
Lecture: Neural Fields Part 1



How does Computer Vision & Graphics work together?

3D Intrinsic Components

Vision GraphicsEdit 
Components

Current Image

New Image under 
different conditions

Change:
• Viewpoint
• Lighting
• Reflectance
• Background
• Attributes
• Many others…

Explicit: Reconstruct 3D 
(Introduction to Graphics Lectures)

Implicit: Neural Representation
(Generative Models Lectures

Explicit 3D Reconstruction with Neural Fields.



Outline
• What is Neural Fields & why it got so much attention?
• The Prelude: Neural Implicit Surfaces
• Introduction to Volume Rendering
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What are neural fields?

Magnetic Field
Neural Network 

(Φ)

Φ:ℝ! → ℝ!

(x,y)

Eulerian Flow Field of a Fluid 
[Koldora CC]

Neural Network 
(Φ)

Φ:ℝ! → ℝ!

(x,y)
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What are neural fields?

Geospatial Data
[Blumenstock et al. 2015]

Neural Network 
(Φ)

Φ:ℝ! → ℝ"

(x,y)

Signed Distance Function (SDF)Neural Network 
(Φ)

Φ:ℝ" → ℝ

(x,y,z)
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NeRF (Neural Radiance Field) has revolutionalized
Computer Vision & Graphics in past 2 years!

Let’s look at some of the stunning results it produced!
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, 
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, 
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.
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Block-NeRF: Scalable Large 
Scene Neural View Synthesis, 
CVPR 2022.
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Light Field Neural Rendering, 
Suhail et al., CVPR 2022.
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NeRFies: Deformable Neural Radiance Fields, Keunhong Park et al., ICCV 2021.
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Neural 3D Video Synthesis 
from Multi-view Video, 
Li et al., CVPR 2022



15

“GRAM: Generative Radiance Manifolds for 3D-Aware Image Generation”, Deng at al., CVPR 2022.
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Dex-NeRF: Grasping Transparent Objects using NeRF, Ichnowski et al., CoRL 2021

Grasp shown in red

Point cloud from sensor
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Neural Fields for Science and Engineering

Topology Optimization [Doosti et al. 2021]

Astronomical Interferometry [Wu et al. 2021]

Tomographic Reconstruction [Ruckert et al. 2022]

Contact Dynamics [Pfrommer, Halm et al. 2022]
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Approximating 
Reflectance 

Functions using 
Neural Networks

Occupancy 
Networks, IM-NET

DeepSDF, 
PIFu

AtlasNet

NeRF

The “Cambrian Explosion” of Neural Fields
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Approximating 
Reflectance 

Functions using 
Neural Networks

The “Cambrian Explosion” of Neural Fields

[Gargan and Neelamkavil 1998]
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Why is the community so excited?



Outline
• What is Neural Fields & why it got so much attention?
• The Prelude: Neural Implicit Surfaces
• Introduction to Volume Rendering
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Representations for 3D Deep Learning

Wu et al. 2016 Qi et al. 2017 Groueix et al. 2018

Voxel Points Meshes



(Explicit)



• Memory Intensive, Computationally Expensive (N^3)
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Voxel RepresentationVoxel Representation
Memory Intensive (can't describe thin surface), Computation Intensive

Voxel Representation
0.1mm thick paper, requires >millions of voxels



• Fixed Topologies (relies on Templates)
• Combinatorial Problem à Discrete Vertices and Connections
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Mesh Representation
Mesh Representation

Relies on Templates: Fixed Topologies, Combinatorial, Ambiguous

Groueix et al. 2018



• Does not Define a Surface
• Not suitable for Visualization, Texturing, etc
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Point Cloud RepresentationPoint Cloud Representation
Not Surface! Hard to Shade, No Occlusion Testing

Achlioptas et al.



Surface Representation: 
Signed Distance Function (SDF)

- implicit representation via level set

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.

SDF(X) = 0, when X is on the surface.
SDF(X) > 0, when X is outside the surface
SDF(X) < 0, when X is inside the surface

Note: SDF is an implicit representation!
Suitable for neural networks but hard to 
import inside existing graphics software.
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Surface as Decision Boundary
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Regression of Continuous SDF

NN
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Signed Distance Function
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Signed Distance Function
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Signed Distance Function





Questions we want to answer

• How do we create a 3D mesh from a SDF function? (SDF rendering)
• How do we generalize this to any objects? (Training Deep SDF)
• How do we use this during inference? (Testing DeepSDF)
• How do DeepSDF concept extends to NeRF and other methods?



Questions we want to answer

• How do we create a 3D mesh from a SDF function? (SDF rendering)
• How do we generalize this to any objects? (Training Deep SDF)
• How do we use this during inference? (Testing DeepSDF)
• How do DeepSDF concept extends to NeRF and other methods?







d = unit vector denoting the
direction of the ray.
t = scalar distance between any
point p on the ray and the origin x0.How to solve this?

- Use root-finding methods 
(e.g. secant method)





Marching Cubes in 2D

• Each vertex of a cell can be labelled +ve or 
–ve, so total 2^4 possibilities.

• After labeling each vertex draw boundary 
between +ve and –ve.

• Refine the boundary.



In 3D coloring vertex +ve/–ve has 2^8 possibilities. Brute force search is expensive.

However, we can obtain only 15 unique possibilities from 2^8

Marching Cubes in 3D



How do we render SDF into a mesh?

• Secant Method (Find roots of a 1-d search problem along each ray)
• Sphere Tracing
• Marching Cubes



Questions we want to answer

• How do we create a 3D mesh from a SDF function? (SDF rendering)
• How do we generalize this to any objects? (Training Deep SDF)
• How do we use this during inference? (Testing DeepSDF)
• How do DeepSDF concept extends to NeRF and other methods?
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Coding Multiple Shapes
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Auto-Encoder

Auto-Encoder
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Auto-Decoder

Auto-Encoder Auto-Decoder

Backpropagate
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Auto-Decoder

GT

Backpropagate

During Training: Optimize for both NN parameters and Code
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Benefits of Auto-Decoder

Benefits during Inference

1. Any Number of Observations – Partial

2. More Controlled Inference – e.g. Accuracy, Priors
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Auto-Decoder Training

GT

Backpropagate
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Auto-Decoder Training

GT

Backpropagate

at test time, it is unclear whether using the encoder is the
most effective use of computational resources during train-
ing. This motivates us to use an auto-decoder for learning a
shape embedding without an encoder as depicted in Fig. 4.

We show that applying an auto-decoder to learn con-
tinuous SDFs leads to high quality 3D generative models.
Further, we develop a probabilistic formulation for train-
ing and testing the auto-decoder that naturally introduces
latent space regularization for improved generalization. To
the best of our knowledge, this work is the first to intro-
duce the auto-decoder learning method to the 3D learning
community.

4.2. Auto-decoder-based DeepSDF Formulation
To derive the auto-decoder-based shape-coded DeepSDF

formulation we adopt a probabilistic perspective. Given a
dataset of N shapes represented with signed distance func-
tion SDF iN

i=1, we prepare a set of K point samples and
their signed distance values:

Xi = {(xj , sj) : sj = SDF i(xj)} . (6)

For an auto-decoder, as there is no encoder, each latent
code zi is paired with training shape Xi. The posterior over
shape code zi given the shape SDF samples Xi can be de-
composed as:

p✓(zi|Xi) = p(zi)
Q

(xj ,sj)2Xi
p✓(sj |zi;xj) , (7)

where ✓ parameterizes the SDF likelihood. In the latent
shape-code space, we assume the prior distribution over
codes p(zi) to be a zero-mean multivariate-Gaussian with
a spherical covariance �2I . This prior encapsulates the no-
tion that the shape codes should be concentrated and we
empirically found it was needed to infer a compact shape
manifold and to help converge to good solutions.

In the auto-decoder-based DeepSDF formulation we ex-
press the SDF likelihood via a deep feed-forward network
f✓(zi,xj) and, without loss of generality, assume that the
likelihood takes the form:

p✓(sj |zi;xj) = exp(�L(f✓(zi,xj), sj)) . (8)

The SDF prediction s̃j = f✓(zi,xj) is represented using a
fully-connected network. L(s̃j , sj) is a loss function penal-
izing the deviation of the network prediction from the actual
SDF value sj . One example for the cost function is the stan-
dard L2 loss function which amounts to assuming Gaussian
noise on the SDF values. In practice we use the clamped L1

cost from Eq. 4 for reasons outlined previously.
At training time we maximize the joint log posterior over

all training shapes with respect to the individual shape codes
{zi}Ni=1 and the network parameters ✓:

argmin
✓,{zi}N

i=1

NX

i=1

0

@
KX

j=1

L(f✓(zi,xj), sj) +
1

�2
||zi||22

1

A . (9)

Figure 5: Compared to car shapes memorized using OGN [52]
(right), our models (left) preserve details and render visually pleas-
ing results as DeepSDF provides oriented surace normals.

At inference time, after training and fixing ✓, a shape
code zi for shape Xi can be estimated via Maximum-a-
Posterior (MAP) estimation as:

ẑ = argmin
z

X

(xj ,sj)2X

L(f✓(z,xj), sj) +
1

�2
||z||22 . (10)

Crucially, this formulation is valid for SDF samples X
of arbitrary size and distribution because the gradient of the
loss with respect to z can be computed separately for each
SDF sample. This implies that DeepSDF can handle any
form of partial observations such as depth maps. This is
a major advantage over the auto-encoder framework whose
encoder expects a test input similar to the training data, e.g.
shape completion networks of [16, 58] require preparing
training data of partial shapes.

To incorporate the latent shape code, we stack the code
vector and the sample location as depicted in Fig. 3b and
feed it into the same fully-connected NN described previ-
ously at the input layer and additionally at the 4th layer. We
again use the Adam optimizer [33]. The latent vector z is
initialized randomly from N (0, 0.012).

Note that while both VAE and the proposed auto-decoder
formulation share the zero-mean Gaussian prior on the la-
tent codes, we found that the the stochastic nature of the
VAE optimization did not lead to good training results.

5. Data Preparation
To train our continuous SDF model, we prepare the SDF

samples X (Eq. 2) for each mesh, which consists of 3D
points and their SDF values. While SDF can be computed
through a distance transform for any watertight shapes from
real or synthetic data, we train with synthetic objects, (e.g.
ShapeNet [12]), for which we are provided complete 3D
shape meshes. To prepare data, we start by normalizing
each mesh to a unit sphere and sampling 500,000 spatial
points x’s: we sample more aggressively near the surface
of the object as we want to capture a more detailed SDF
near the surface. For an ideal oriented watertight mesh,
computing the signed distance value of x would only in-
volve finding the closest triangle, but we find that human
designed meshes are commonly not watertight and con-
tain undesired internal structures. To obtain the shell of a
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Latent Space of Shapes
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Questions we want to answer

• How do we create a 3D mesh from a SDF function? (SDF rendering)
• How do we generalize this to any objects? (Training Deep SDF)
• How do we use this during inference? (Testing DeepSDF)
• How do DeepSDF concept extends to NeRF and other methods?
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Auto-Decoder Inference

Test Shape
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Auto-Decoder Inference

Reconstruction

Test Shape

Optimize the Code until the SDF 
matches the Test Shape
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Auto-Decoder Inference
Input = Partial Observation

Input

Reconstruction
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Adding Priors to Inference

at test time, it is unclear whether using the encoder is the
most effective use of computational resources during train-
ing. This motivates us to use an auto-decoder for learning a
shape embedding without an encoder as depicted in Fig. 4.

We show that applying an auto-decoder to learn con-
tinuous SDFs leads to high quality 3D generative models.
Further, we develop a probabilistic formulation for train-
ing and testing the auto-decoder that naturally introduces
latent space regularization for improved generalization. To
the best of our knowledge, this work is the first to intro-
duce the auto-decoder learning method to the 3D learning
community.

4.2. Auto-decoder-based DeepSDF Formulation
To derive the auto-decoder-based shape-coded DeepSDF

formulation we adopt a probabilistic perspective. Given a
dataset of N shapes represented with signed distance func-
tion SDF iN

i=1, we prepare a set of K point samples and
their signed distance values:

Xi = {(xj , sj) : sj = SDF i(xj)} . (6)

For an auto-decoder, as there is no encoder, each latent
code zi is paired with training shape Xi. The posterior over
shape code zi given the shape SDF samples Xi can be de-
composed as:

p✓(zi|Xi) = p(zi)
Q

(xj ,sj)2Xi
p✓(sj |zi;xj) , (7)

where ✓ parameterizes the SDF likelihood. In the latent
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The SDF prediction s̃j = f✓(zi,xj) is represented using a
fully-connected network. L(s̃j , sj) is a loss function penal-
izing the deviation of the network prediction from the actual
SDF value sj . One example for the cost function is the stan-
dard L2 loss function which amounts to assuming Gaussian
noise on the SDF values. In practice we use the clamped L1
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Figure 5: Compared to car shapes memorized using OGN [52]
(right), our models (left) preserve details and render visually pleas-
ing results as DeepSDF provides oriented surace normals.

At inference time, after training and fixing ✓, a shape
code zi for shape Xi can be estimated via Maximum-a-
Posterior (MAP) estimation as:

ẑ = argmin
z

X

(xj ,sj)2X

L(f✓(z,xj), sj) +
1

�2
||z||22 . (10)

Crucially, this formulation is valid for SDF samples X
of arbitrary size and distribution because the gradient of the
loss with respect to z can be computed separately for each
SDF sample. This implies that DeepSDF can handle any
form of partial observations such as depth maps. This is
a major advantage over the auto-encoder framework whose
encoder expects a test input similar to the training data, e.g.
shape completion networks of [16, 58] require preparing
training data of partial shapes.

To incorporate the latent shape code, we stack the code
vector and the sample location as depicted in Fig. 3b and
feed it into the same fully-connected NN described previ-
ously at the input layer and additionally at the 4th layer. We
again use the Adam optimizer [33]. The latent vector z is
initialized randomly from N (0, 0.012).

Note that while both VAE and the proposed auto-decoder
formulation share the zero-mean Gaussian prior on the la-
tent codes, we found that the the stochastic nature of the
VAE optimization did not lead to good training results.

5. Data Preparation
To train our continuous SDF model, we prepare the SDF

samples X (Eq. 2) for each mesh, which consists of 3D
points and their SDF values. While SDF can be computed
through a distance transform for any watertight shapes from
real or synthetic data, we train with synthetic objects, (e.g.
ShapeNet [12]), for which we are provided complete 3D
shape meshes. To prepare data, we start by normalizing
each mesh to a unit sphere and sampling 500,000 spatial
points x’s: we sample more aggressively near the surface
of the object as we want to capture a more detailed SDF
near the surface. For an ideal oriented watertight mesh,
computing the signed distance value of x would only in-
volve finding the closest triangle, but we find that human
designed meshes are commonly not watertight and con-
tain undesired internal structures. To obtain the shell of a
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Adding Priors to Inference

SDF Regularization:

Normal Regularization:

(Matan et al. 2020)

Distribution Prior:

at test time, it is unclear whether using the encoder is the
most effective use of computational resources during train-
ing. This motivates us to use an auto-decoder for learning a
shape embedding without an encoder as depicted in Fig. 4.

We show that applying an auto-decoder to learn con-
tinuous SDFs leads to high quality 3D generative models.
Further, we develop a probabilistic formulation for train-
ing and testing the auto-decoder that naturally introduces
latent space regularization for improved generalization. To
the best of our knowledge, this work is the first to intro-
duce the auto-decoder learning method to the 3D learning
community.

4.2. Auto-decoder-based DeepSDF Formulation
To derive the auto-decoder-based shape-coded DeepSDF

formulation we adopt a probabilistic perspective. Given a
dataset of N shapes represented with signed distance func-
tion SDF iN

i=1, we prepare a set of K point samples and
their signed distance values:

Xi = {(xj , sj) : sj = SDF i(xj)} . (6)

For an auto-decoder, as there is no encoder, each latent
code zi is paired with training shape Xi. The posterior over
shape code zi given the shape SDF samples Xi can be de-
composed as:

p✓(zi|Xi) = p(zi)
Q

(xj ,sj)2Xi
p✓(sj |zi;xj) , (7)

where ✓ parameterizes the SDF likelihood. In the latent
shape-code space, we assume the prior distribution over
codes p(zi) to be a zero-mean multivariate-Gaussian with
a spherical covariance �2I . This prior encapsulates the no-
tion that the shape codes should be concentrated and we
empirically found it was needed to infer a compact shape
manifold and to help converge to good solutions.

In the auto-decoder-based DeepSDF formulation we ex-
press the SDF likelihood via a deep feed-forward network
f✓(zi,xj) and, without loss of generality, assume that the
likelihood takes the form:

p✓(sj |zi;xj) = exp(�L(f✓(zi,xj), sj)) . (8)

The SDF prediction s̃j = f✓(zi,xj) is represented using a
fully-connected network. L(s̃j , sj) is a loss function penal-
izing the deviation of the network prediction from the actual
SDF value sj . One example for the cost function is the stan-
dard L2 loss function which amounts to assuming Gaussian
noise on the SDF values. In practice we use the clamped L1

cost from Eq. 4 for reasons outlined previously.
At training time we maximize the joint log posterior over

all training shapes with respect to the individual shape codes
{zi}Ni=1 and the network parameters ✓:

argmin
✓,{zi}N

i=1

NX

i=1

0

@
KX

j=1

L(f✓(zi,xj), sj) +
1

�2
||zi||22

1

A . (9)

Figure 5: Compared to car shapes memorized using OGN [52]
(right), our models (left) preserve details and render visually pleas-
ing results as DeepSDF provides oriented surace normals.

At inference time, after training and fixing ✓, a shape
code zi for shape Xi can be estimated via Maximum-a-
Posterior (MAP) estimation as:

ẑ = argmin
z

X

(xj ,sj)2X

L(f✓(z,xj), sj) +
1

�2
||z||22 . (10)

Crucially, this formulation is valid for SDF samples X
of arbitrary size and distribution because the gradient of the
loss with respect to z can be computed separately for each
SDF sample. This implies that DeepSDF can handle any
form of partial observations such as depth maps. This is
a major advantage over the auto-encoder framework whose
encoder expects a test input similar to the training data, e.g.
shape completion networks of [16, 58] require preparing
training data of partial shapes.

To incorporate the latent shape code, we stack the code
vector and the sample location as depicted in Fig. 3b and
feed it into the same fully-connected NN described previ-
ously at the input layer and additionally at the 4th layer. We
again use the Adam optimizer [33]. The latent vector z is
initialized randomly from N (0, 0.012).

Note that while both VAE and the proposed auto-decoder
formulation share the zero-mean Gaussian prior on the la-
tent codes, we found that the the stochastic nature of the
VAE optimization did not lead to good training results.

5. Data Preparation
To train our continuous SDF model, we prepare the SDF

samples X (Eq. 2) for each mesh, which consists of 3D
points and their SDF values. While SDF can be computed
through a distance transform for any watertight shapes from
real or synthetic data, we train with synthetic objects, (e.g.
ShapeNet [12]), for which we are provided complete 3D
shape meshes. To prepare data, we start by normalizing
each mesh to a unit sphere and sampling 500,000 spatial
points x’s: we sample more aggressively near the surface
of the object as we want to capture a more detailed SDF
near the surface. For an ideal oriented watertight mesh,
computing the signed distance value of x would only in-
volve finding the closest triangle, but we find that human
designed meshes are commonly not watertight and con-
tain undesired internal structures. To obtain the shell of a

5

at test time, it is unclear whether using the encoder is the
most effective use of computational resources during train-
ing. This motivates us to use an auto-decoder for learning a
shape embedding without an encoder as depicted in Fig. 4.

We show that applying an auto-decoder to learn con-
tinuous SDFs leads to high quality 3D generative models.
Further, we develop a probabilistic formulation for train-
ing and testing the auto-decoder that naturally introduces
latent space regularization for improved generalization. To
the best of our knowledge, this work is the first to intro-
duce the auto-decoder learning method to the 3D learning
community.

4.2. Auto-decoder-based DeepSDF Formulation
To derive the auto-decoder-based shape-coded DeepSDF

formulation we adopt a probabilistic perspective. Given a
dataset of N shapes represented with signed distance func-
tion SDF iN

i=1, we prepare a set of K point samples and
their signed distance values:

Xi = {(xj , sj) : sj = SDF i(xj)} . (6)

For an auto-decoder, as there is no encoder, each latent
code zi is paired with training shape Xi. The posterior over
shape code zi given the shape SDF samples Xi can be de-
composed as:

p✓(zi|Xi) = p(zi)
Q

(xj ,sj)2Xi
p✓(sj |zi;xj) , (7)

where ✓ parameterizes the SDF likelihood. In the latent
shape-code space, we assume the prior distribution over
codes p(zi) to be a zero-mean multivariate-Gaussian with
a spherical covariance �2I . This prior encapsulates the no-
tion that the shape codes should be concentrated and we
empirically found it was needed to infer a compact shape
manifold and to help converge to good solutions.

In the auto-decoder-based DeepSDF formulation we ex-
press the SDF likelihood via a deep feed-forward network
f✓(zi,xj) and, without loss of generality, assume that the
likelihood takes the form:

p✓(sj |zi;xj) = exp(�L(f✓(zi,xj), sj)) . (8)

The SDF prediction s̃j = f✓(zi,xj) is represented using a
fully-connected network. L(s̃j , sj) is a loss function penal-
izing the deviation of the network prediction from the actual
SDF value sj . One example for the cost function is the stan-
dard L2 loss function which amounts to assuming Gaussian
noise on the SDF values. In practice we use the clamped L1

cost from Eq. 4 for reasons outlined previously.
At training time we maximize the joint log posterior over

all training shapes with respect to the individual shape codes
{zi}Ni=1 and the network parameters ✓:

argmin
✓,{zi}N

i=1

NX

i=1

0

@
KX

j=1

L(f✓(zi,xj), sj) +
1

�2
||zi||22

1

A . (9)

Figure 5: Compared to car shapes memorized using OGN [52]
(right), our models (left) preserve details and render visually pleas-
ing results as DeepSDF provides oriented surace normals.

At inference time, after training and fixing ✓, a shape
code zi for shape Xi can be estimated via Maximum-a-
Posterior (MAP) estimation as:

ẑ = argmin
z

X

(xj ,sj)2X

L(f✓(z,xj), sj) +
1

�2
||z||22 . (10)

Crucially, this formulation is valid for SDF samples X
of arbitrary size and distribution because the gradient of the
loss with respect to z can be computed separately for each
SDF sample. This implies that DeepSDF can handle any
form of partial observations such as depth maps. This is
a major advantage over the auto-encoder framework whose
encoder expects a test input similar to the training data, e.g.
shape completion networks of [16, 58] require preparing
training data of partial shapes.

To incorporate the latent shape code, we stack the code
vector and the sample location as depicted in Fig. 3b and
feed it into the same fully-connected NN described previ-
ously at the input layer and additionally at the 4th layer. We
again use the Adam optimizer [33]. The latent vector z is
initialized randomly from N (0, 0.012).

Note that while both VAE and the proposed auto-decoder
formulation share the zero-mean Gaussian prior on the la-
tent codes, we found that the the stochastic nature of the
VAE optimization did not lead to good training results.

5. Data Preparation
To train our continuous SDF model, we prepare the SDF

samples X (Eq. 2) for each mesh, which consists of 3D
points and their SDF values. While SDF can be computed
through a distance transform for any watertight shapes from
real or synthetic data, we train with synthetic objects, (e.g.
ShapeNet [12]), for which we are provided complete 3D
shape meshes. To prepare data, we start by normalizing
each mesh to a unit sphere and sampling 500,000 spatial
points x’s: we sample more aggressively near the surface
of the object as we want to capture a more detailed SDF
near the surface. For an ideal oriented watertight mesh,
computing the signed distance value of x would only in-
volve finding the closest triangle, but we find that human
designed meshes are commonly not watertight and con-
tain undesired internal structures. To obtain the shell of a

5



(a) Ground-truth (b) Our Result (c) [22]-25 patch (d) [22]-sphere (e) Our Result (f) [22]-25 patch

Figure 6: Reconstruction comparison between DeepSDF and AtlasNet [22] (with 25-plane and sphere parameterization) for test shapes.
Note that AtlasNet fails to capture the fine details of the chair, and that (f) shows holes on the surface of sofa and the plane.

Figure 7: Reconstruction of test shapes. From left to right alternating: ground truth shape and our reconstruction. The two right most
columns show failure modes of DeepSDF. These failures are likely due to lack of training data and failure of minimization convergence.

CD, mean chair plane table lamp sofa
AtlasNet-Sph. 0.752 0.188 0.725 2.381 0.445
AtlasNet-25 0.368 0.216 0.328 1.182 0.411
DeepSDF 0.204 0.143 0.553 0.832 0.132
CD, median
AtlasNet-Sph. 0.511 0.079 0.389 2.180 0.330
AtlasNet-25 0.276 0.065 0.195 0.993 0.311
DeepSDF 0.072 0.036 0.068 0.219 0.088
EMD, mean
AtlasNet-Sph. 0.071 0.038 0.060 0.085 0.050
AtlasNet-25 0.064 0.041 0.073 0.062 0.063
DeepSDF 0.049 0.033 0.050 0.059 0.047
Mesh acc., mean
AtlasNet-Sph. 0.033 0.013 0.032 0.054 0.017
AtlasNet-25 0.018 0.013 0.014 0.042 0.017
DeepSDF 0.009 0.004 0.012 0.013 0.004

Table 3: Comparison for representing unknown shapes (U) for
various classes of ShapeNet. Mesh accuracy as defined in [47]
is the minimum distance d such that 90% of generated points are
within d of the ground truth mesh. Lower is better for all metrics.

We test our completion scheme using single view depth
observations which is a common use-case and maps well
to our architecture without modification. Note that we cur-
rently require the depth observations in the canonical shape
frame of reference.

To generate SDF point samples from the depth image ob-
servation, we sample two points for each depth observation,
each of them located ⌘ distance away from the measured

lower is better higher is better
Method CD, CD, Mesh Mesh Cos
\Metric med. mean EMD acc. comp. sim.

chair
3D-EPN 2.25 2.83 0.084 0.059 0.209 0.752
DeepSDF 1.28 2.11 0.071 0.049 0.500 0.766
plane
3D-EPN 1.63 2.19 0.063 0.040 0.165 0.710
DeepSDF 0.37 1.16 0.049 0.032 0.722 0.823
sofa
3D-EPN 2.03 2.18 0.071 0.049 0.254 0.742
DeepSDF 0.82 1.59 0.059 0.041 0.541 0.810

Table 4: Comparison for shape completion (C) from partial range
scans of unknown shapes from ShapeNet.

surface point (along surface normal estimate). With small
⌘ we approximate the signed distance value of those points
to be ⌘ and �⌘, respectively. We solve for Eq. 10 with
loss function of Eq. 4 using clamp value of ⌘. Additionally,
we incorporate free-space observations, (i.e. empty-space
between surface and camera), by sampling points along
the freespace-direction and enforce larger-than-zero con-
straints. The freespace loss is |f✓(z,xj)| if f✓(z,xj) < 0
and 0 otherwise.

Given the SDF point samples and empty space points,
we similarly optimize the latent vector using MAP estima-
tion. Tab. 4 and Figs. (22, 9) respectively shows quantitative
and qualitative shape completion results. Compared to one
of the most recent completion approaches [16] using volu-
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loss function of Eq. 4 using clamp value of ⌘. Additionally,
we incorporate free-space observations, (i.e. empty-space
between surface and camera), by sampling points along
the freespace-direction and enforce larger-than-zero con-
straints. The freespace loss is |f✓(z,xj)| if f✓(z,xj) < 0
and 0 otherwise.

Given the SDF point samples and empty space points,
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Results: Comparison with Octree-Based

Our 
Reconstruction

Octree Based
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Results: Comparisons with Mesh-Based

Ground Truth Our Reconstruction Atlasnet (25 Patches) Atlasnet (1 Patch)
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Shape Completion



Questions we want to answer

• How do we create a 3D mesh from a SDF function? (SDF rendering)
• How do we generalize this to any objects? (Training Deep SDF)
• How do we use this during inference? (Testing DeepSDF)
• How do DeepSDF concept extends to NeRF and other methods?
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Zakharov et al. 2020

Merwe et al. 2020

Saito et al. 2019

Mildenhall et al. 2020
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DeepSDF Extensions: PiFU

Saito et al. 2019
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DeepSDF Extensions: PiFU

Saito et al. 2019
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DeepSDF Extensions: NeRF

Mildenhall et al. 2020More in next class
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DeepSDF Extensions: NeRF

Mildenhall et al. 2020



• A 3D GAN using DeepSDF + NeRF modeling
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DeepSDF Extension: StyleSDF

Or-El et al. 2021



DeepSDF Extension: StyleSDF
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What are neural fields?

Signed Distance Function (SDF)Neural Network 
(Φ)

Φ:ℝ" → ℝ

(x,y,z)
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What we want to 
reconstruct:

What we can 
measure:

The bridge:
forward maps

Supervision

Neural Field General Framework

Depth Normal

RGB Image

Sensor DomainCoordinate Sampling

Spatial

Temporal

t

yx

z

Neural Network Forward Map

Volume Rendering

Sphere Tracing /
Ray Marching

Radiance Field

Reconstruction Domain

Signed Distance Field

Reconstruction Domain Forward Map Sensor Domain



Outline
• What is Neural Fields & why it got so much attention?
• The Prelude: Neural Implicit Surfaces
• Introduction to Volume Rendering



What is Volume Rendering?

• Assume a cloud of tiny colored particles in 3D. Each particle has a RGB 
color and a density.
• Take a pixel on image plane, and shoot a ray from the camera center, 

through the pixel and into the ‘cloud of tiny colored particles’
• What should be the color for that pixel?

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝
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Volume Rendering in NeRF

In NeRF, we model a 3D 
scene with a ‘cloud of tiny 
colored particles’.
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What we want to 
reconstruct:

What we can 
measure:

The bridge:
forward maps

Supervision

Neural Field General Framework

Depth Normal

RGB Image

Sensor DomainCoordinate Sampling

Spatial

Temporal

t

yx

z

Neural Network Forward Map

Volume Rendering

Sphere Tracing /
Ray Marching

Radiance Field

Reconstruction Domain

Signed Distance Field

Reconstruction Domain Forward Map Sensor Domain

Volume Rendering tells us how to take ‘cloud of tiny colored particles’ and create an image.



Radiative Transfer Equation



Emission-Absorption Model (Ignoring Scattering)



Absorption-only Volume Rendering

What if we have a non-homogenous medium?
In non-homogenous medium, coefficient of
absorption 𝜎 varies with location

Can you prove this?



Transmittance



Absorption-only Volume Rendering



Absorption-only Volume Rendering



Emission-Absorption Volume Rendering



Emission-Absorption Volume Rendering
Special Case: Homogenous non-emitting medium



Emission-Absorption Volume Rendering
Special Case: Homogenous emitting medium



Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium



Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium

Assumption: Ignore light from outside medium.

Volume Rendering Model to be used in NeRF

For NeRF this means: the object 
you are trying to render only 
emits light, There is no lighting 
being emitted by the background.



Computational Volume Rendering: Ray Marching



Computational Volume Rendering: Ray Marching



Computational Volume Rendering: Ray Marching



Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium



Enabling Background Radiance





Volume Rendering in NeRF

Le(.) = RGB color of cloud of tiny particles.
𝜎 = density of tiny colored particles
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