Lecture: Neural Fields Part 1



How does Computer Vision & Graphics work together?

Explicit 3D Reconstruction with Neural Fields.
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* What is Neural Fields & why it got so much attention?
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* What is Neural Fields & why it got so much attention?



What are neural fields?
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What are neural fields?
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Geospatial Data
6 [Blumenstock et al. 2015]



NeRF (Neural Radiance Field) has revolutionalized
Computer Vision & Graphics in past 2 years!

Let’s look at some of the stunning results it produced!



NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.







Block-NeRF: Scalable Large
Scene Neural View Synthesis,
CVPR 2022.
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Light Field Neural Rendering,
Suhail et al., CVPR 2022.
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(a) Capture Process (b) Input (c) Nerfie (d) Nerfie Depth

NeRFies: Deformable Neural Radiance Fields, Keunhong Park et al., ICCV 2021.
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Neural 3D Video Synthesis
from Multi-view Video,
Li et al., CVPR 2022




“GRAM: Generative Radiance Manifolds for 3D-Aware Image Generation”, Deng at al., CVPR 2022.
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Dex-NeRF: Grasping Transparent Objects using NeRF, Ichnowski et al., CoRL 2021
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Neural Fields for Science and Engineering

X-Ray Images and Initial Calibration

Neural Adaptive Tomography 3D Geometry and Optimized Calibration
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The “Cambrian Explosion” of Neural Fields

NeRF | —
Number of Neural Field Publications [1998-2021]
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The “Cambrian Explosion” of Neural Fields

[Gargan and Neelamkavil 1998]

Approximating
Reflectance
Functions using
Neural Networks
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Why is the community so excited?
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Yen-Chi Cheng*!
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* The Prelude: Neural Implicit Surfaces



Representations for 3D Deep Learning

Voxel Points

Wu et al. 2016 Qi et al. 2017 Groueix et al. 2018 55



3D Representations (Explicit)

{‘\ \:
\\_ y
Point cloud Polygon mesh

Not good Good
No Yes
Not easy Not easy

Memory efficiency
Textures
For neural networks

We adopt polygon mesh for its high potential

Images are from

http://cse.iitkgp.ac.in/~pb/research/3dpoly/3dpoly.html

http://waldyrious.net/learning-holography/pb-cgh-formulas.xhtm #3
http://www.cs.mun.ca/~omeruvia/philosophy/images/BunnyWire.gif



Voxel Representation

 Memory Intensive, Computationally Expensive (N*3)
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Mesh Representation

* Fixed Topologies (relies on Templates)
 Combinatorial Problem = Discrete Vertices and Connections

Groueix et al. 2018
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Point Cloud Representation

* Does not Define a Surface
* Not suitable for Visualization, Texturing, etc

Achlioptas et al.
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Surface Representation:
Signed Distance Function (SDF)
- implicit representation via level set

° o ¢ Decision
s boundary
e ofimplict

surface
.

e SDF >0
..

SDF(X) = 0, when X is on the surface.
SDF(X) > 0, when X is outside the surface | « - ~——
SDF(X) < 0, when X is inside the surface @& SPF<0

Note: SDF is an implicit representation!
Suitable for neural networks but hard to
import inside existing graphics software.

{c)

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.



Surface as Decision Boundary




Regression of Continuous SDF

N / 1177 sor

(X,Y,2)




Signed Distance Function




Signed Distance Function




Signed Distance Function




Instance-specific SDFs

[
X€R3I fg B seR
LI

fo :R° >R

Signed Distance Field (for a single instance):
(position) = (distance)

if 6 layer network with 1000-dim feature space, about 6M parameters per instance!



Questions we want to answer

How do we create a 3D mesh from a SDF function? (SDF rendering)
How do we generalize this to any objects? (Training Deep SDF)
How do we use this during inference? (Testing DeepSDF)

How do DeepSDF concept extends to NeRF and other methods?

XERBI f@ B scR \\

fo :R° >R

Signed Distance Field (for a single instance):
(position) — (distance)



Questions we want to answer

* How do we create a 3D mesh from a SDF function? (SDF rendering)

XG]R3I f@ B seR

fo :R° >R

Signed Distance Field (for a single instance):
(position) — (distance)



Neural Implicit Surfaces

plfP}=0

Neural network with parameters

Allows representing complex geometry

Q: What additional constraintiis
required for a signed distance field?

VAl =1




Rendering Neural Implicit Surfaces

The appearance at each pixel is determined by a unique surface point

Where does a ray intersect an implicit surface?

How to model appearance?



Intersections of Rays with Implicit Surfaces

Input:

Implicit Representation _f9 ()
QueryRay 7T : I + td

Output:

Intersection point: P

=t d + T d = unit vector denoting the
direction of the ray.
How to solve this? S. t f9 =0 t = scalar distance between any

point p on the ray and the origin x0.
- Use root-finding methods fo(t) = fg(xo + td)

(e.g. secant method) a 1-d search problem!



Intersections of Rays with SDFs: Sphere Tracing

While f(p) > €:

t=1t+ f(p)
» = x9 + td

Basically, walk along the ray until close to a surface (or we exceed max-steps)



Marching Cubes in 2D

e Each vertex of a cell can be labelled +ve or
—ve, so total 274 possibilities.

» After labeling each vertex draw boundary
between +ve and —ve.

e Refine the boundary.




Marching Cubes in 3D

\

A

= 4 [ @

In 3D coloring vertex +ve/—ve has 28 possibilities. Brute force search is expensive.

However, we can obtain only 15 unique possibilities from 278



How do we render SDF into a mesh?

e Secant Method (Find roots of a 1-d search problem along each ray)
* Sphere Tracing
* Marching Cubes



Questions we want to answer

* How do we generalize this to any objects? (Training Deep SDF)

XGRBI f@ B seR

fo :R° >R

Signed Distance Field (for a single instance):
(position) — (distance)



Latent Conditioning based SDFs

< [ 1L
zE]RI f@ B iR
N

x€R3I

f@iRBXRd%R

Generalizable Signed Distance Field:
(latent code, position) = (distance)

Each object is represented by a corresponding latent code (only d parameters per instance)

The same neural net parameters across all objects



Coding Multiple Shapes

SDF




Auto-Encoder

Input

T

/

Code

Output

/

I

Auto-Encoder
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Auto-Decoder

Auto-Encoder

Backpropagate
l Output

Code//////

I

Auto-Decoder
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Auto-Decoder

Backpropagate
NN
C d 4 )
Oue SDF==| | GT
N /
(X,y,2)

During Training: Optimize for both NN parameters and Code



Benefits of Auto-Decoder

Backpropagate

ot [ }H SDF = GTH

(x,y,2)

Benefits during Inference
1. Any Number of Observations — Partial

2. More Controlled Inference — e.g. Accuracy, Priors



Auto-Decoder Training

Backpropagate

Code

(X,,2)

NN

SDF mm

GT
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Auto-Decoder

raining
Backpropagate
)
NN
Code [ f@ J SDF ==
(x,Y,2)

N

N [ K
argmin Y [ Y~ L(fo(2i, ), 5;)
0{zihii1 i=1 \j=1

GT




Latent Space of Shapes

5’e
| A




"1

Learned Chair Shape Space Learned Car Shape Space



Conditional Neural SDFs

259 512 512 512
Latent Vector
FC FC FC
P e— — —
(xyz) [ ]

Simplest approach — just conce

Skip connecti

Training Loss by Network Size

Training SDF Loss (1le-3)

-&— Without Skip
-&= With Skip

2 4 6 8 10 12 14 16 18 20
Number of FC Layers




Questions we want to answer

* How do we use this during inference? (Testing DeepSDF)

XGRBI f@ B seR

fo :R° >R

Signed Distance Field (for a single instance):
(position) — (distance)



Auto-Decoder Inference

| 7\

N N Test Shape

Code

SDF

(X,¥,2)




Auto-Decoder Inference

alip
. Y

~ ™ Test Shape

SDF

Code

(X,y,2)

Optimize the Code until the SDF
matches the Test Shape Reconstruction
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Auto-Decoder Inference
Input = Partial Observation

|

Code

(X,¥,2)

Reconstruction



DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

GT Shape Sampled Depth Map DeepSDF Decoding
(Green Input) Output

Example evolution of shape completion for a partial depth map (ADAM iteration: 1-400)



Adding Priors to Inference

Z = arg min Z E(fg(Z,in),Sj)

(wj 73j)€X

NN

Code L } SDF

(X,y,2)
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Adding Priors to Inference

Z = arg min Z L(f@(zamj)78j)

(wj 93j)€X

.. . . 1 2
Distribution Prior: p | ‘Z| |2

2
SDF Regularization: (|| Vzf(x;0)|| —1)" (Matan etal. 2020)

Normal Regularization: vaf(ivz, 9) — nz”
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Results

Auto-encoding
unknown shapes

CD, median

AtlasNet-Sph. 0.511 | 0.079 | 0.389 | 2.180 | 0.330
AtlasNet-25 0.276 | 0.065 | 0.195 | 0.993 | 0.311
DeepSDF 0.072 | 0.036 | 0.068 | 0.219 | 0.088
Shape completion
lower is better higher is better
Method CD, CD, Mesh Mesh Cos
\Metric med. | mean | EMD acc. comp. sim.
chair
3D-EPN 2.25 2.83 | 0.084 | 0.059 0.209 | 0.752
DeepSDF | 1.28 211 | 0.071 | 0.049 0.500 | 0.766
plane
3D-EPN 1.63 2.19 | 0.063 | 0.040 0.165 | 0.710
DeepSDF | 0.37 1.16 | 0.049 | 0.032 0.722 | 0.823




Results: Comparison with Octree-Based

Our Octree Based
Reconstruction

66



Results: Comparisons with Mesh-Based

—

Ground Truth Our Reconstruction Atlasnet (25 Patches) Atlasnet (1 Ratch)



Shape Completion

o —
e r
g /
"\.\\.\.~ J3 *
(a) Input Depth (b) Completion (ours) (¢) Second View (ours) (d) Ground truth (e) 3D-EPN
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Questions we want to answer

* How do DeepSDF concept extends to NeRF and other methods?

XG]R3I f@ B seR

fo :R° >R

Signed Distance Field (for a single instance):
(position) — (distance)



2D detection

Continuous
PointSDF

i, URE

Zakharov et al. 2020 Partial object

Merwe et al. 2020

Output
Color + Density

[y;lgl—» (RGBo) —\ - ﬂ

Ray.2 %/ e E =
/ﬁ o -, \'\| P ‘m : |
\ / {3 Single-view UQ ﬂ

(b) Saito et al. 2019
Mildenhall et al. 2020
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DeepSDF Extensions: PiFU

input image (s)

image encoder

Surface Reconstruction -

PlIFu (Vx, Vz)

() 9) =

Training

image encoder

Texture Inference

Tex-PIFu (Vx, Vz)

fo( ), @) = ros

Saito et al. 2019
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DeepSDF Extensions: PIFU

Testing
Marching |
Cube '
4 — PIFu — > : ‘ - Tex-PIFu - -

\ : | 1} 3

Qf . z I i

D f - /,,

n-view inputs (n = 1) 3D occupancy field reconstructed geometry textured reconstruction

Saito et al. 2019 72



DeepSDF Extensions: NeRF

5D Input
Position + Direction

Output
Color + Density

[ nnn8) _’”FDH_’ RiB” \ -

©

I

‘\‘\‘\ .4
4 j
1 2
’
- { e
: N B i )
"’0
[ Ll
7

-
&«
Q()

More in next class

Q

Mildenhall et al. 2020 73




DeepSDF Extensions: NeRF

Mildenhall et al. 2020
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StyleSDF

* A 3D GAN using DeepSDF + NeRF modeling

DeepSDF Extension

i
(o)
o
(@
‘©
o
Q
[
-
o
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DeepSDF Extension: StyleSDF




What are neural fields?

Neural Network Signed Distance Function (SDF)
(P)
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Neural Field General Framework

7 4
Spatial
VY,
AY WX/
X K@
Q
Temporal
1 1 1 J 1
>
t

What we want to The bridge: What we can
reconstruct: forward maps measure:
Radiance Field

s RGB Image

Signed Distance Field

—

[ Coordinate Sampling ] [ Neural Network ]

[ Reconstruction Domain ]

Volume Rendering

Sphere Tracing /
Ray Marching

...A-'_'“ 3

[ Forward Map }

Depth  Normal

Sensor Domain }l

' Supervision '
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Outline

* Introduction to Volume Rendering



What is Volume Rendering?

* Assume a cloud of tiny colored particles in 3D. Each particle has a RGB
color and a density.

* Take a pixel on image plane, and shoot a ray from the camera center,
through the pixel and into the ‘cloud of tiny colored particles’

* What should be the color for that pixel?

Rayr(t) = o+ td

Camera



Volume Rendering in NeRF

5D Input Output
Position + Direction Color + Density

(xy29¢ —>|]|]|:|—> RGBo)
F@ \ . Ray 1
\,g,eﬂ%’g%&,/;/L In NeRF, we model a 3D

scene with a ‘cloud of tiny

/ ﬂ\ / colored particles’.

(a) (b)

/
\“;”\
A

N

82



Neural Field General Framework

Volume Rendering tells us how to take ‘cloud of tiny colored particles’ and create an image.

7 4
Spatial
VY,
X Y @l )
KON
Temporal
1 1 1 J 1
>
t

What we want to The bridge: What we can
reconstruct: forward maps measure:
Radiance Field

s Volume Rendering

Signed Distance Field

—

[ Coordinate Sampling ] [ Neural Network ]

[ Reconstruction Domain ]

Ray 1
Rav:2 jzﬂ'
Yoo i

Sphere Tracing /
Ray Marching

...A-'_'“ 3

[ Forward Map }

RGB Image

Depth  Normal

Sensor Domain }l

' Supervision '
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Radiative Transter Equation

Absorption Out-scattering

et £

dL(x,0) =|— 04(X)L(xX,0)dz — 05(x)L(x,d)dz | Losses
+ 04(X)Le(Xx,W)dz + 05(X)Ls(x,0)dz| Gains

Emission In-scattering



Emission-Absorption Model (Ignoring Scattering)

@ Will drop the subscript moving forward
Oq =0



Absorption-only Volume Rendering

Z

| J
1

L(xp + wz,w) \L(XQ, w)
Q: What if we have a homogenous medium? (uniform coefficient)

dL(x,w) = —ocL(x,w)dz

Can you prove this? What if we have a non-homogenous medium?

L(XQ - Wz, w) . GB_UZL(XO7 w) In non-homogenous medium, coefficient of
absorption o varies with location

Transmittance




Transmittance T(x,y) = e Jimo 0CHetdl T (g )

Transmittance

T(X ) What fraction of radiance at x in direction of y, reachesy ?
Y (along a straight line under absorption-only model)

Homogenous Medium: 6—0Hx—y||

e ft”:xo_y” o(x+twt)

1 T.
b& Ot

e ——

Non-Homogenous Medium:

distance



Absorption-only Volume Rendering

Z

L(xo + wz,w) 1\L(xo,w)
)

L(xg + wz,w) =T(xq,%Xg + wz)L(xg,w)




Absorption-only Volume Rendering

L(x,w) =T(x,%x,)L(x,,w)

PR

Radiance from ‘outside’ the medium

AR I PR AN R PSS



Emission-Absorption Volume Rendering

L(x,w)=T(x,x,)L(x,,w)

+/O T(x, xt)a(xt)Le(xt,w)df

wgnses oy e e

Accumulated Emitted Radiance from inside



Emission-Absorption Volume Rendering
Special Case: Homogenous non-emitting medium

Transmittance

A Distance travelled in medium

A

L(x,w)=T(x,x,)L(x,,w)

T(x,x,) =e 72



Emission-A
Special Case:

nsorption Volume Rendering

Homogenous emitting medium




Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium
Qg 3 . L(x,w) = ./0 T(x,%x¢)0(x;)Le(x¢,w)dt

L(x,w) = e "2 L(x,,w)

T(x,x¢)0(Xy)Le(Xy,w)d gﬁ
+ [ 1 o) Le (et <Q
L(x,w) = e "2 L(x,,w) L(x,w)

Let’s ignore light from outside medium (for now)

= (1—e 7%)C

—ocA
+ ( 1—e )C Emission from a homogenous segment of length A



A

&l

Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium

Volume Rendering Model to be used in NeRF

Assumption: Ignore light from outside medium.

Lix,w)=(1—e2)C

Emission from a homogenous segment of length A

For NeRF this means: the object
you are trying to render only
emits light, There is no lighting
being emitted by the background.



Computational Volume Rendering: Ray Marching

L(x,w)=T(x,x,)L(x,,w)

N N
L(X, w) = Z (contribution from ith segment) =) L(X, w) = Z T'(x, Xy, ) x (emission from ith segment)
=1 i=1
Approximate with a discrete sum .
Xt, :ithsample along ray at depth t; 1 Lix,w) = <1 = )C

At :distance between successive samples

L(X7 (,d> . ZT<X7 Xti,)'<1 — et At)Le(Xti)w)




Computational Volume Rendering: Ray Marching

1. Draw uniform samples along a ray (N segments, or N+1 points)
2. Compute transmittance between camera and each sample
3. Aggregate contributions across segments to get overall radiance (color)




Computational Volume Rendering: Ray Marching

ECY

1. Draw non-uniform samples along a ray
2. Compute transmittance between camera and each sample
3. Aggregate contributions across segments to get overall radiance (color)




Emission-Absorption Volume Rendering
Special Case: Homogenous emitting (only) medium
Qg 3 . L(x,w) = ./0 T(x,%x¢)0(x;)Le(x¢,w)dt

L(x,w) = e "2 L(x,,w)

T(x,x¢)0(Xy)Le(Xy,w)d gﬁ
+ [ 1 o) Le (et <Q
L(x,w) = e "2 L(x,,w) L(x,w)

Let’s ignore light from outside medium (for now)

= (1—e 7%)C

—ocA
+ ( 1—e )C Emission from a homogenous segment of length A



Enabling Background Radiance




Computational Volume Rendering: A summary

o, = o(Xy,)

L€ (th ) w)

N
L(x,w) = ZT(X, X, ) (1 — e‘”'iAt)Le(Xt,i,w)

?;:1 P AR RIS IS e AT IR PR

If we can compute:

a) (per-point) density

b) (per-point, direction) emitted light,
we can render any ray through the medium
— L(x,w) Equivalently, we can render an image from any camera viewpoint
(using H*W rays)

Note: Differentiable process w.r.t. the density, emitted light

and also camera parameters if density, emission are differentiable
functions of position, direction



Volume Rendering in NeRF

N

L(X7 w) . Z T(X> th;.)' (1 — eatiAt)Le (Xti 9 CU)

L.(.) = RGB color of cloud of tiny particles.
o = density of tiny colored particles



Summary

Emission-Absorption Model

N
L(x,w) = > T(x,%¢,) (1 — €73 Lo (x4, w)
i=1

T(X, va-zi) — T(x‘ Xt, )C_(UtiAt)

A computational algorithm



Slide Credits

* “Neural Fields in Computer Vision”, CVRP 2022 Tutorial.
e Shubham Tulsiani, “Learning for 3D Vision”, Spring 2022, CMU

* Leo Guibas, JJ Park, “Neural Models for 3D geometry”, Spring 2022,
Stanford.



https://neuralfields.cs.brown.edu/cvpr22

