Lecture 10: 2D Transformation & Alignment

COMP 590/776: Computer Vision

Instructor: Soumyadip (Roni) Sengupta

TA: Mykhailo (Misha) Shvets



Course Website: Scan Me!

The ControlNet illusion art is FUN!

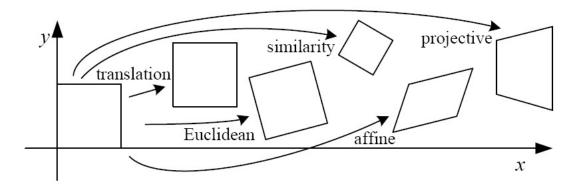
In some sense, it's a *Hybrid Image* (17-year-old method). It was my first homework in the computer vision class. I remember that it takes time to properly align the two images to get good results.

Now it's only one sentence and one click!

1:46 PM · Sep 27, 2023 · **821** Views

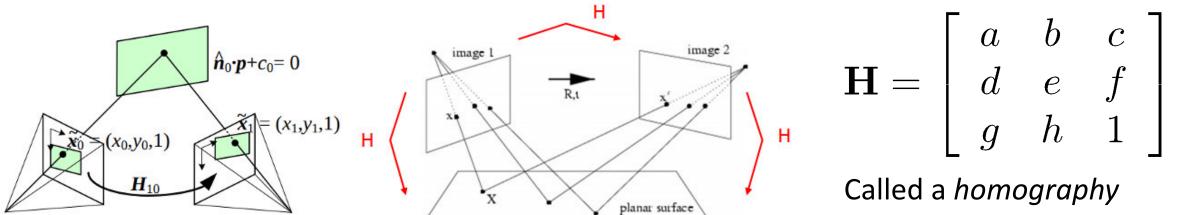
Recap

2D image transformations



Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[oldsymbol{I} ig oldsymbol{t} ig]_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Projective Transformations aka Homographies aka Planar Perspective Maps



Called a *homography* (or planar perspective map)

Any two images of the same planar surface in 3D space are related by a **homography** (assuming a pinhole camera model).

Affine transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Homographies (Projective Transformation)

- Homographies ...
 - Affine transformations, and
 - Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

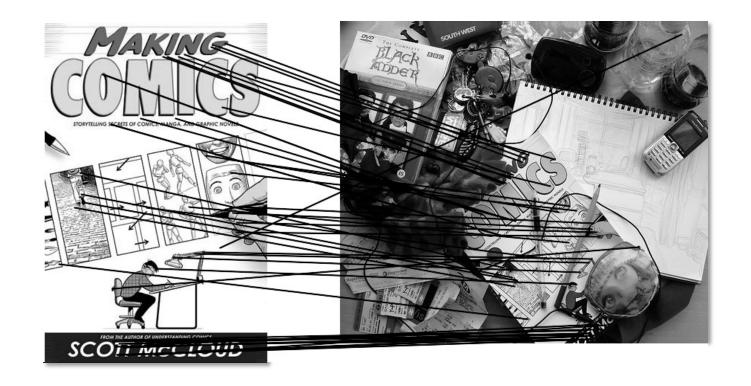
$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition

where the length of the vector $[h_{00} h_{01} ... h_{22}]$ is 1.

Computing transformations

- Given a set of matches between images A and B
 - How can we compute the transform T from A to B?



• Find transform T that best "agrees" with the matches

Affine transformations

Matrix form

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ \vdots & & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

$$\mathbf{A} \qquad \mathbf{t} = \mathbf{b}$$

2n x 6

Solving for homographies

- Smallest singular value of A also indicates how well the homography can be estimated.
- Optimal h = Singular vector corresponding to smallest singular value

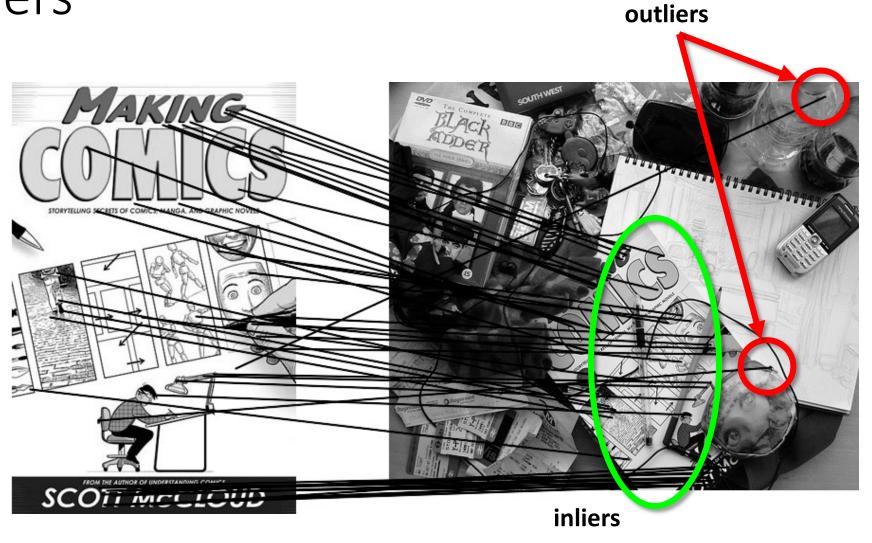
Today's class

- Fitting with outliers RANSAC
- Warping
- Blending
- HW3 Motivation

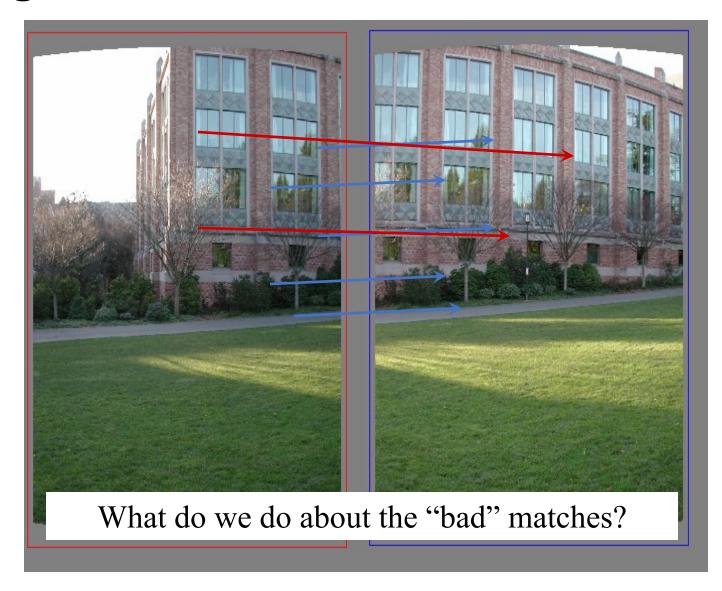
Today's class

- Fitting with outliers RANSAC
- Warping
- Blending
- HW3 Motivation

Outliers

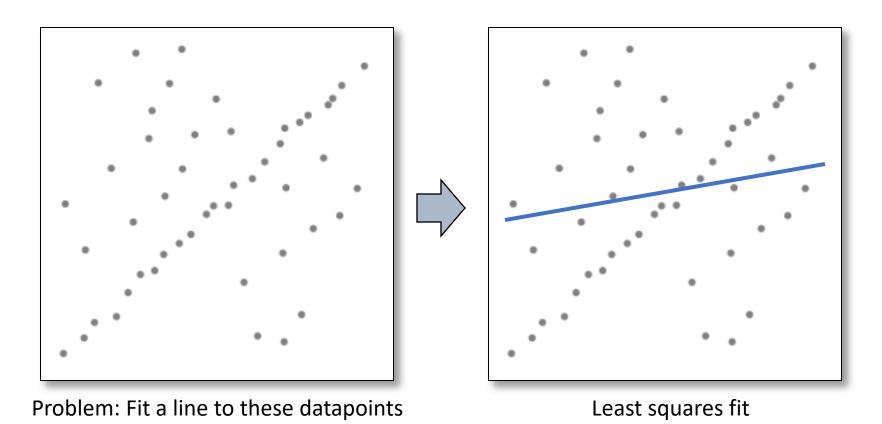


Matching features



Robustness

• Let's consider the problem of linear regression

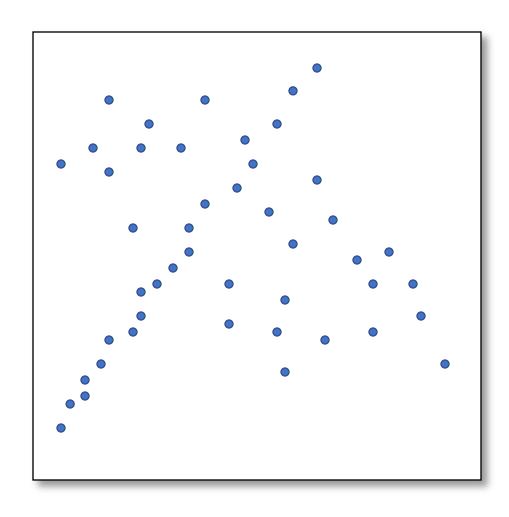


• How can we fix this?

Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the **inliers** to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

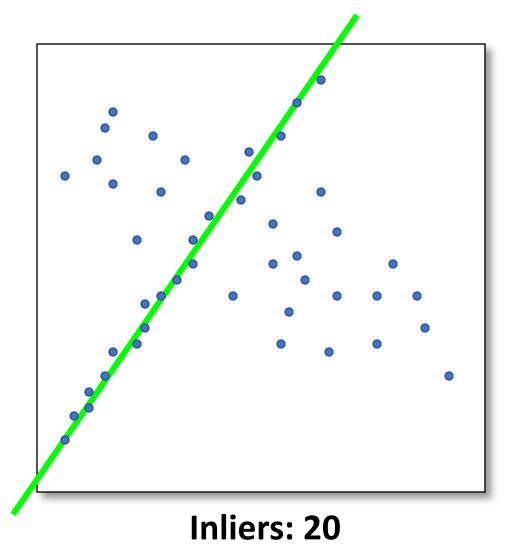


Counting inliers

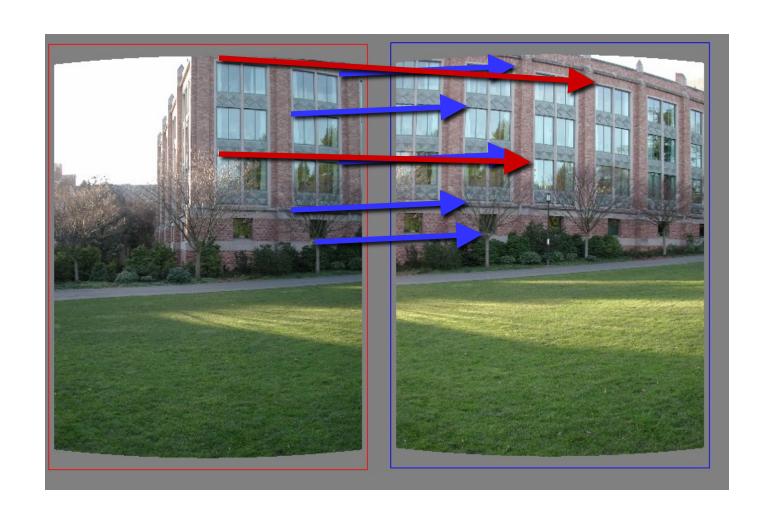


Inliers: 3

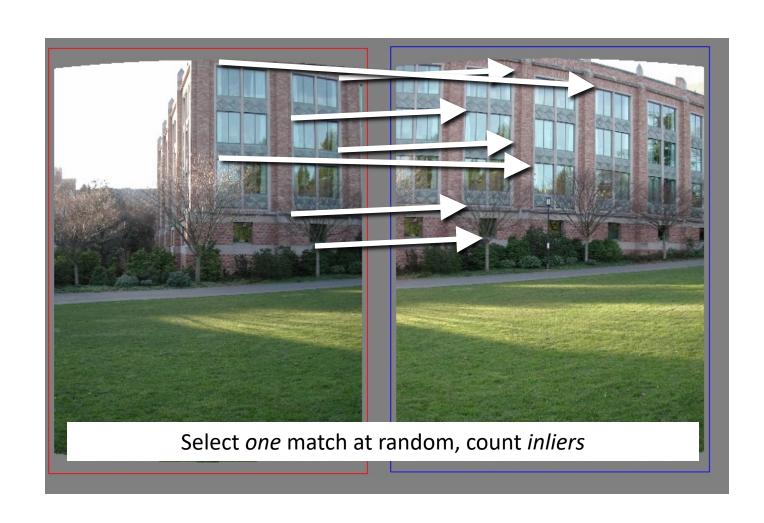
Counting inliers



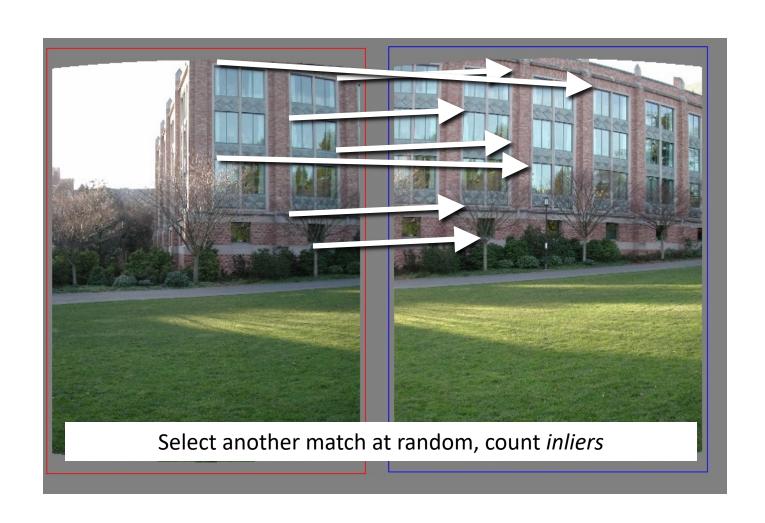
Translations



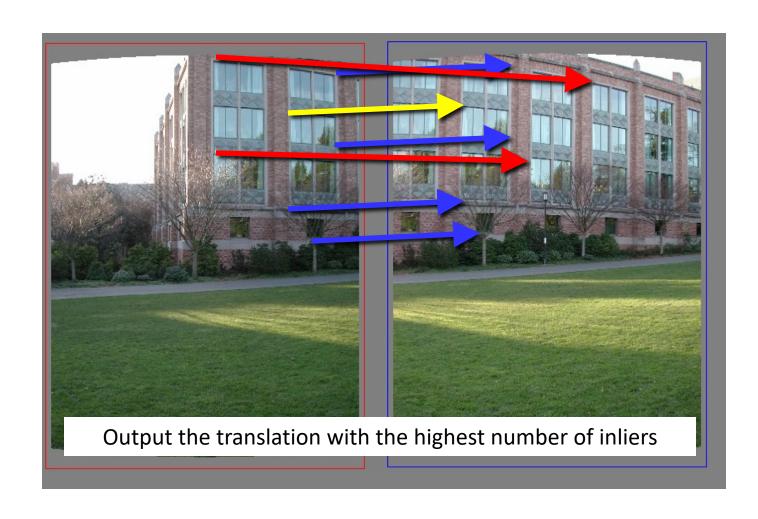
RAndom SAmple Consensus



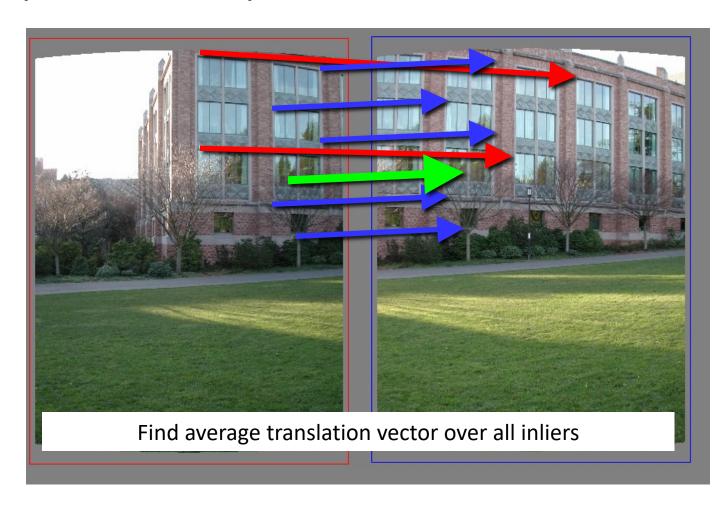
RAndom SAmple Consensus



RAndom SAmple Consensus



Final step: least squares fit



RANSAC

- Idea:
 - All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
 - "All good matches are alike; every bad match is bad in its own way."
 - Tolstoy via Alyosha Efros

RANSAC

General version:

- 1. Randomly choose *s* samples
 - Typically s = minimum sample size that lets you fit a model
- 2. Fit a model (e.g., line) to those samples
- 3. Count the number of inliers that approximately fit the model
- 4. Repeat *N* times
- 5. Choose the model that has the largest set of inliers

RANSAC for estimating homography

- RANSAC loop:
- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute *inliers* where $dist(p_i', \mathbf{H} p_i) < \varepsilon$
- 4. Keep largest set of inliers
- 5. Re-compute least-squares H estimate on all of the inliers

How many rounds?

- If we have to choose s samples each time
 - with an outlier ratio e
 - and we want the right answer with probability p

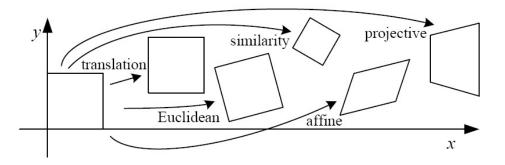
$$N \ge \frac{\log(1-p)}{\log(1-(1-e)^s)}$$

		proportion of outliers <i>e</i>					
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

p = 0.99

How big is s?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)



Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} ig[egin{array}{c c} I & t \end{bmatrix}_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg igg[m{R} igg m{t} igg]_{2 imes 3}$	3	lengths +···	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

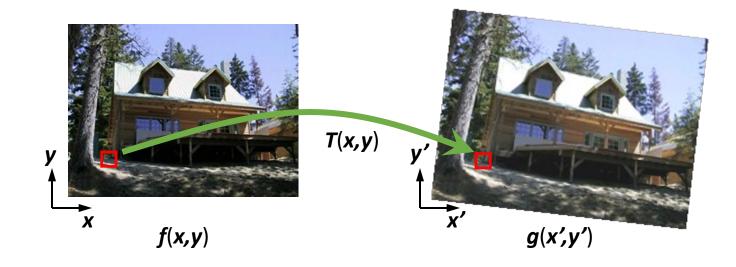
- Parameters to tune
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

Today's class

- Fitting with outliers RANSAC
- Warping
- Blending
- HW3 Motivation

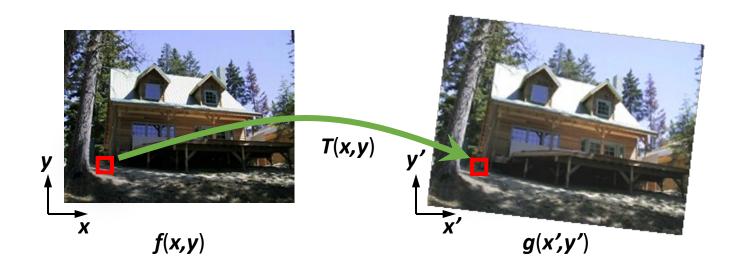
Implementing image warping

• Given a coordinate xform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?



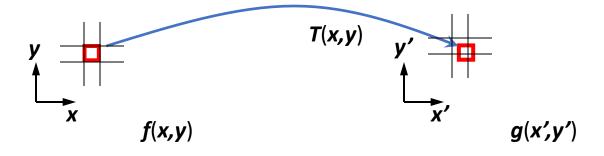
Forward Warping

- Send each pixel (x,y) to its corresponding location (x',y') = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?



Forward Warping

- Send each pixel (x,y) to its corresponding location (x',y') = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (splatting)
 - Can still result in holes



Today's class

- Fitting with outliers RANSAC
- Warping
- Blending
- HW3 Motivation

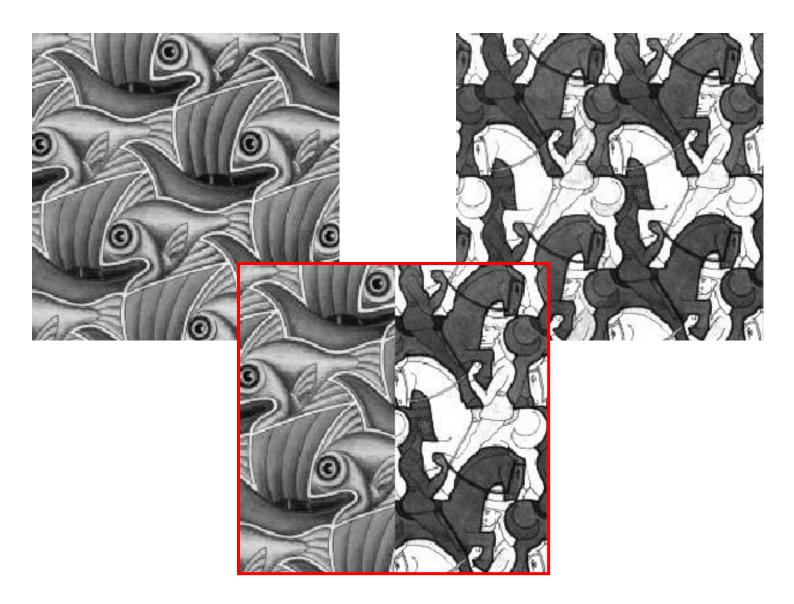
Blending

• We've aligned the images – now what?

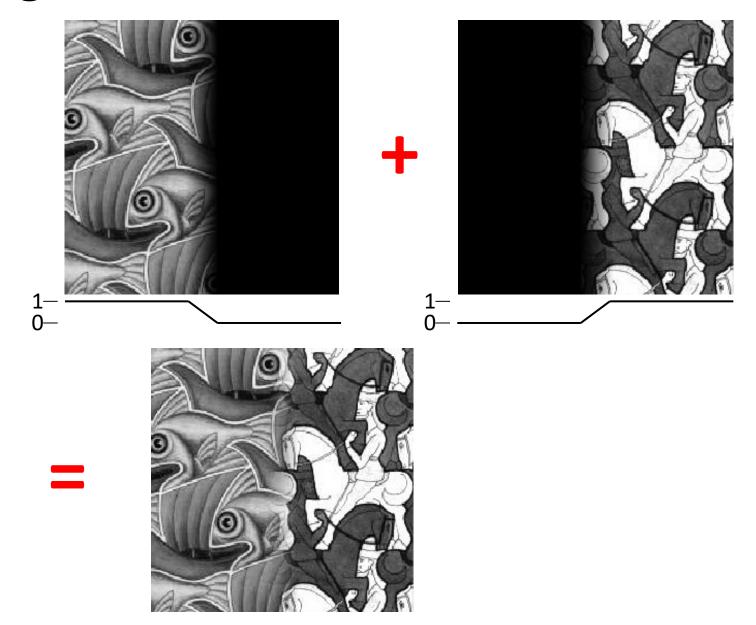
Blending

• Want to seamlessly blend them together

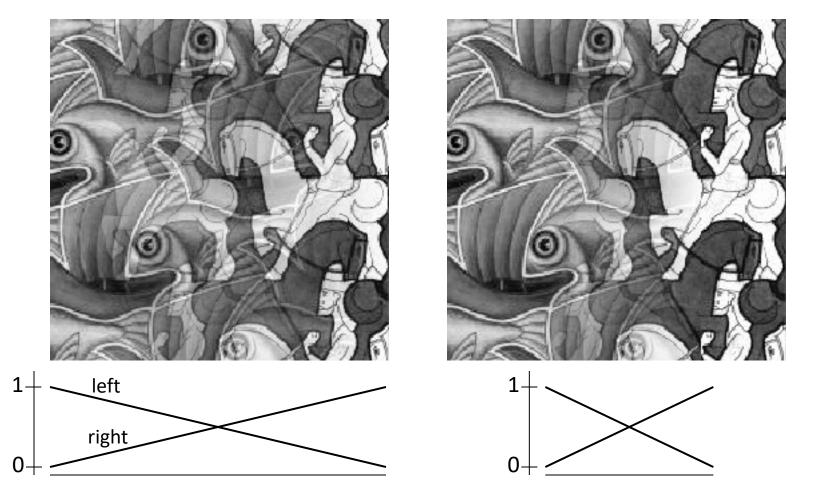
Image Blending



Feathering

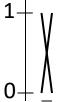


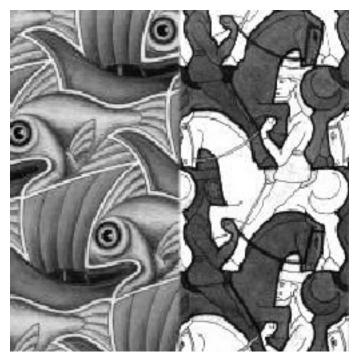
Effect of window size



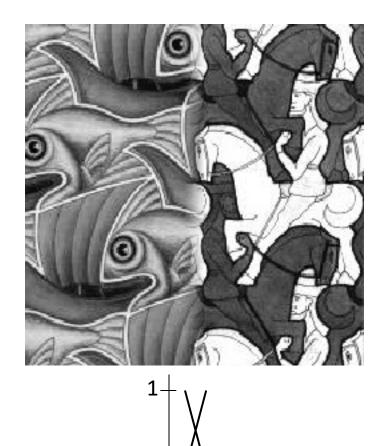
Effect of window size







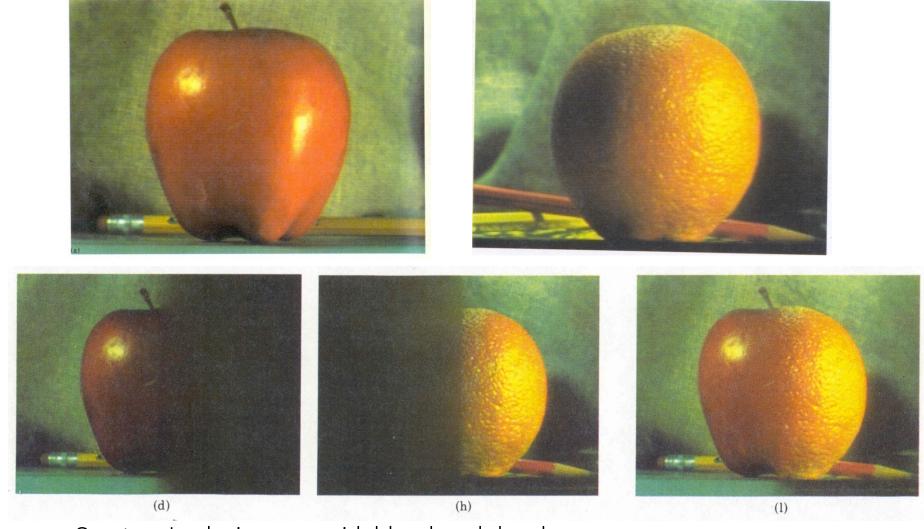
Good window size



"Optimal" window: smooth but not ghosted

• Doesn't always work...

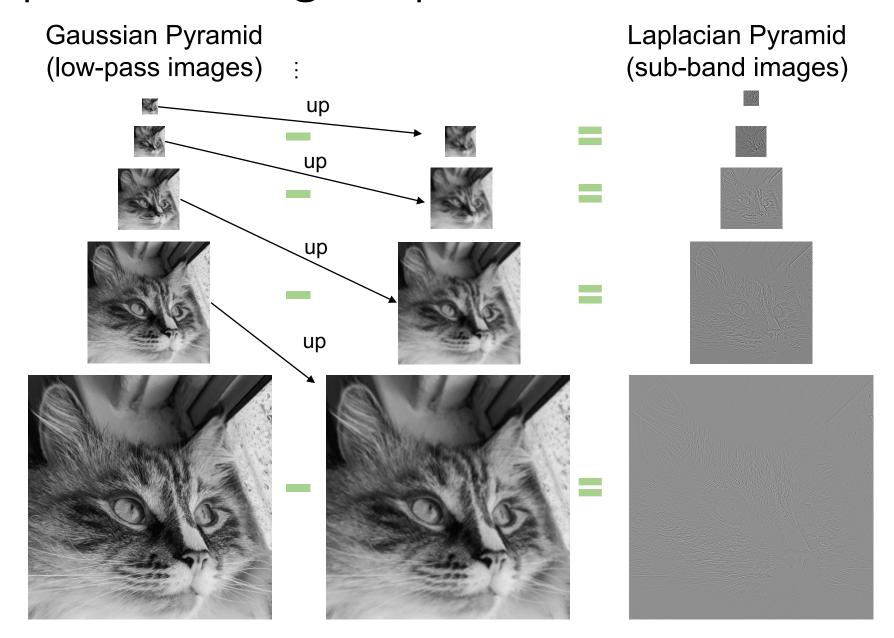
Pyramid blending



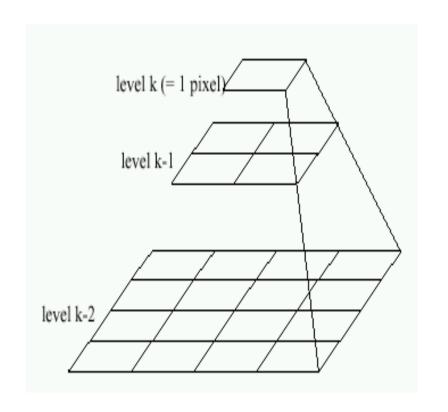
Create a Laplacian pyramid, blend each level

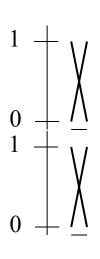
• Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image mosaics</u>, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

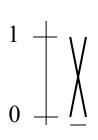
Band-pass filtering in spatial domain

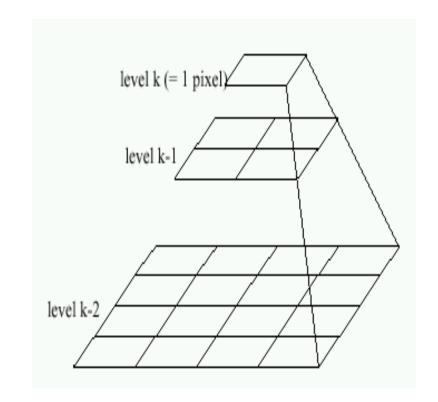


Pyramid Blending





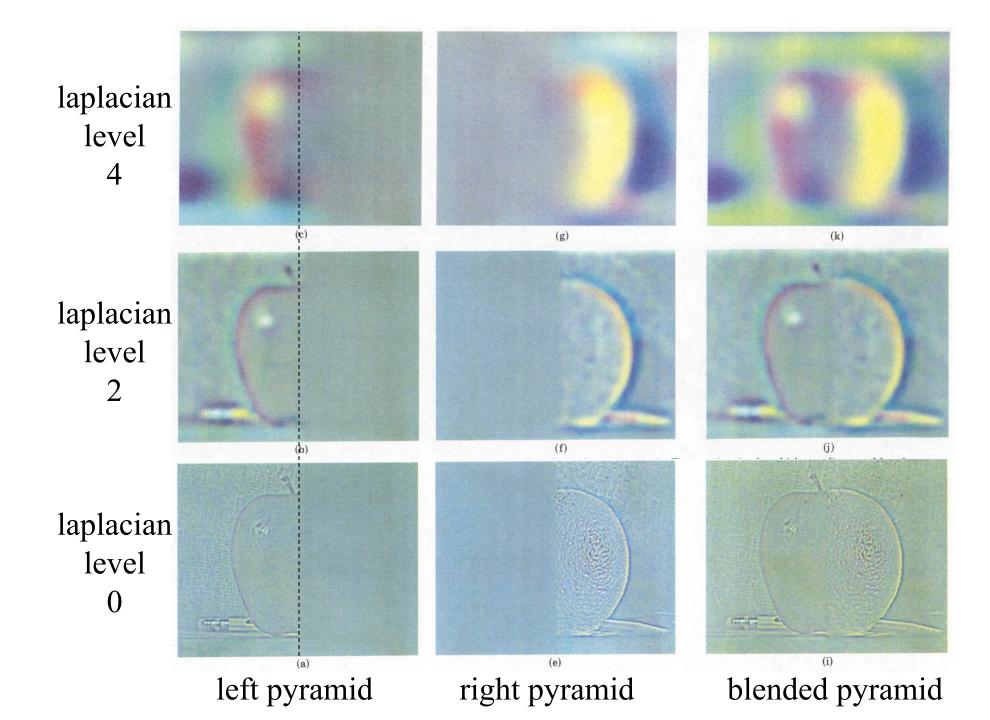




Left pyramid

blend

Right pyramid



Laplacian Pyramid: Blending

- General Approach:
 - 1. Build Laplacian pyramids LA and LB from images A and B
 - 2. Build a Gaussian pyramid *GR* from selected region *R*
 - 3. Form a combined pyramid LS from LA and LB using nodes of GR as weights:
 - LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)
 - 4. Collapse the *LS* pyramid to get the final blended image

Poisson Image Editing

For more info: Perez et al, SIGGRAPH 2003

Today's class

- Fitting with outliers RANSAC
- Warping
- Blending
- HW3 Motivation

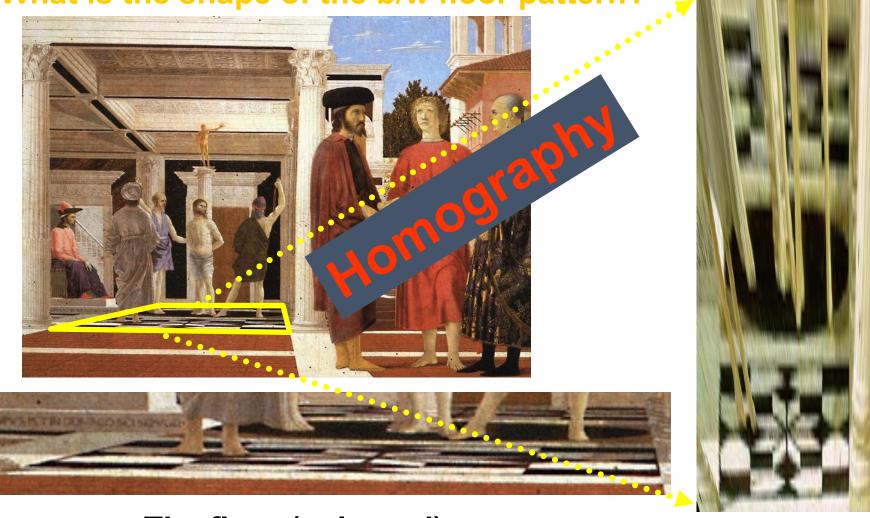
Fun with homographies

Original image

St.Petersburg photo by A. Tikhonov

Virtual camera rotations

What is the shape of the b/w floor pattern?



The floor (enlarged)

Slide from Criminisi

Automatically rectified floor

From Martin Kemp The Science of Art (manual reconstruction)

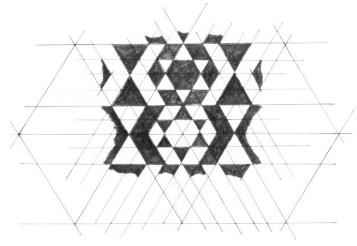
2 patterns have been discovered!

What is the (complicated) shape of the floor pattern?

Automatically rectified floor

St. Lucy Altarpiece, **D. Veneziano**Slide from Criminisi

Automatic rectification



From Martin Kemp, The Science of Art (manual reconstruction)

Slide from Criminisi

Some panorama examples

"Before SIGGRAPH Deadline" Photo credit: Doug Zongker

Some panorama examples

Every image on Google Streetview

Slide Credits

- <u>CS5670, Introduction to Computer Vision</u>, Cornell Tech, by Noah Snavely.
- <u>CS 194-26/294-26</u>: Intro to Computer Vision and Computational Photography, UC Berkeley, by Alyosha Efros.