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Neural Radiance Fields [3] employ simple volume rendering as a way to overcome the challenges of differen-
tiating through ray-triangle intersections by leveraging a probabilistic notion of visibility. This is achieved
by assuming the scene is composed by a cloud of light-emitting particles whose density changes in space (in
the terminology of physically-based rendering, this would be described as a volume with absorption and
emission but no scattering [4, Sec 11.1]. In what follows, for the sake of exposition simplicity, and without
loss of generality, we assume the emitted light does not change as a function of view-direction. This technical
report is a condensed version of previous reports [II, 2], but rewritten in the context of NeRF, and adopting
its commonly used notation].

Transmittance. Let the @EHSiFHIAG(X)) with x€R? indicate the differential likelihood of a ray hitting a
particle (i.c. @@pObAbliOREANEAparCle e Vel AN GeSALAISEANGE). We reparameterize

the density along a given ray r=(0, d) as a scalar function o(t), since any point x along the ray can be written
as r(t)=o+td. Density is closely tied to the

Then the probability T (t+dt) of not
hitting a particle when taking a differential step dt is equal to 7 (t), the likelihood of the ray reaching ¢,
times (1 — dt - o(t)), the probability of not hitting anything during the step:

Tt4dt)=T(t) (L—dt-o(t)) (1)

T =T 74y = ~701) - 011 ?

This is a classical differential equation that can be solved as follows:

T/ = ~T(0) - o(t) ®

T = ot @)

/a ' :((f)) dt — — / " o(t) dt (5)

log T(1)]" = — / ba(t) dt (6)
T(a—b) = % ~exp (- / " o(t) dt) )

where we define T (a — b) as the probability that the ray travels from distance a to b along the ray without
hitting a particle, which is related to the previous notation by T (t) = 7 (0 — t).

LIf you are interested in borrowing the LaTeX notation, please refer to: https://wuw.overleaf .com/read/fkhpkzxhnyws|
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Probabilistic interpretation. Note that we can also interpret the function 1—7 (¢) (often called opacity) as
a cumulative distribution function (CDF) indicating the probability that the ray does hit a particle sometime
before reaching distance ¢. Then

the likelihood that the ray stops precisely at distance .
Volume rendering. We can now calculate lieispecteaivalieionthelightemitea by hempaticls in the

volume as the ray travels from t=0 to D, composited on top of a background color. Since the probability
density for stopping at t is T (t) - o(t), the expected color is

D
C= / T) - o(t) - e(t) dt + T(D)-cng 8)
0

where cpg is a background color that is composited with the foreground scene according to the residual
transmittance T (D). Without loss of generality, we omit the background term in what follows.

Homogeneous media. We can calculate the color of some homogeneous volumetric media with constant
color ¢, and density o, over a ray segment [a, b] by integration:

b
Cla—b)= / T(a—1t)-o(t)-c(t)dt 9)
b
=04 Cq / T(a—t)dt constant density/radiance (10)
b t
=0, -ca/ exp <—/ o(u) du) dt substituting () (11)
llb a
=0, Cq / exp (— aau|ta) dt constant density (again) (12)
b
=0 - ca/ exp (—oy(t —a)) dt (13)
b
T exp (—0oq(t —a)) (14)
o, .
=cq- (1 —exp(—0q(b—a))) (15)

Transmittance is multiplicative. Note that transmittance factorizes as follows:

T(a—c)==exp (— [/ab o(t) dt + /bc o(t) dt}) (16)
= exp (— /ab o(t) dt) exp (— /bc a(t) dt) (17)

=T(a—b)-T(b—c) (18)

This also follows from the probabilistic interpretation of T, since the probability that the ray does not hit
any particles within [a, ¢] is the product of the probabilities of the two independent events that it does not
hit any particles within [a, b] or within [b, c].

Transmittance for piecewise constant data. Given a set of intervals {[t,,t,1]}_; with constant
density o,, within the n-th segment, and with ¢;=0 and §,,=t,, 11 —t,, transmittance is equal to:

tn n—1
Tn=T(tn) =T(0 — t,) =exp <_/0 o(t) dt) = exp (Z —0k5k> (19)

k=1
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Volume rendering of piecewise constant data. Combining the above, we can evaluate the volume
rendering integral through a medium with piecewise constant color and density:

tn+1

C(tny1) = Z/ T(t) op-cpdt piecewise constant (20)
n=1"tn

N tn+1

_ / T(O0 = t0) - Tt = 1) - 0 - cn dt from @)  (21)
N tn+1
= Z T(0 = t,) Tty = 1) -0 -y, dt constant (22)
n=1 tn
N

=T = ty) - (1= exp(—0n(tnsr —tn))) - €n from () (23)

n=1

This leads to the volume rendering equations from NeRF [3] Eq.3]:

N n—1
Ctny1) = Z Tn- (1 —exp(—0,dp))-Ccn, where T, =exp (Z —ok5k> (24)
n=1

k=1

Finally, rather than writing these expressions in terms of volumetric density, we can re-express them in terms
of alpha-compositing weights o, = 1 — exp (—0,0,), and by noting that [[,expz; = exp (>, ;) in ([I3):

N—-1

Cty41) = Z’T Qp - Cp, where T, = H (1—ay) (25)

n=1 n=1

Alternate derivation. By making use of the earlier connection between CDF and PDF that (1-7)" = To,
and by assuming constant color ¢, along an interval [a, b]:

b b
/T(t)-a(t)-c(t) dtzca/ (1—="T)(¢t)dt 26

=cq- (L=T M),
=¢a - (T(a) = T(b))
=c,-T(a) - (1 =T(a—0))

27
28

)
)
)
29)

(
(
(
(

Combined with constant per-interval density, this identity yields the same expression for color as (24]).
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