt : one-hot state vector

Q t : transition matrix [Qt]ij = q(xt = j|x t - 1 = i)

• Reverse process can be parametrized 
categorical distribution.

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurIPS, 2021
Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurIPS, 2022

(image from: Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurIPS, 2022)



Discrete State Diffusion Models

(image from: Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurIPS, 2021)

Q t = (1 - j3t)I + j3t
K

>

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurIPS, 2021 181

• Uniform categorical diffusion:

• Tailored to ordinal data 
(e.g. discretized Gaussian)

• Progressive masking out of data 
(generation is “de-masking”)Options for forward process:



Discrete State Diffusion Models

(image from: Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurIPS, 2021)

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurIPS, 2021 182



Discrete State Diffusion Models
Modeling Categorical Image Pixel Values

(image from: Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurIPS, 2021)

Progressive denoising 
starting from all-

masked state.

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurIPS, 2021 183

Progressive denoising 
starting from random 

uniform state.

(with discretized Gaussian 
denoising model)
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Iterative generation

(images from: Chang et al., “MaskGIT: Masked Generative Image Transformer”, CVPR, 2022)

Discrete State Diffusion Models
Modeling Discrete Image Encodings

Chang et al., “MaskGIT: Masked Generative Image Transformer”, CVPR, 2022
Esser et al., “ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis”, NeurIPS, 2021

Class-conditional model samples

Encoding images into latent space with discrete tokens, and 
modeling discrete token distribution
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Discrete State Diffusion Models
Modeling Pixel-wise Segmentations

Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurIPS, 2022

(image from: Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurIPS, 2022)



Conclusions, Open Problems and Final Remarks
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Summary: Denoising Diffusion Probabilistic Models
“Discrete-time” Diffusion Models

We started with denoising diffusion probabilistic models:

Forward diffusion process (fixed)

Reverse denoising process (generative)

We showed how the denoising model can be trained by predicting noise injected in each diffused image:

Data Noise

189



Summary: Advanced Techniques
Acceleration, Guidance and beyond

In the third part, we discussed several advanced topics in diffusion models.

How can we accelerate the sample generation?

How to scale up diffusion models to high-resolution (conditional) generation?

• Cascaded models

• Guided diffusion models

Simple forward process slowly maps data to noise

Reverse process maps noise back to data with a denoising model

[Image credit: Ben Poole, Mohammad Norouzi]
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Summary: Applications

We covered many successful applications of diffusion models:

• Image generation, text-to-image generation, controllable generation

• Image editing, image-to-image translation, super-resolution, segmentation, adversarial robustness

• Discrete models, 3D generation, medical imaging, video synthesis
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Open Problems (1)

• Diffusion models are a special form of VAEs and continuous normalizing flows

• Why do diffusion models perform so much better than these models?

• How can we improve VAEs and normalizing flows with lessons learned from diffusion models?

• Sampling from diffusion models is still slow especially for interactive applications

• The best we could reach is 4-10 steps. How can we have one step samplers?

• Do we need new diffusion processes?

• Diffusion models can be considered as latent variable models, but their latent space lacks semantics

• How can we do latent-space semantic manipulations in diffusion models
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Open Problems (2)

• How can diffusion models help with discriminative applications?

• Representation learning (high-level vs low-level)

• Uncertainty estimation

• Joint discriminator-generator training

• What are the best network architectures for diffusion models?

• Can we go beyond existing U-Nets?

• How can we feed the time input and other conditioning?

• How can we improve the sampling efficiency using better network designs?
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Open Problems (3)
• How can we apply diffusion models to other data types?

• 3D data (e.g., distance functions, meshes, voxels, volumetric representations), video, text, graphs, etc.

• How should we change diffusion models for these modalities?

• Compositional and controllable generation

• How can we go beyond images and generate scenes?

• How can we have more fine-grained control in generation?

• Diffusion models for X

• Can we better solve applications that were previously addressed by GANs and other generative models?

• Which applications will benefit most from diffusion models?



Thanks!

https://cvpr2022-tutorial-diffusion-models.github.io/

@karsten_kreis @ArashVahdat@RuiqiGao
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