Lecture: Neural Fields Part 1

How does Computer Vision & Graphics work together?

Outline

- What is Neural Fields & why it got so much attention?
- The Prelude: Neural Implicit Surfaces
- Introduction to Volume Rendering

Current Image

Outline

- What is Neural Fields & why it got so much attention?
- The Prelude: Neural Implicit Surfaces
- Introduction to Volume Rendering

What are neural fields?

What are neural fields?

[Blumenstock et al. 2015]

NeRF (Neural Radiance Field) has revolutionalized Computer Vision & Graphics in past 2 years!

Let's look at some of the stunning results it produced!

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,

Ben Mildenhall, *Pratul Srinivasan*, Matthew Tancik^{*}, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,

Ben Mildenhall, *Pratul Srinivasan*, Matthew Tancik^{*}, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.

Block-NeRF: Scalable Large Scene Neural View Synthesis, CVPR 2022.

Light Field Neural Rendering, Suhail et al., CVPR 2022.

(a) Capture Process (b) Input (c) Nerfie (d) Nerfie Depth

NeRFies: Deformable Neural Radiance Fields, Keunhong Park et al., ICCV 2021.

Neural 3D Video Synthesis from Multi-view Video, Li et al., CVPR 2022

"GRAM: Generative Radiance Manifolds for 3D-Aware Image Generation", Deng at al., CVPR 2022.

Grasp shown in red

Point cloud from sensor

Dex-NeRF: Grasping Transparent Objects using NeRF, Ichnowski et al., CoRL 2021

Neural Fields for Science and Engineering

Topology Optimization [Doosti et al. 2021]

Astronomical Interferometry [Wu et al. 2021]

Tomographic Reconstruction [Ruckert et al. 2022]

Contact Dynamics [Pfrommer, Halm et al. 2022]

The "Cambrian Explosion" of Neural Fields

The "Cambrian Explosion" of Neural Fields

[Gargan and Neelamkavil 1998]

Approximating Reflectance Functions using Neural Networks **G. Drettakis** N. Max (eds.) **Rendering Techniques '98 SpringerComputerScience** EG Springer-Verlag Wien GmbH

Why is the community so excited?

with an exponentially increasing frequency support using a

number of parameters that only grows linearly with depth. We also explore the inductive bias of INRs exploiting recent

vaculte about the a

al (NTV

Representing 3D sh

3D vision. A 3D sur

Outline

- What is Neural Fields & why it got so much attention?
- The Prelude: Neural Implicit Surfaces
- Introduction to Volume Rendering

Representations for 3D Deep Learning

3D Representations (Explicit)

	Voxel	Point cloud	Polygon mesh
Memory efficiency	Poor	Not good	Good
Textures	Not good	No	Yes
For neural networks	Easy	Not easy	Not easy

We adopt polygon mesh for its high potential

Images are from

http://cse.iitkgp.ac.in/~pb/research/3dpoly/3dpoly.html

http://waldyrious.net/learning-holography/pb-cgh-formulas.xhtm

http://www.cs.mun.ca/~omeruvia/philosophy/images/BunnyWire.gif

Voxel Representation

• Memory Intensive, Computationally Expensive (N^3)

Mesh Representation

- Fixed Topologies (relies on Templates)
- Combinatorial Problem \rightarrow Discrete Vertices and Connections

Point Cloud Representation

- Does not Define a Surface
- Not suitable for Visualization, Texturing, etc

Achlioptas et al.

Surface Representation: Signed Distance Function (SDF) - implicit representation via level set

SDF(X) = 0, when X is on the surface. SDF(X) > 0, when X is outside the surface SDF(X) < 0, when X is inside the surface</pre>

Note: SDF is an implicit representation! Suitable for neural networks but hard to import inside existing graphics software.

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.

Surface as Decision Boundary

Regression of Continuous SDF

Signed Distance Function

Signed Distance Function

Signed Distance Function

Instance-specific SDFs

Signed Distance Field (for a single instance):

 $(position) \rightarrow (distance)$

if 6 layer network with 1000-dim feature space, about 6M parameters per instance!

Questions we want to answer

- How do we create a 3D mesh from a SDF function? (SDF rendering)
- How do we generalize this to any objects? (Training Deep SDF)
- How do we use this during inference? (Testing DeepSDF)
- How do DeepSDF concept extends to NeRF and other methods?

Signed Distance Field (for a single instance):

(position) → (distance)

Questions we want to answer

- How do we create a 3D mesh from a SDF function? (SDF rendering)
- How do we generalize this to any objects? (Training Deep SDF)
- How do we use this during inference? (Testing DeepSDF)
- How do DeepSDF concept extends to NeRF and other methods?

Signed Distance Field (for a single instance):

(position) → (distance)

Neural Implicit Surfaces

 $\{\mathbf{p} \mid f_{\theta}(\mathbf{p})\} = 0$

Neural network with parameters heta

Allows representing complex geometry

Q: What additional constraint is required for a signed distance field?

 $\|\nabla f\| = 1$

Rendering Neural Implicit Surfaces

The appearance at each pixel is determined by a unique surface point

Where does a ray intersect an implicit surface?

How to model appearance?

Intersections of Rays with Implicit Surfaces

How to solve this? - Use root-finding methods (e.g. secant method)

Input:

```
Implicit Representation f_{	heta}(\cdot)
```

Query Ray
$$r: x_0 + td$$

Output:

Intersection point: p

 $p \equiv t^*d + x_0$ s.t. $f_{\theta}(p) = 0$

$$\bar{f}_{\theta}(t) \equiv f_{\theta}(x_0 + td)$$

a 1-d search problem!

d = unit vector denoting the direction of the ray.t = scalar distance between any point p on the ray and the origin x0.

Intersections of Rays with SDFs: Sphere Tracing

Basically, walk along the ray until close to a surface (or we exceed max-steps)

Marching Cubes in 2D

- Each vertex of a cell can be labelled +ve or -ve, so total 2^4 possibilities.
- After labeling each vertex draw boundary between +ve and –ve.
- Refine the boundary.

Marching Cubes in 3D

In 3D coloring vertex +ve/–ve has 2^8 possibilities. Brute force search is expensive.

However, we can obtain only 15 unique possibilities from 2^8

How do we render SDF into a mesh?

- Secant Method (Find roots of a 1-d search problem along each ray)
- Sphere Tracing
- Marching Cubes

Questions we want to answer

- How do we create a 3D mesh from a SDF function? (SDF rendering)
- How do we generalize this to any objects? (Training Deep SDF)
- How do we use this during inference? (Testing DeepSDF)
- How do DeepSDF concept extends to NeRF and other methods?

Signed Distance Field (for a single instance):

(position) → (distance)

Latent Conditioning based SDFs

Generalizable Signed Distance Field: (latent code, position) → (distance)

Each object is represented by a corresponding latent code (only *d* parameters per instance)

The same neural net parameters across **all** objects

Coding Multiple Shapes

Auto-Encoder

Auto-Encoder

Auto-Decoder

Auto-Encoder

Auto-Decoder

During Training: Optimize for both NN parameters and Code

Benefits of Auto-Decoder

Benefits during Inference

1. Any Number of Observations – Partial

2. More Controlled Inference – e.g. Accuracy, Priors

Auto-Decoder Training

Auto-Decoder Training

Latent Space of Shapes

Learned Chair Shape Space

Learned Car Shape Space

Conditional Neural SDFs

Questions we want to answer

- How do we create a 3D mesh from a SDF function? (SDF rendering)
 How do we generalize this to any objects? (Training Deep SDF)
- How do we use this during inference? (Testing DeepSDF)
- How do DeepSDF concept extends to NeRF and other methods?

Signed Distance Field (for a single instance):

(position) → (distance)

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Example evolution of shape completion for a partial depth map (ADAM iteration: 1-400)

Adding Priors to Inference

Adding Priors to Inference

$$\hat{oldsymbol{z}} = rgmin_{oldsymbol{x}} \sum_{(oldsymbol{x}_j,oldsymbol{s}_j)\in X} \mathcal{L}(f_{ heta}(oldsymbol{z},oldsymbol{x}_j),s_j)$$

Distribution Prior:

$$rac{1}{\sigma^2}||oldsymbol{z}||_2^2$$

SDF Regularization:
$$ig(\|
abla_{m{x}}f(m{x}; heta)\|-1ig)^2$$
 (Matan et al. 2020

Normal Regularization: $\|
abla_{m{x}} f(m{x}_i; heta) - m{n}_i\|$

Results

Auto-encoding unknown shapes									
AtlasNet-Sph.	0.511	0.079	6.589	2.180	0.3 30				
AtlasNet-25	0.276	0.065	0.195	0.993	0.311				
DeepSDF	0.072	0.036	0.068	0.219	0.088				

Shape completion

	lower is better				higher is better	
Method	CD,	CD,		Mesh	Mesh	Cos
\Metric	med.	mean	EMD	acc.	comp.	sim.
chair		.	L	<u> </u>		L
3D-EPN	2.25	2.83	0.084	0.059	0.209	0.752
DeepSDF	1.28	2.11	0.071	0.049	0.500	0.766
plane						
3D-EPN	1.63	2.19	0.063	0.040	0.165	0.710
DeepSDF	0.37	1.16	0.049	0.032	0.722	0.823

Results: Comparison with Octree-Based

Our Reconstruction **Octree Based**

Results: Comparisons with Mesh-Based

Ground Truth

Our Reconstruction

Atlasnet (25 Patches)

Atlasnet (1 Patch)

Shape Completion

Questions we want to answer

- How do we create a 3D mesh from a SDF function? (SDF rendering)
 How do we generalize this to any objects? (Training Deep SDF)
 How do we use this during inference? (Testing DeepSDF)
- How do DeepSDF concept extends to NeRF and other methods?

Signed Distance Field (for a single instance):

(position) → (distance)

Merwe et al. 2020

Mildenhall et al. 2020

DeepSDF Extensions: PiFU

DeepSDF Extensions: PiFU

DeepSDF Extensions: NeRF

DeepSDF Extensions: NeRF

DeepSDF Extension: StyleSDF

• A 3D GAN using DeepSDF + NeRF modeling

DeepSDF Extension: StyleSDF

What are neural fields?

Neural Field General Framework

Outline

- What is Neural Fields & why it got so much attention?
- The Prelude: Neural Implicit Surfaces
- Introduction to Volume Rendering

What is Volume Rendering?

- Assume a cloud of tiny colored particles in 3D. Each particle has a RGB color and a density.
- Take a pixel on image plane, and shoot a ray from the camera center, through the pixel and into the 'cloud of tiny colored particles'
- What should be the color for that pixel?

Volume Rendering in NeRF

In NeRF, we model a 3D scene with a 'cloud of tiny colored particles'.

Neural Field General Framework

Volume Rendering tells us how to take 'cloud of tiny colored particles' and create an image.

Radiative Transfer Equation

Emission-Absorption Model (Ignoring Scattering)

$egin{aligned} dL(\mathbf{x},ec{\omega}) &= - \, \sigma_a(\mathbf{x}) L(\mathbf{x},ec{\omega}) dz & - \, \sigma_s(\mathbf{x}) L(\mathbf{x},ec{\omega}) dz \ &+ \, \sigma_a(\mathbf{x}) L_e(\mathbf{x},ec{\omega}) dz + \, \sigma_s(\mathbf{x}) L_s(\mathbf{x},ec{\omega}) dz \end{aligned}$

Will drop the subscript moving forward

 $\sigma_a \equiv \sigma$

Absorption-only Volume Rendering

Q: What if we have a homogenous medium? (uniform coefficient)

$$dL(\mathbf{x},\omega) = -\sigma L(\mathbf{x},\omega)dz$$

Can you prove this?

$$L(\mathbf{x}_0 + \omega z, \omega) = e^{-\sigma z} L(\mathbf{x}_0, \omega)$$

What if we have a non-homogenous medium? In non-homogenous medium, coefficient of absorption σ varies with location

$$T(\mathbf{x}, \mathbf{y}) = e^{-\int_{t=0}^{z} \sigma(\mathbf{x} + \omega \mathbf{t}) dt} L(\mathbf{x}_{0}, \omega)$$

Transmittance

Transmittance

$$T(\mathbf{x}, \mathbf{y}) = e^{-\int_{t=0}^{z} \sigma(\mathbf{x} + \omega \mathbf{t}) dt} L(\mathbf{x}_0, \omega)$$

Transmittance

 $T(\mathbf{x}, \mathbf{y})$

What fraction of radiance at **x** in direction of **y**, reaches **y**? (along a straight line under absorption-only model)

Homogenous Medium:

$$e^{-\sigma \|\mathbf{x}-\mathbf{y}\|}$$

Non-Homogenous Medium:

$$e^{-\int_{t=0}^{\|\mathbf{x}-\mathbf{y}\|}\sigma(\mathbf{x}+\omega\mathbf{t})}$$

Absorption-only Volume Rendering

$$L(\mathbf{x}_0 + \omega z, \omega) = T(\mathbf{x}_0, \mathbf{x}_0 + \omega z)L(\mathbf{x}_0, \omega)$$

Absorption-only Volume Rendering

$$L(\mathbf{x},\omega) = T(\mathbf{x},\mathbf{x}_z)L(\mathbf{x}_z,\omega)$$

Radiance from 'outside' the medium

Emission-Absorption Volume Rendering

$$+\int_0^z T(\mathbf{x},\mathbf{x}_t)\sigma(\mathbf{x}_t)L_e(\mathbf{x}_t,\omega)dt$$

Accumulated Emitted Radiance from inside

Emission-Absorption Volume Rendering Special Case: Homogenous emitting (only) medium

Emission-Absorption Volume Rendering Special Case: Homogenous emitting (only) medium

Volume Rendering Model to be used in NeRF

Assumption: Ignore light from outside medium.

For NeRF this means: the object you are trying to render only emits light, There is no lighting being emitted by the background.

Emission from a homogenous segment of length Δ

Computational Volume Rendering: Ray Marching

Computational Volume Rendering: Ray Marching

- 1. Draw uniform samples along a ray (N segments, or N+1 points)
- 2. Compute transmittance between camera and each sample
- 3. Aggregate contributions across segments to get overall radiance (color)

Computational Volume Rendering: Ray Marching

- 1. Draw **non-uniform** samples along a ray
- 2. Compute transmittance between camera and each sample
- 3. Aggregate contributions across segments to get overall radiance (color)

Emission-Absorption Volume Rendering Special Case: Homogenous emitting (only) medium

Enabling Background Radiance

$$L(\mathbf{x}, \omega) = \sum_{i=1}^{N} T(\mathbf{x}, \mathbf{x}_{t_i}) (1 - e^{-\sigma_{t_i} \Delta t}) L_e(\mathbf{x}_{t_i}, \omega)$$
$$T(\mathbf{x}, \mathbf{x}_{t_i}) = T(\mathbf{x}, \mathbf{x}_{t_{i-1}}) e^{-\sigma_{t_{i-1}} \Delta t}$$

Computational Volume Rendering: A summary

$$\sigma_{t_i} \equiv \sigma(\mathbf{x}_{t_i}) \longrightarrow L(\mathbf{x}, \omega)$$
$$L_e(\mathbf{x}_{t_i}, \omega)$$

$$L(\mathbf{x},\omega) = \sum_{i=1}^{N} T(\mathbf{x}, \mathbf{x}_{t_i}) (1 - e^{\sigma_{t_i} \Delta t}) L_e(\mathbf{x}_{t_i}, \omega)$$

If we can compute: a) (per-point) density b) (per-point, direction) emitted light, we can render **any** ray through the medium Equivalently we can render an image from any camera viewpoint

Equivalently, we can render an image from any camera viewpoint (using H*W rays)

Note: Differentiable process w.r.t. the density, emitted light

and also camera parameters if density, emission are differentiable functions of position, direction

Volume Rendering in NeRF

$$L(\mathbf{x},\omega) = \sum_{i=1}^{N} T(\mathbf{x},\mathbf{x}_{t_i}) (1 - e^{\sigma_{t_i}\Delta t}) L_e(\mathbf{x}_{t_i},\omega)$$

 $L_e(.) = RGB$ color of cloud of tiny particles. σ = density of tiny colored particles

$$L(\mathbf{x}, \omega) = \sum_{i=1}^{N} T(\mathbf{x}, \mathbf{x}_{t_i}) (1 - e^{\sigma_{t_i} \Delta t}) L_e(\mathbf{x}_{t_i}, \omega)$$
$$T(\mathbf{x}, \mathbf{x}_{t_i}) = T(\mathbf{x}, \mathbf{x}_{t_{i-1}}) e^{-(\sigma_{t_i} \Delta t)}$$

A computational algorithm

 σ_t

Slide Credits

- "<u>Neural Fields in Computer Vision</u>", CVRP 2022 Tutorial.
- Shubham Tulsiani, "Learning for 3D Vision", Spring 2022, CMU
- Leo Guibas, JJ Park, "Neural Models for 3D geometry", Spring 2022, Stanford.