Lecture X: Denoising Diffusion Models

My Class ®

i

Me, teaching Diffusion Models that |
knew nothing about two weeks ago!




Next few lectures: Generative models for direct image base
rendering.

Latent Space of
Generatlve models

i New Image unde
Encode Components > llferent condition

3D Intrinsic Components Chanae:

* Viewpolin
Current Image / \ * Lighting

 Reflectance
» Background

Implicit: Use a Neural Network  Attributes
(Conditional Generative networks) * Many others...

\Often, end-to-end. /




Slide Courtesy:

Denoising Diffusion-based Generative Modeling: Foundations and Applications,
CVPR 2022 tutorial,

Karsten Kreis, Ruiqi Gao, Arash Vahdat

https://cvpr2022-tutorial-diffusion-models.github.io/

Yy

@karsten_kreis @RuiqiGao @ArashVahdat




Deep Generative Learning

Learning to generate data

Train

Samples from a Data Distribution Neural Network

Sample




The Landscape of Deep Generative Learning

Normalizing
Flows

Generative
‘Adversarial Networks

* %




Denoising Diffusion Models

Emerging as powerful generative models, outperforming GANs

“Diffusion Models Beat GANs on Image Synthesis” “Cascaded Diffusion Models for High Fidelity Image Generation”
Dhariwal & Nichol, OpenAl, 2021 Ho et al., Google, 2021




Image Super-resolution

Successful applications

Input : 64x64

aharia et al., Image Super-Resolution via lterative Refinement, ICCV 2021




Text-to-Image Generation

DALL-E 2 Imagen

A group of teddy bears in suit in a corporate office celebrating

a teddy bear on a skateboard in times square the birthday of their friend. There is a pizza cake on the desk.

- ) |
‘-:3 ,‘ 'v‘ .

“Hierarchical Text-Conditional Image Generation with CLIP Latents” “Photorealistic Text-to-Image Diffusion Models with Deep
Ramesh et al., 2022 Language Understanding”, Saharia et al., 2022




Text-to-Image Generation

Stable Diffusion

’

Stable Diffusion Applications: Twitter Mega Thread

“High-Resolution Image Synthesis with Latent Diffusion Models” Rombach et al., 2022



https://ommer-lab.com/research/latent-diffusion-models/
https://twitter.com/daniel_eckler/status/1572210382944538624

Q: What is a diffusion model?




Denoising Diffusion Models

Learning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Noise
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The formal definition

Data

q Xt|Xt—1

Forward Diffusion Process

of the forward process in T steps:

Forward diffusion process (fixed)

Xt \/1 — Bix¢-1, 5l =  Sample: x; = \/1 — D41 + / Dt€t—1

mean  variance where, €.—1 ~ N (0,1

19



Diffusion Kernel

Data
q Xt|Xt—1 — Xt \/1 — BiX¢—1, Bl =)  Sample: I = \/1 — D4T¢—_1 T+ \/_th—l
where, €t—1 ~ N (0,1
mean variance
; You will need to prove this in your assignment
Define, oy = 1 — (s = q(x¢|xg) = N (x¢; Vagxg, (1 — ag)l (Diffusion Kernel)

s=1

For sampling: Xt = V¢ X + \/ 1 —ay) e  where € ~N(O,I

+ values schedule (i.e., the noise schedule) is designed such that v — 0 and q(xp|xg) ~ N (x7;0,1

19



What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel g(x¢|x() but what about ¢(x¢)?

Diffused Data Distributions

Data Noise
q(xt) = /Q<X07 X¢) dxg = /Q(Xo) q(x¢[x0) dxg %,
\ ) N\ ~ J N A )
Diffused Joint Input Diffusion
data dist. dist. data dist. kernel
The diffusion kernel is Gaussian convolution. q(xo) q(x1) q(x2) q(x3) q(xt)

We can sample x; ~ ¢(x¢) by first sampling X ~ q(X) and then sampling x; ~ ¢q(x¢|X() (i.e., ancestral sampling).

21



Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) ~ N (x7;0,1))
Diffused Data Distributions

Generation:
Sample x7 ~ N (x7p;0,1)

Ilteratively sample x;_1 ~ q(x¢_1|x¢) % X
- ~ J x X x

X

True Denoising Dist.

Q%) qx1) qx2)  q(x3) q(xT)

Axolx1)  gxlx)  q(xlxs)  qxslxa)  dxralxr)
In general, q(x;—1|X¢) o q(X¢—1)q(X¢[X¢—1) is intractable.

Can we approximate q(x;_1|x¢)? Yes, we can use a Normal distribution if 3; is small in each forward diffusion step.
22



Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

Data

p(x7) = N(x7;0,1

, Autoencoder predicts the mean of
po(xi—1]xt) = N(x¢—1; g(xt,t),071)  the denoised image x(t-1) given x(t).

_ J
hd

Trainable network
U-net, Denoising Autoencoder

23



How do we train? (summary version)

What is the loss function? (Ho et al. NeurlPS 2020 )

Lsimple — i‘x()rvq(xo) e~N(0.1),t~U(1,T) [HE o 69(\/ t Xp \/1 — E t)H }

Xt

U-Net autoencoder takes x(t) as input and

Algorithm 1 Training simply predict a noise. The goal of the
1. ¢ training is to generate a noise pattern that
- repea is unit normal. Very similar to VAE, right?
2 X0 v q(XQ)
3: t~ Uniform({1,...,T})
4: €~ N(0,I)
5: Take gradient descent step on

Vi He — e/ arxo + /1 — c‘zte,t)Hz

6: until converged




Summary

Training and Sample Generation

Algorithm 1 Training Algorithm 2 Sampling
;: repeat o) 1: xp ~ N(0,T)
D, e 2: fort="T,...,1d
3z LA Uniform({l, s ,T}) 3 Oer N(O I) °
4: €~ N(0,I) —
5: Take gradient descent step on 4 X1 = \/}x—t (xt \}ﬁeg (Xtat)) + Otz
Vo ||e—ee(\/5ztxo—|— V1 — ae t)H2 5: end for
6: return x

6: until converged

Intuitively: During forward process we add noise to image. During reverse process we try to
predict that noise with a U-Net and then subtract it from the image to denoise it.

27



Implementation Considerations

Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent ey (xy, t)

1
1
1
1
1
1
.

Time Representation 1' I

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization
layers. (see Dharivwal and Nichol NeurlPS 2021)

28



Diffusion Parameters

Noise Schedule

q(x¢|x¢-1) = N (x¢; \/1 — Bixt-1, 5iI)

Data Noise

po(xs_1|xt) = N(xy_1; pg(xt, ), 07 T)

Above, (; and 0‘% control the variance of the forward diffusion and reverse denoising processes respectively.
Often a linear schedule is used for 5;, and O 752 is set equal to 3. Slowly increase the amount of added noise.

Kingma et al. NeurlIPS 2022 introduce a new parameterization of diffusion models using signal-to-noise ratio (SNR), and
show how to learn the noise schedule by minimizing the variance of the training objective.

We can also train O? while training the diffusion model by minimizing the variational bound (Improved DPM by Nichol and
Dhariwal ICML 2021) or after training the diffusion model (Analytic-DPM by Bao et al. ICLR 2022).

29



What happens to an image in the forward diffusion process?

Recall that sampling from q(x¢|X() is done using X; = \/ay X + \/(1 — @) € where e ~ N(0,1)

Small ¢t
ar ~ 1 e .
Xt = /o xp+ /(1 — ay) e | F(x0)] /V
1 Fourier Transform ’_/\~
§ - | F(x¢)]
F(xp) = /oy F(xo)++v/ (1 —ay) Fle) i \ N
req.

Large t WMN 'Im NH ””HM M
ay ~ 0 \

In the forward diffusion, the high frequency content is perturbed faster.



Content-Detail Tradeoff

Lsimple — 43X()N(](X0),ENN(O,I),tNZ/{(l,T) [| |6 o 69( V Qi X + \/1 — Qi €, t)||2]
x

/

-
Xt

Reverse denoising process (generative)

Data Noise

The denoising model is The denoising model is
specialized for generating the specialized for generating the

high-frequency content (i.e., low-frequency content (i.e.,
low-level details) coarse content)

The weighting of the training objective for different timesteps is important!

31



Connection to VAESs

Diffusion models can be considered as a special form of hierarchical VAEs.

However, in diffusion models:

The encoder is fixed
The latent variables have the same dimension as the data

The denoising model is shared across different timestep

The model is trained with some reweighting of the variational bound.

Vahdat and Kautz, NVAE: A Deep Hierarchical Variational Autoencoder, NeurlPS 2020
Senderby, et al.. Ladder variational autoencoders, NeurlPS 2016. 32




Summary

Denoising Diffusion Probabilistic Models

Diffusion process can be reversed if the variance of the gaussian noise added at each step of the diffusion is small enough.

- To reverse the process we train a U-Net that takes input: current noisy image and timestamp, and predicts the noise map..

- Training goal is to make sure that the predicted noise map at each step is unit gaussian (Note that in VAE we also required the

latent space to be unit gaussian).

During sampling/generation, subtract the predicted noise from the noisy image at time t to generate the image at time t-1

(with some weighting).

The devil is in the details:

Network architectures
Objective weighting
Diffusion parameters (i.e., noise schedule)

“Elucidating the Design Space of Diffusion-Based Generative Models” by Karras et al. for important design decisions.
To be presented in the class!




Crash Course in Differential Equations

Ordinary Differential Equation (ODE):

d_X — f(X, ZL,.) or X = f(X,t)dt
dt

Solution:

i
snaytical, ()= (@) +/ il x. 7ldr
0

Iterative
Numerical X(t 4+ At) ~ x(t) + f(x(t),t)At

Solution:




Forward Diffusion Process as Stochastic Differential Equation

Consider the limit of many small steps:  ¢(X¢|x:—1) = N (xy; \/1 — B¢ X¢—1, Be])

Forward diffusion process (fixed)

Data Noise

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR, 2021 44




Forward Diffusion Process as Stochastic Differential Equation

Forward diffusion process (fixed)

&
4

1
Forward Diffusion SDE: Ay = —§‘B(t)xt dt + /(%) dw,
| ' J | T J
drift term diffusion term
Song et al., ICLR, 2021 (pulls towards mode) (injects noise) -

Special casie of more general SDEs used in generative diffusion models:

dx; = f(t)x¢ dt + g(t) dwy



The Generative Reverse Stochastic Differential Equation

Forward diffusion process (fixed)

Forward Diffusion SDE: How do we obtain the ”Score Function”?
drift term diffusion term
b )
Reverse Generative _ -_l N s — -
e dXp= 2/)’(t)xt B(t)Vx, log q: (x¢) | dt + /B(t) ddo,
|_'_I

“Score Function”

=) Simulate reverse diffusion process: Data generation from random noise!
Song et al., ICLR, 2021

Anderson, in Stochastic Processes and their Applications, 1982




Score Matching

Forward diffusion process (fixed)

Naive idea, learn model for the score function by direct regression?

Hleill ﬂtNU(O,T) ﬂxtwqt(xt) | ‘SO(Xta t) o th lOg qt (Xt)‘ B

diffusion diffused neural score of
time ¢ data X; network diffused data
(marginal)

=» But V4, log ¢:(x;) (score of the marginal diffused density q.(x;)) is not tractable!



Denoising Score Matching

Forward diffusion process (fixed)

Instead, diffuse individual data points Xg. Diffused q:(Xx¢|Xo) 7s tractable!

Denoising Score Matching:

~

Illein Ltntd (0,T) Exg~go (x0) 41Xt~Qt(Xt|X0)HS9 (x¢,t) — Vx, log Qt(xtlxo)llg

diffusion data diffused data neural score of diffused
time ¢ sample xg sample x; network data sample
Vincent, in Neural Computation, 2011 =) After expectations, sg (Xt: t) ~ th log gy (xt)!

Song and Ermon, NeurlPS, 2019
Song et al. ICLR, 2021




Denoising Score Matching

Implementation Details

Forward diffusion process (fixed)

11211 ]EtNU(OaT)EXONQO(XO)EXt’VQt(xtIXO) se(x¢,t) — Vi, log q¢(x |X0)”§

diffusion data diffused data neural score of diffused
time ¢ sample xg sample x; network data sample

More sophisticated model parametrizations and loss
weightings are possible!

Karras et al., “Elucidating the Design Space of Diffusion-
Based Generative Models”, arXiv, 2022

To be discussed in detall in paper presentation

. 1
- nblll EtNU(O,T)IEXONqO(XO)EGNN(O,I) o2 | |6 — €0(Xt, t)Hg
t
. A(%)
min By (0,7 Bxo o (o) Benaro,) —7- 1€ — €0.(x1, 1)1 [5
t

Different loss weightings trade off between model with
good perceptual quality vs. high log-likelihood

Perceptual quality: \(t) = o}
Maximum log-likelihood: \(t) = [3(t) (negative ELBO)



Advanced Techniques

Questions to address with advanced techniques

Q1: How to accelerate the sampling process?
Advanced forward diffusion process
Advanced reverse process
Hybrid models & model distillation
Q2: How to do high-resolution (conditional) generation?
Conditional diffusion models
Classifier(-free) guidance

Cascaded generation



Q: How to accelerate sampling process?




What makes a good generative model?

The generative learning trilemma

Likelihood-based models
(Variational Autoencoders
f lowsl _

’

y,

\

Fast C Mode A |

Sampling A :

Diversity J

4
Generative Denoising
Adversarial Diffusion

Networks (GANSs) Models

Often requires 1000s of
network evaluations!

79



What makes a good generative model?

The generative learning trilemma

Tackle the trilemma by accelerating diffusion models

Mode
Coverage/
Diversity

Fast
Sampling

Samples

Tackling the Generative Learning Trilemma with Denoising Diffusion GANs, ICLR 2022

80



How to accelerate diffusion models?

[Image credit: Ben Poole, Mohammad Norouzi]
Simple forward process slowly maps data to noise

Reverse process maps noise back to data where
diffusion model is trained

Naive acceleration methods, such as reducing diffusion
time steps in training or sampling every k time step in
inference, lead to immediate worse performance.

We need something cleverer.

Given a limited number of functional calls, usually
much less than 1000s, how to improve performance?

81



Denoising diffusion implicit models (DDIM)

Non-Markovian diffusion process

@ @ @ - @ g @ g ‘@
LT w / .
S 4 Fon
S g
S L i

k- Q(CU3|$2,CU0) CI(5132|£I31,€130)

Main Idea

Design a family of non-Markovian diffusion processes and corresponding reverse processes.

The process is designed such that the model can be optimized by the same surrogate
objective as the original diffusion model. I _ — 2
Lsimple(o) — tt,xo,e H€ - 69( V Qi Xp T \/1 — Q¢€, t) H :|

Therefore, can take a pretrained diffusion model but with more choices of sampling procedure.

Song et al., “Denoising Diffusion Implicit Models”, ICLR 2021. 86




Denoising diffusion implicit models (DDIM)

Non-Markovian diffusion process

> @) —— @)— @)

) T q(@2|T1, T0)

Define a family of forward processes that meets the above requirement:

— _ ~ Xf—\/C_l,fX() ~9)
q(xi—1|x¢,%0) = N | Vay_1x +\/1—a_ —52. o1

The corresponding reverse process is

g A _ - Xf_\/afi[) ~9)
p(xi—1|x:) = N | Va—1X +\/1—a_ — 02 o |

= (@~ VI— - (@1)/ V.
\

Intuitively, given noisy x; we first predict the corresponding clean image x, and then use if to obtain a sample x4

pg(xt_l\xt) — N(Xt_l; /LQ(Xt, t), 0?521) Regular diffusion model o



Denoising diffusion implicit models (DDIM)

Non-Markovian diffusion process
- (@) —— @)— @)

q(z3|z2, x0) q(x2|T1, o)

The corresponding reverse process is

— ~ _ o Xt — \/Ekff(@ -9
p(xi—1|x:) = N | Var_1x +\/1—o:_ — 02 ol |

Intuitively, given noisy x; we first predict the corresponding clean image x, and then use if to obtain a sample x4

E)t)(wt) T Ot€¢

A v elt)
— V1= ag (@) )+\/1—at 1 —Of -
S~~~

4
L1 = /Ot—1 ( \/cT
t #
. . random noise

“ predicted x”

- Different choice of o results in different generative process without re-training the model

- When o =0 for all t, we have a deterministic generative process, with randomness from
only t=T (the last step).



Advanced reverse process

Approximate reverse process with more complicated distributions

maps noise back to data where
diffusion model is trained

Q: is normal approximation of the reverse process still
accurate when there’re less diffusion time steps?

94



Advanced approximation of reverse process

Normal assumption in denoising distribution holds only for small step

Denoising Process with Uni-modal Normal Distribution

Requires more complicated functional approximators!

Xiao et al., “Tackling the Generative Learning Trilemma with Denoising Diffusion GANs”, ICLR 2022.
Gao et al., “Learning energy-based models by diffusion recovery likelihood”, ICLR 2021.

95



Denoising diffusion GANs

Approximating reverse process by conditional GANs

min Y " Eq(x,) [Daav(q(xe—1]%¢)lpo (x¢—1/x¢))]

t>1

Compared to a one-shot GAN generator:

Both generator and discriminator are
solving a much simpler problem.

Stronger mode coverage

Better training stability

Xiao et al., “Tackling the Generative Learning Trilemma with Denoising Diffusion GANs”, ICLR 2022. 9%




Advanced modeling

Latent space modeling & model distillation

an we do model distillation for fast sampling?

an we lift the diffusion model to a latent space that is faster to diffuse?

99



Progressive distillation

 Distill a deterministic DDIM sampler to the same model architecture.
« At each stage, a “student” model is learned to distill two adjacent sampling steps of the

“teacher” model to one sampling step.
« At next stage, the “student” model from previous stage will serve as the new “teacher” model.

t=1 € € €
Z3/4 — f(z1;1m)3
: v Distillatio>
Z1/2 = ]C(Z:3/4;77)<
v v Distillatio> =X = flZ150)
Z)/4 = f(Z1/2;77)<
; o Distillation
X = f(zl/4;77)< ﬂ
\ b 4 W/
fe=) X X X

Distillation stage

Salimans & Ho, “Progressive distillation for fast sampling of diffusion models”, ICLR 2022. 100




Latent-space diffusion models

Variational autoencoder + score-based prior

Latent Space Forward Diffusion

Encoder

—

@ (Zzo|x)
e— ¥— ¢ q\Zo

S e

" .Z\é. ——e 4 R

.
===

Reconst. < . .
p(x|z0) Decoder KL( Q(Z 0 | X) | | p( ZO)) Latent Space Generative Denoising
- VAN }
s e
Variational Autoencoder Denoising Diffusion Prior

Main Ildea

Encoder maps the input data to an embedding space

Denoising diffusion models are applied in the latent space

Vahdat et al., “Score-based generative modeling in latent space”, NeurlPS 2021.
Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR 2022.
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Latent-space diffusion models

Variational autoencoder + score-based prior

Latent Space Forward Diffusion

Encoder

—

e (Z |X)
Yo _ o U2
> S .Z\é. /. \ >

—
===

Reconst. <_D - —L - - e
ccoder atent Space Generative Denoisin
p(x|zo) KL(q(zo|x)|[p(20)) ’ :
\_ / \_ /
Y hd
Variational Autoencoder Denoising Diffusion Prior
Advantages:

(1) The distribution of latent embeddings close to Normal distribution = Simpler denoising, Faster Synthesis!
(2) Augmented latent space = More expressivity!

(3) Tailored Autoencoders = More expressivity, Application to any data type (graphs, text, 3D data, etc.) !

12



Q: How to do high-resolution conditional generation?




Impressive conditional diffusion models

Text-to-image generation

DALL-E 2 IMAGEN
“a propaganda poster depict.ing a cat dressed as french “A photo of a raccoon wearing an astronaut helmet,
emperor napoleon holding a piece of cheese” looking out of the window at night.”
K\ ™ LN
N 2 O - |
~ e F

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022.
Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022.
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Impressive conditional diffusion models

Super-resolution & colorization

Input : 64x64

Colorization

Super-resolution Colorization

Saharia et al., “Palette: Image-to-Image Diffusion Models”, arXiv 2021. 107




Impressive conditional diffusion models

Panorama generation
& Generated Input Generated =

108



Conditional diffusion models

Include condition as input to reverse process

i iy
Reverse process: po(Xo.7|C) = H (x¢— 1|Xt, ); pe(xt—1|xt, c) = N(Xt—l; e(xt,t, C)7 Ee(xtatac))
Variational
upper bound: Lp(x0|c) = E, LT(xo) + ZDKL(Q(Xt—ﬂXt,Xo) | [po(x¢—1|%¢, €)) — log pe(xo|x1, )] -
) t>1 |

Incorporate conditions into U-Net

Scalar conditioning: encode scalar as a vector embedding, si
adaptive group normalization layers.

imple spatial addition or

Image conditioning: channel-wise concatenation of the conditional image.

Text conditioning: single vector embedding - spatial addition or adaptive group norm /

a seq of vector embeddings - cross-attention.



Classifier guidance

Using the gradient of a trained classifier as guidance

Recap: What is a score function?

Forward Diffusion SDE: dxty — —5 3 t)x; dt + +/6(t) dw;
drift term dlffusmn term
A
Reverse Generative dx; = —1 B(t)x: — B(t)Vy, log q: (x:) | dt + Fdw
Diffusion SDE: t 9 t x; 108 Gt (X¢) t

T
“Score Function”

Ilgll 'Etwl/((O,T) @Xt,\,qt(xt)llse(xt, t) - vxt 1Og qt (Xl‘)H%

diffusion diffused neural score of
time ¢ data x; network diffused data
(marginal)



Classifier guidance

Using the gradient of a trained classifier as guidance

Applying Bayes rule to obtain conditional score function

p(y | z) - p(x)
p(y)

p(z|y) =

—> logp(z | y) =logp(y | =) + logp(x) — log p(y)
— Vglogp(z | y) = Vilogp(y | z) + V., logp(z),

V:logp,(z | y) = Vilogp(z) + vV, logp(y | ). «— Classifier

N\

Guidance scale: value >1 amplifies
the influence of classifier signal.

py(z | y) x p(z) - p(y | z)".

Slide Credits of quidance: https://benanne.qgithub.io/2022/05/26/quidance.html



https://benanne.github.io/2022/05/26/guidance.html

Classifier guidance

Using the gradient of a trained classifier as guidance

V.logp,(z | y) = Vzlogp(z) + vV, logp(y | x).

i p . ' d :." \-‘ i; ! ,7 s .
> A
_ s Qr‘ < ‘
» > (‘, - - k - ’

-

) 4
‘ o".'w- ‘,: h )

Samples from an unconditional diffusion model with classifier guidance, for guidance scales 1.0 (left) and
10.0 (right), taken from Dhariwal & Nichol (2021).



Classifier guidance

Using the gradient of a trained classifier as guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (ug(x:), Xg(x:)), classi-
fier ps (y|z:), and gradient scale s.

Input: class label v, gr adient scale s Score model Classifier gradient

z7 < sample from A (0
for all ¢t from 7' to 1 do / /
w2 < pg(xy), g ()

Ty sample from N (u + sX V,, log py(y|zt), X
end for
return x,

- Train unconditional Diffusion model
- Take your favorite classifier, depending on the conditioning type

- During inference / sampling mix the gradients of the classifier with the predicted
score function of the unconditional diffusion model.

110



Classifier guidance

Problems of classifier guidance

V. logp,(z | y) = V:1ogp(z) + vV logp(y | ). «—— Classifier

N\

Guidance scale: value >1 amplifies
the influence of classifier signal.

* At each step of denoising the input to the classifier is a noisy image x; . Classifier is never trained on noisy
Image. So one needs to re-train classifier on noisy images! Can’t use existing pre-trained classifiers.

* Most of the information in the input x is not relevant to predicting y, and as a result, taking the gradient of
the classifier w.r.t. its input can yield arbitrary (and even adversarial) directions in input space.



Classifier-free guidance

Get guidance by Bayes’ rule on conditional diffusion models

p(z | y) - p(y)
p(x)

p(y|z) =

—> logp(y | ) = logp(z | y) + logp(y) — logp(x)

—>| V. logp(y | z) = V. logp(z | y) — V. logp(z).

We proved this Iin
classifier guidance.

V.logp,(z | y) = Vi logp(z) + vV, logp(y | x).
Ve logp,(z | y) = Vzlogp(z) + 7 (Ve logp(z | y) — Vi logp(z)),

Vlogp,(z |y) = (1 —7)Velogp(z) + vV, logp(z | y).

Y Y

Score function Score function
for unconditional for conditional
diffusion model diffusion model



Classifier-free guidance

Get guidance by Bayes’ rule on conditional diffusion models

V:logp,(z |y) = (1 — )V logp(z) + vV logp(z | y).

This is a barycentric combination of the conditional and the unconditional score function.

For v = 0, we recover the unconditional model, and for v =1 we get the standard ‘ ‘

conditional model. But v > 1 is where the magic happens. Below are some examples from Score function for  Score function for

OpenAl’s GLIDE model®, obtained using classifier-free guidance. upconditional Cf)ndijcional
diffusion model diffusion model

Two sets of samples from OpenAl's GLIDE model, for the prompt ‘A stained glass window of a panda eating
bamboo.', taken from their paper. Guidance scale 1 (no guidance) on the left, guidance scale 3 on the right.



Classifier-free guidance

Get guidance by Bayes’ rule on conditional diffusion models

Vi logpy(z | y) = (1 —7)V.logp(z) + V. logp(z | y).

Y Y

In practice: Score function for  Score function for
unconditional conditional
« Train a conditional diffusion model p(xly), with conditioning dropout. some diffusion model diffusion model

percentage of the time, the conditioning information y is removed (10-20%
tends to work well).

* The conditioning is often replaced with a special input value representing
the absence of conditioning information.

* The resulting model is now able to function both as a conditional
model p(x|y), and as an unconditional model p(x), depending on whether
the conditioning signal is provided.

« During inference / sampling simply mix the score function of conditional
and unconditional diffusion model based on guidance scale.



Classifier-free guidance

Trade-off for sample quality and sample dlver51ty

mzm 3 m mvsm
HIIII& H!ll!ﬂl
ET¥EIET BRI Wlﬂ

Non-guidance Guidance scale =1 Guidance scale =

Large guidance weight (w) usually leads to better individual sample quality but less sample diversity.

Ho & Salimans, “Classifier-Free Diffusion Guidance”, 2021. 113




Classifier guidance Classifier-free guidance

V.logp,(z | y) = Vologp(z) + YVelogp(y | ). Velogpy(z|y) = (1—7)Velogp(z)+ vV, logp(z | y).

| Y Y

Guidance scale Classifier
Score function for Score function for
unconditional conditional
diffusion model diffusion model
X Need to train a separate "noise-robust” classifier + + Train conditional & unconditional diffusion model
unconditional diffusion model. jointly via drop-out.
X Gradient of the classifier w.r.t. input yields arbitrary ~ + All pixels in input receive equally ‘good’ gradients.

values.

Rather than constructing a generative model from classifier, we construct a classifier from a generative model!

Most recent papers use classifier-free guidance! Very simple yet very powerful idea!



Cascaded generation

Pipeline

Super-Resolution Diffusion Models
256 x 256

Class Conditioned Diffusion Model

32%32

Class ID = 213

“Irish Setter”
[ ]

A 4
h 4

Model 1

Similar cascaded / multi-resolution image generation also exist in GAN (Big-GAN & StyleGAN)

Cascaded Diffusion Models outperform Big-GAN in FID and IS and VQ-VAE2 in Classification Accuracy Score.

Ho et al., “Cascaded Diffusion Models for High Fidelity Image Generation”, 2021. 114




Noise conditioning augmentation

Reduce compounding error

Problem:

* During training super-resolution models are trained on original low-res images from the dataset.
Mismatch

* During inference, these low-res images are generated by class conditioned diffusion model, which has issue
artifacts and poor quality than original low-res images used for training.

Solution: Noise conditioning augmentation.
* During training, add varying amounts of Gaussian noise (or blurring by Gaussian kernel) to the low-res images.
 During inference, sweep over the optimal amount of noise added to the low-res images.

 BSR-degradation process: applies JPEG compressions noise, camera sensor noise, different image interpolations for
downsampling, Gaussian blur kernels and Gaussian noise in a random order to an image.

Ho et al., “Cascaded Diffusion Models for High Fidelity Image Generation”, 2021.
Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021.




Summary

Questions to address with advanced techniques

Q1: How to accelerate the sampling process?
Advanced forward diffusion process
Advanced reverse process
Hybrid models & model distillation
Q2: How to do high-resolution (conditional) generation?
Conditional diffusion models
Classifier(-free) guidance

Cascaded generation



Applications (1):
Image Synthesis, Controllable Generation,
Text-to-Image




GLIDE

OpenAl

A 64x64 base model + a 64x64 — 256x256 super-resolution model.

Tried classifier-free and CLIP guidance. Classifier-free guidance works better than CLIP guidance.

_

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

Samples generated with classifier-free guidance (256x256)

Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021. 120




CLIP guidance

What is a CLIP model?

Trained by contrastive cross-entropy loss:

Pepper the

eXp(f(Xz') . g(C]‘)/T) aussie pup

exp(f(x;) - g(c;)/7)

L

— 1 — 1

o8 Zk exp(f(xi) - g(ck)/T) o8 Zk exp(f(xz) - Q(Cj)/'r)l[

The optimal value of f(x) - g(c) is

p(x, c)
p(x)p(c

log

) = log p(c|x) — log p(c)

Radford et al., “Learning Transferable Visual Models From Natural Language Supervision”, 2021.

\
Text
Encoder l l l l
/ T, | T, | T3 Iy
—> [ gl 1,7, | 1;-T; R
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Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021.




CLIP guidance

Replace the classifier in classifier guidance with a CLIP model

Sample with a modified score:

Vi, [log p(x¢|c) + wlog p(c|x;)]

= Vyx,log p(x¢|c) + w(log p(c|x:) — logp(c))]

{ J

CLIP model

= Vy,|log p(x¢|c) + w(f(x¢) - g(c))]

Pepper the
aussie pup

[

L

Radford et al., “Learning Transferable Visual Models From Natural Language Supervision”, 2021.

\
Text
Encoder l l l l
/ Li | L | I3 TN
—» I i 1T, | 1;-T; e £
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E'rr::)%Zr >IN | ,-T; | 1T, [ 5Tt
/
> | I, T; | IyT) | InTs b T

Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021.




GLIDE

OpenAl

Fine-tune the model especially for inpainting: feed randomly occluded images with an additional mask channel as
the input.

#

" ".?‘~'\‘1;\‘.‘
& Jd s

-

~ -

2 - N
- T

“an old car in a snowy forest” “a man wearing a white hat”

Text-conditional image inpainting examples

Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021. 123




DALL-E 2

OpenAl

e

« AN
-

-t

a shiba inu wearing a beret and black turtleneck a close up of a handpalm with leaves growing from it

1kx1k Text-to-image generation.
Outperform DALL-E (autoregressive transformer).

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 124




DALL-E 2

Model components

Prior: produces CLIP image embeddings conditioned on the caption.
Decoder: produces images conditioned on CLIP image embeddings and text.

"a corqi
playing a
flame []
throwing
trumpet”

126
Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022.




DALL-E 2

Model components

CLIP objecti i
[ - — > Iemngoder
“a corqi m
. . 0
playing a
flame I [
throwing P B 5 3
7, - ~\ — :
trumpet BAGO0 80 O
el
_______________________________________ — _ 8+8+ L O O
O O
prior decoder

Why conditional on CLIP image embeddings?

CLIP image embeddings capture high-level semantic meaning.
Latents in the decoder model take care of the rest.

The bipartite latent representation enables several text-guided image manipulation tasks. 126



DALL-E 2

Model components (1/2): prior model

CLIP objective

im
( g - -

encoder

“a corgi
playing a
flame A T
throwing 0
—— _> =l
trumpet” ;8 8
3
_______________________________________ — ____'E%"E%"E%'___" O O
O O O
prior decoder

Prior: produces CLIP image embeddings conditioned on the caption.

Option 1. autoregressive prior: quantize image embedding to a seq. of discrete codes and predict them autoregressively.

Option 2. diffusion prior: model the continuous image embedding by diffusion models conditioned on caption.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 127




DALL-E 2

Model components (2/2): decoder model

CLIP objective img

LLT T T T IT]

- > encoder
"a corgi
playing a
flame I W |
throwing /o s 5 5
trumpet” BEO00 oJexe
O-+0O+0O
O O Q00
_______________________________________ —— O+ — O OO
O O
prior decoder

Decoder: produces images conditioned on CLIP image embeddings (and text).
Cascaded diffusion models: 1 base model (64x64), 2 super-resolution models (64x64 — 256x256, 256x256 — 1024x1024).
Largest super-resolution model is trained on patches and takes full-res inputs at inference time.

Classifier-free guidance & noise conditioning augmentation are important.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 128




DALL-E 2

Bipartite latent representations

[(TTTTTTT]
O
v
v

Bipartite latent representations (z,xr)

decoder
- z: CLIP image embeddings >

XT: inversion of DDIM sampler
(latents in the decoder model)

Near exact
reconstruction

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 129




DALL-E 2

Image variations

Fix the CLIP embedding Z.
Decode using different decoder latents xr




DALL-E 2

Image interpolation

.

vl *

Pl '/

Interpolate image CLIP embeddings z.

Use different X7 to get different interpolation trajectories.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 131




DALL-E 2

Text Diffs

71%’0‘

L

A

.ll..in"!"" a . ,‘m '. .

|
8

a photo of a victorian house — a photo of a modern house

a photo of an adult lion — a photo of lion cub

Change the image CLIP embedding towards the difference of the text CLIP embeddings of two prompts.

132
Decoder latent is kept as a constant.



Imagen

Google Research, Brain team

Input: text;  Output: 1kx1k images

* An unprecedented degree of photorealism

« SOTA automatic scores & human ratings
« A deep level of language understanding
« Extremely simple

* no latent space, no quantization

A brain riding a rocketship heading towards the moon.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 133




Imagen

Google Research, Brain team

bike. It is wearing sunglasses and a beach hat.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 134




Imagen

Google Research, Brain team

i V.v R ™

e e 4OREP.. -
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.  Imagen

A dragon fruit wearing karate belt in the snow.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 135




Imagen

Google Research, Brain team

A relaxed garlic with a blindfold reading a newspaper
while floating in a pool of tomato soup.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 136




Imagen

Google Research, Brain team

R S N

:" -.A m
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-

A cute hand-knitted koala wearing a sweater with 'CVPR' written on it.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 137




I m a ge n Text “A Golden Retriever dog wearing a blue

+ checkered beret and red dotted turtleneck.”

Frozen Text Encoder

Text Embedding
, 4
Text-to-Image
Key modeling components: Diffusion Model
164 x 64 Image
Cascaded diffusion models

Super-Resolution

e . Diffusion Model
Classifier-free guidance and i,

dynamic thresholding.

Frozen large pretrained language 256 x 256 Image
models as text encoders. (T%-X L) B

Y

Super-Resolution
Diffusion Model

l

1024 x 1024 Image

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 138




Imagen

Key observations:

Beneficial to use text conditioning for all
super-res models.

Noise conditioning augmentation weakens
information from low-res models, thus
needs text conditioning as extra
information input.

Scaling text encoder is extremely efficient.

More important than scaling diffusion
model size.

Human raters prefer T5-XXL as the text encoder
over CLIP encoder on DrawBench.

Text

Y

Frozen Text Encoder

Text Embedding

Y

Text-to-Image
Diffusion Model

|

K

164 x 64 Image

Super-Resolution
Diffusion Model

256 x 256 Image

Y

Super-Resolution
Diffusion Model

|

1024 x 1024 Image

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022.

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”




Imagen

Dynamic thresholding

Large classifier-free guidance weights — better text alignment, worse image quality

29
Pary
E
3 [ 2
v | o~
o | ©
=
EIE 15
2
g 10

|

~g Static thresholding

=g (ynamic thresholding

I
0.26 027 0.28 0.29
CLIP Score

Better text alighment

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022.

140



Imagen

Dynamic thresholding

Large classifier-free guidance weights — better text alighment, worse image quality

Hypothesis : at large guidance weight, the generated images are saturated due to the very
large gradient updates during sampling

Solution - dynamic thresholding: adjusts the pixel values of samples at each sampling step to be
within a dynamic range computed over the statistics of the current samples.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022.




Imagen

Dynamic thresholding

Large clas:

Hypothesi:«
sampling

Solution -
range com

Dynamic thresholding

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 142




Imagen

DrawBench: new benchmark for text-to-image evaluations

A set of 200 prompts to evaluate text-to-image models across multiple dimensions.

E.g., the ability to faithfully render different colors, numbers of objects, spatial relations, text in the scene, unusual
interactions between objects.

Contains complex prompts, e.g, long and intricate descriptions, rare words, misspelled prompts.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 143




Imagen

DrawBench: new benchmark for text-to-image evaluations

A set of 200 proi 8

E.g., the.
interactio

cene, unusual

Contains ¢

A pear cut into seven pieces A photo of a confused grizzly bear A small vessel propelled on water
arranged in a ring. in calculus class. by oars, sails, or an engine.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 144




Imagen got SOTA automatic evaluation scores

on COCO dataset

Zero-shot
Model FID-30K FID-30K
AttnGAN [76] 35.49
DM-GAN [83] 32.64
DF-GAN [69] 21.42
DM-GAN + CL [78] 20.79
XMC-GAN [81] 0.33
LAFITE [82] 8.12
Make-A-Scene [22] .55
DALL-E [53] 17.89
LAFITE [82] 26.94
GLIDE [41] 12.24
DALL-E 2 [54] 10.39
Imagen (Our Work) 727

100%

50%

0%

Imagen

Evaluations

Imagen is preferred over recent work by human raters in sample
quality & image-text alignment on DrawBench.

D Imagen D DALL-E 2

.| Imagen D GLIDE

D Imagen D VQGAN+CLIP

H

H
=

H

H

RS Ed

HH

D Imagen D Latent Diffusion

HA

-

Alignment Fidelity

Alignment

Fidelity

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022.

Alignment Fidelity

Alignment Fidelity
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Stable Diffusion

Latest & Publicly available text-to-image generation
To be discussed in detail in paper presentation
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach®* Andreas Blattmann* Dominik Lorenz, Patrick Esser, Bjorn Ommer
CVPR '22 Oral | GitHub [ arXiv | Project page

Stable Diffusion is a latent text-to-image diffusion model. Thanks to a generous compute donation from Stability Al
and support from LAION, we were able to train a Latent Diffusion Model on 512x512 images from a subset of the
LAION-5B database. Similar to Google's Imagen, this model uses a frozen CLIP ViT-L/14 text encoder to condition

the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and
runs on a GPU with at least 10GB VRAM. See this section below and the model card.



Stable Diffusion

Latest & Publicly available text-to-image generation

Input

HW assignment: Use stable diffusion API to
generate ‘interesting’ image from text prompt.
All submissions will be rated for top 3!

Outputs




Applications (2):
Image Editing, Image-to-Image,
Super-resolution, Segmentation

Diffusion
Models




Diffusion Autoencoders

Learning semantic meaningful latent representations in diffusion models

....................................................

(optional)

Zsom
oo <= Latent DDIM |

. For unconditional sampling

....................................................

Semantic
encoder

Conditional DDIM

Stochastic encoder + Decoder

e

e

o Iage
Encoder path (semantic) - Image —» Zgem
Encoder path (stochastic) : Image XT
Decoder path . (Zsem, X7) = Image (reconstructed)

To be discussed in detall in paper presentation

Preechakul et al., “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation”, CVPR 2022. 146




Diffusion Autoencoders

Learning semantic meaningful latent representations in diffusion models

Real image

Changing the semantic latent Zzsem

Very similar to StyleGAN based editing. Zsem is the latent representation similar to the W/W+ space of StyleGAN

Preechakul et al., “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation”, CVPR 2022. 147




Diffusion Autoencoders

Learning semantic meaningful latent representations in diffusion models

- - : l
Reconstruction

Input . . Z_
(Zsem, XT) Varying stochastic subcode (Zsem,X7)

Preechakul et al., “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation”, CVPR 2022. 148




Super-Resolution

Super-Resolution via Repeated Refinement (SR3)

Image super-resolution can be considered as training p(X|y)where y is a low-resolution image and x is the corresponding
high-resolution image

Train a score model for x conditioned on y using:

Ex.y Econro.n) Bt llea(xt, t;y) —ell

The conditional score is simply a U-Net with x¢ and y (resolution image) concatenated.

l> €p Xt7t7y

Saharia et al., Image Super-Resolution via lterative Refinement, 2021 152




Super-Resolution

Super-Resolution via Repeated Refinement (SR3)

Natural Image Super-Resolution 64x64 — 256 <256

Briicubic SR3 (ours) Rgfe;ence

Saharia et al., Image Super-Resolution via lterative Refinement, 2021 153




Image-to-Image Translation

Palette: Image-to-Image Diffusion Models

Many image-to-image translation applications can be considered as training p(x|y) where y is the input image.
For example, for colorization, x is a colored image and y is a gray-level image.

Train a score model for x conditioned on y using:

Exy Ecopno1) Et [leg(xt, t;y) —ellp

The conditional score is simply a U-Net with x; and y concatenated.

Saharia et al., Palette: Image-to-lmage Diffusion Models, 2022 154




Colorization

Inpainting

Image-to-Image Translation

Palette: Image-to-Image Diffusion Models

Original Input

Saharia et al., Palette:

Uncropping

JPEG restoration

Image-to-Image Diffusion Models, 2022
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Conditional Generation

Iterative Latent Variable Refinement (ILVR)

To be discussed in detail in paper presentation

A simple technique to guide the generation process of an unconditional diffusion
model using a reference image.

Given the conditioning éreference image y the generation process is modified to
pull the samples towards the reference image.

T fort=1T,..,1do
Refinement  q(y,_4] }’)/ 7z ~ N (0, I)
T D5 1|22 > unconditional proposal
_) Yi—1 ~ q(ys—1|y) > condition encoding
Tt—1 < ON(Yt-1) + i1 — N (Zi_1)

end for

Low-pass filter

Choi et al., ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models, ICCV 2021 Dgwnsampling / Upsamplmg by a factor of N




Conditional Generation

Iterative Latent Variable Refinement (ILVR)

(a) Generation from various downsampling factors
Reference -~ N=4 ~ N=8 N=16 N=32 N =64

Po.rtrai.t Realistic Image Oil Painting Realistic Image Scribbled New Watermark

Choi et al., ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models, ICCV 2021 "




Semantic Segmentation

Label-efficient semantic segmentation with diffusion models

Can we use representation learned from diffusion models for downstream applications such as semantic segmentation?

Baranchuk et al., Label-Efficient Semantic Segmentation with Diffusion Models, ICLR 2022 158




Semantic Segmentation

Label-efficient semantic segmentation with diffusion models

The experimental results show that the proposed method outperforms Masked Autoencoders, GAN and VAE-based models.

_ \ | . ooy
FFHQ f& = | |
= T T EIAA e elaa
sl S A2 B < " = 2 .
we BYVEOOAQAMAARDE
19 classes | o st O Y - ) | S |

LSUN-Bedroom
28 classes

e S et s A
X i 20 2 : il ,

g - i
30 classes ,
LSUN-Cat
15 classes
| ' 1
LSUN-Horse : ‘*i ﬁ ﬁ 1\ g\ Y
21 classes 1/ { [ { AL, }i‘

Image Groundtruth DDPM Image Groundtruth DDPM Image Groundtruth DDPM Image  Groundtruth DDPM Groundtruth DDPM

Baranchuk et al., Label-Efficient Semantic Segmentation with Diffusion Models, ICLR 2022 159




Image Editing
SDEdit

Goal: Given a stroke painting with color, generate a photorealistic image

Key Idea:

- Latent Distribution of stroke and real images do not overlap.
- But once we apply forward diffusion on them, their distribution

Input Output

start overlapping as finally it becomes gaussian noise.
Perturb with SDE
> "
®§; \
Image

Input

Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022 160




Image Editing
SDEdit

Input
(guide)

Generated
images

LSUN bedroom LSUN church

Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022 161




Video Synthesis, Medical Imaging,
3D Generation, Discrete State Models

166



Video Generation

Samples from a text-conditioned video diffusion model, conditioned on the string fireworks.

Ho et al., “Video Diffusion Models”, arXiv, 2022
Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022

Yang et al., “Diffusion Probabilistic Modeling for Video Generation”, arXiv, 2022

Hoppe et al., “Diffusion Models for Video Prediction and Infilling”, arXiv, 2022
Voleti et al., “MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation”, arXiv, 2022




Video Generation

Video Generation Tasks:

 Unconditional Generation (Generate all frames)
 Future Prediction (Generate future from past fames)
* Past Prediction (Generate past from future fames)

* Interpolation (Generate intermediate frames)

=) Learn a model of the form:

pQ(Xt1?°'° thK XTl’... ’XTM)

/

T1 TM

Given frames: X . X

Frames to be predicted: x'1 R X K

Ho et al., “Video Diffusion Models”, arXiv, 2022
Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022

Yang et al., “Diffusion Probabilistic Modeling for Video Generation”, arXiv, 2022
Hoppe et al., “Diffusion Models for Video Prediction and Infilling”, arXiv, 2022
Voleti et al., “MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation”, arXiv, 2022
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Video Generation

Learn one model for everything:

Architecture as one diffusion model over all frames concatenated.

Mask frames to be predicted; provide conditioning frames; vary
applied masking/conditioning for different tasks during training.

Use time position encodings to encode times.

Video UNet Y. Xt
V K x64 x64 xC

ResNet Block + Downsample
VK x32x32xC

VK x8x8xC
ResNet Block + Attn
+ Downsample

VK x4x4xC
ResNet Block + Attn
VK x4x4xC

. -~ ResNet Block + Attn
+ Upsample

: : \ | VK x8x8xC
- ‘ \ :
Y, X -
> 0 | VK x32x32xC
Q ! 'I ResNet Block + Upsample
T T Y .

(image from: Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022) o

vV K x64x64xC
Xt 1




Architecture Details:

Video Generation

Data is 4D (image height, image width, #frames, channels)

Option (1): 3D Convolutions. Can be computationally expensive.

Option (2): Spatial 2D Convolutions + Attention Layers along frame axis.

=) Additional Advantage:

B

R

lgnoring the attention layers, the
model can be trained additionally

on pure image data!

3
-
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Y. Xt

¥ K x64 x 64 x C

ResNet Block + Downsample
VK x32x32xC

Video UNet

VK x8x8xC
ResNet Block + Attn
+ Downsample

VEKx4x4xC
ResNet Block + Attn
VEKx4x4xC

. - ResNet Block + Attn
+ Upsample

VK x8x8xC

v K x32x32xC
ResNet Block + Upsample
v K x 64 x 64 x C
Xt 1
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(image from: Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022)




Video Generation

Results

Long term video generation in hierarchical manner:

1+ hour coherent video

1. Generate future frames in sparse manner, conditioning on frames far back - seneration possible!

2. Interpolate in-between frames

Test Data:

Generated:

(video from: Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022,
https://plai.cs.ubc.ca/2022/05/20/flexible-diffusion-modeling-of-long-videos/)
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Solving Inverse Problems in Medical Imaging

Forward CT or MRl imaging process (simplified):

Sinogram  diag(A) kspace diag(A)

sparse-view CT undersampled MRI

(image from: Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022)

Inverse Problem:
Reconstruct original image from sparse measurements.

Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022 171




Solving Inverse Problems in Medical Imaging

High-level idea: Learn Generative Diffusion Model as “prior”; then guide synthesis conditioned on sparse observations:

PSNR: 15.32, SSIM: 0.796 PSNR: 17.79, SSIM: 0.454 PSNR: 17.60, SSIM: 0.471 PSNR: 27.88, SSIM: 0.908 PSNR: 35.57, SSIM: 0.929

(a) FISTA-TV (b) cGAN (c) Neumann (d) SIN-4c-PRN (e) Ours (f) Ground truth
(image from: Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022)

=> Qutperforms even fully-supervised methods.

Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022 172




Solving Inverse Problems in Medical Imaging

Lots of Literature

. Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, /ICLR, 2022

. Chung and Ye, “Score-based diffusion models for accelerated MRI’, Medical Image Analysis, 2022
. Chung et al., “Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction”, CVPR, 2022
. Peng et al., “Towards performant and reliable undersampled MR reconstruction via diffusion model sampling”, arXiv, 2022

. Xie and Li, “Measurement-conditioned Denoising Diffusion Probabilistic Model for Under-sampled Medical Image Reconstruction”, arXiv, 2022

. Luo et al, “MRI Reconstruction via Data Driven Markov Chain with Joint Uncertainty Estimation”, arXiv, 2022
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3D Shape Generation

Point clouds as 3D shape representation can be diffused easily and intuitively

Denoiser implemented based on modern point cloud-processing networks (PointNets & Point-VoxelCNNs)

po(Xt|Xt+1)
p(x) Q(Xt+1|xt) X0)

(image from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021
Luo and Hu, “Diffusion Probabilistic Models for 3D Point Cloud Generation”, CVPR, 2021 174




3D Shape Generation

Point clouds as 3D shape representation can be diffused easily and intuitively

Denoiser implemented based on modern point cloud-processing networks (PointNets & Point-VoxelCNNs)

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021,
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 175




3D Shape Generation

Shape Completion

Can train conditional shape completion diffusion model (subset of points fixed to given conditioning points):

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021,
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 176




3D Shape Generation
Shape Completion - Multimodality

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021,
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 177




3D Shape Generation

Shape Completion - Multimodality - On Real Data

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021,
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 178




So far:

Towards Discrete State Diffusion Models

Continuous diffusion and denoising processes.

Data Noise
(x¢|xe1) = N (x¢; 1= Bxe-y, /3d)

Fixed forward diffusion process: q(Xt] Xt-1 t t-1, /9t
Reverse generative process: pv(Xe-1]xt) = N (Xe-1; Hu(xy, t), O'%I)

But what if data is discrete? Categorical?
Continuous perturbations are not possible!

(Text, Pixel-wise Segmentation Labels,
Discrete Image Encodings, etc.)
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Discrete State Diffusion Models

=) Categorical diffusion: q(x¢|xt-1) = Cat(xe; p = Xt-1Qr) Reverse process can be parametrized

Xt : one-hot state vector categorical distribution.

Q: : transition matrix [Qt];; = q(xe = j|x¢-1 = i)

To ~ q(xa|xq) x| ~ q(x,|xo)
7 o1 T .
— =l e R
1 2 3 1 2 3 1 2 3
p(x2) p(x1) p(xo)

(image from: Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurlPS, 2022)

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021
Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Cateqorical Distributions”, NeurlPS, 2022 180




Discrete State Diffusion Models

Uniform categorical diffusion: Progressive masking out of data

Options for forward process: 3t (generation is “de-masking”)
Qi = (1- j3J)I+ =11~
K

Tailored to ordinal data
(e.g. discretized Gaussian)

Q(wt|$t—1)

(forward process)

(image from: Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021)

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021 181




Discrete State Diffusion Models

________________________________________________________________________________

data sample at t=0

oooooooo

q(x¢|Te—1)

(forward process) g

B
-----------------------------
ooooooooooooooooooooooooooooooooooooooooooooooooooooo
ooooooooooooooo
oooooooooooooooooooo

ooooo
oooooooooooooooooooooooooooooooooooooooooooooo
oooooooooooooooooooooooooooooooooooooooooooooooooo

po(xi—1|xe) i T R

(everse process)

generated at t=0 | t=T/4 | t=T/2 =T (;t.a:ltionar.yj -

(image from: Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021)

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021 182




Discrete State Diffusion Models

Modeling Categorical Image Pixel Values

Progressive denoising
starting from all-
masked state.

Progressive denoising
starting from random
uniform state.

(with discretized Gaussian
denoising model)

(image from: Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021)

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021 183




Discrete State Diffusion Models

Modeling Discrete Image Encodings

Visual Tokens Reconstruction
e { N

Tokenization _>.::.|!;._|:f_ § L
s e, <

Encoding images into latent space with discrete tokens, and
modeling discrete token distribution

_ . Class-conditional model samples
Iterative generation

(images from: Chang et al., “MaskGIT: Masked Generative Image Transformer”, CVPR, 2022)

Chang et al., “MaskGIT: Masked Generative Image Transformer”, CVPR, 2022
Esser et al., “ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis”, NeurlPS, 2021 184




Discrete State Diffusion Models

Modeling Pixel-wise Segmentations

Ty ~ q(:c~,-|:cv,-, l)

i NNy P Y,

A 8 A o
\/' = T N 1 \_/' tee
-1 ~ p(Tr-1|TT) R R R QN R S TS

(image from: Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurlPS, 2022)

Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Cateqgorical Distributions”, NeurlPS, 2022 185




Conclusions, Open Problems and Final Remarks

Diffusion ods"




Summary: Denoising Diffusion Probabilistic Models

“Discrete-time” Diffusion Models

We started with denoising diffusion probabilistic models:

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

We showed how the denoising model can be trained by predicting noise injected in each diffused image:

Lsimple — Exowq(xo),GNN(O,I),tNZ/{(l,T) HE _ 69( Vay Xo+ V1 —ay e t)HQ
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Summary: Advanced Techniques

Acceleration, Guidance and beyond

In the third part, we discussed several advanced topics in diffusion models.

How can we accelerate the sample generation?
[Image credit: Ben Poole, Mohammad Norouzi]

Simple forward process slowly maps data to noise

Reverse process maps noise back to data with a denoising model

How to scale up diffusion models to high-resolution (conditional) generation?
Cascaded models

Guided diffusion models
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Summary: Applications

We covered many successful applications of diffusion models:
Image generation, text-to-image generation, controllable generation
Image editing, image-to-image translation, super-resolution, segmentation, adversarial robustness

Discrete models, 3D generation, medical imaging, video synthesis



Open Problems (1)

Diffusion models are a special form of VAEs and continuous normalizing flows
Why do diffusion models perform so much better than these models?

How can we improve VAEs and normalizing flows with lessons learned from diffusion models?

Sampling from diffusion models is still slow especially for interactive applications
The best we could reach is 4-10 steps. How can we have one step samplers?

Do we need new diffusion processes?

Diffusion models can be considered as latent variable models, but their latent space lacks semantics

How can we do latent-space semantic manipulations in diffusion models



Open Problems (2)

How can diffusion models help with discriminative applications?
Representation learning (high-level vs low-level)
Uncertainty estimation

Joint discriminator-generator training

What are the best network architectures for diffusion models?
Can we go beyond existing U-Nets?
How can we feed the time input and other conditioning?

How can we improve the sampling efficiency using better network designs?



Open Problems (3)

How can we apply diffusion models to other data types?
3D data (e.g., distance functions, meshes, voxels, volumetric representations), video, text, graphs, etc.

How should we change diffusion models for these modalities?

Compositional and controllable generation
How can we go beyond images and generate scenes?

How can we have more fine-grained control in generation?

Diffusion models for X
Can we better solve applications that were previously addressed by GANs and other generative models?

Which applications will benefit most from diffusion models?



Thanks!

https://cvpr2022-tutorial-diffusion-models.github.io/
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