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Lecture 12:
Where is my cat?

Instructor: Roni Sengupta
ULA: Andrea Dunn, William Li,

Liujie Zheng

Course Website:
Scan Me!



So far: Image Classification
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dense’| |dense| [~

Vector:
4096

Fully-Connected:

4096 to 1000

A 4

Class Scores
Cat: 0.9
Dog: 0.05
Car:0.01



Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, CAT, TREE,

\_ yl SKY RN
~N = ~N

No spatial extent  No objects, just pixels Multiple Objects

This image is CCO public domain




Object Detection: Task Deﬂmtlon
Input: Single RGB Image

Output: A set of detected objects;
For each object predict:

1. Category label (from fixed,
known set of categories)

2. Bounding box (four numbers:
X, y, width, height)




Object Detection: Challenges

- Multiple outputs: Need to output
variable numbers of objects per image

- Multiple types of output: Need to
predict "what” (category label) as well
as “where” (bounding box)

- Large images: Classification works at
224x224; need higher resolution for
detection, often ~800x600




Bounding Boxes

Bounding boxes are
typically axis-aligned

Oriented boxes are
much less common




Object Detection: Modal vs Amodal Boxes

“Modal” detection:
Bounding boxes (usually)
cover only the visible
portion of the object

Amodal detection:

box covers the entire
extent of the object,
even occluded parts

Zhu et al, ”Semantic Amodal Segmentation”, CVPR 2017 This image is CCO Public Domain



Today’s class

* How do we measure Object Detection accuracy?
* Naive approaches & R-CNN
* Fast R-CNN

* Region Proposal Network & Faster R-CNN

* Advanced topics:

* Feature Pyramid Networks to detect at scales
* Single Shot detection



Today’s class

* How do we measure Object Detection accuracy?



Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?




Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.




Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.




Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.




Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”,
loU > 0.7 is “pretty good”,

e

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.




Comparing Boxes: Intersection over Union (loU)

How can we compare our
prediction to the ground-truth box?

Intersection over Union (loU)

(Also called “Jaccard similarity” or
“Jaccard index”):

Area of Intersection

Area of Union

loU > 0.5 is “decent”,
loU > 0.7 is “pretty good”,
loU > 0.9 is “almost perfect”

Puppy image is licensed under CC-A 2.0 Generic license. Bounding boxes and text added by Justin Johnson.




Precision & Recall

* True detection: high intersection over union based on a threshold
* Precision: #itrue detections / #detections
e Recall: #true detections / #true positives

Reject everything: no mistakes

O

Summarize by area under curve
(avg. precision)

Precision =

O

Recall 1

o



Eva ‘ U atl ﬂ g O OJ e Ct All dog detections sorted by score

Detectors: Mean Average .

Precision (mAP) o o
" s under precisonvarecancove [ [ O

All ground-truth dog boxes




Evaluating O

0ject

Detectors: Mean Average
Precision (mAP)

1. For each category, compute Average Precision (AP)
= area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with loU > 0.5, mark it
as positive and eliminate the GT

2. Otherwise mark it as negative

All dog detections sorted by score

>
m

Match: loU > 0.5

All ground-truth dog boxes




Evaluating Object
Detectors: Mean Average
Precision (mAP)

1. For each category, compute Average Precision (AP)
= area under Precision vs Recall Curve

1. For each detection (highest score to lowest score)

1. If it matches some GT box with loU > 0.5, mark it
as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot apoint on PR Curve

Precision

All dog detections sorted by score

>
m

Match: loU > 0.5

All ground-truth dog boxes

Precision=1/1=1.0
Recall=1/3=0.33

|
RecaHI

Precision: #true detections / #detections
Recall: #true detections / #true positives



Evaluating O

0ject

Detectors: Mean Average
Precision (mAP)

1. For each category, compute Average Precision (AP)
= area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with loU > 0.5, mark it
as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plotapoint on PR Curve

Precision

All dog detections sorted by score

Match: loU > 0.5

All ground-truth dog boxes

Precision=2/2=1.0
Recall =2/3 =0.67

| | |
| |
RecaHI

Precision: #true detections / #detections
Recall: #true detections / #true positives




Evaluating O

0ject

Detectors: Mean Average
Precision (mAP)

1. For each category, compute Average Precision (AP)
= area under Precision vs Recall Curve

1. For each detection (highest score to lowest score)

1. If it matches some GT box with loU > 0.5, mark it
as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plotapoint on PR Curve

Precision

All dog detections sorted by score

>
mm

No match > 0.5 loU with GT

All ground-truth dog boxes

Precision = 2/3 = 0.67
Recall =2/3 =0.67

|
RecaHI

Precision: #true detections / #detections
Recall: #true detections / #true positives



Evaluating O

0ject

Detectors: Mean Average
Precision (mAP)

1. For each category, compute Average Precision (AP)
= area under Precision vs Recall Curve

1. For each detection (highest score to lowest score)

1. If it matches some GT box with loU > 0.5, mark it
as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR Curve

Precision

All dog detections sorted by score

>
mm

No match > 0.5 loU with GT

All ground-truth dog boxes

Precision=2/4=0.5
Recall =2/3 =0.67

|
RecaHI

Precision: #true detections / #detections
Recall: #true detections / #true positives



Evaluating O

0ject

Detectors: Mean Average
Precision (mAP)

1. For each category, compute Average Precision (AP)
= area under Precision vs Recall Curve

1. For each detection (highest score to lowest score)

1. If it matches some GT box with loU > 0.5, mark it
as positive and eliminate the GT

2. Otherwise mark it as negative

3. Plot a point on PR Curve

All dog detections sorted by score
>

m m
Match: > 0.5 loU /

All ground-truth dog boxes

Precision =3/5=0.6
Recall=3/3=1.0
1 O O

Precision

|
RecaHI

Precision: #true detections / #detections
Recall: #true detections / #true positives



Evaluating Object
Detectors: Mean Average
Precision (mAP)

1. For each category, compute Average Precision (AP)
= area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with loU > 0.5, mark it
as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plotapoint on PR Curve
2. Average Precision (AP) = area under PR curve

How to get AP = 1.0: Hit all GT boxes with loU > 0.5, and have
no “false positive” detections ranked above any “true
positives”

Precision

All dog detections sorted by score

>
mm

All ground-truth dog boxes

Dog AP =0.86
| RecaHI

Precision: #true detections / #detections
Recall: #true detections / #true positives




Evaluating Object
Detectors: Mean Average
Precision (mAP)

1. For each category, compute Average Precision (AP)
= area under Precision vs Recall Curve

1. For each detection (highest score to lowest score)

1. Ifit matches some GT box with loU > 0.5, mark it
as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve
2. Average Precision (AP) = area under PR curve

2. Mean Average Precision (mAP) = average of AP
for each category

Car AP = 0.65
Cat AP = 0.80
Dog AP =0.86

MAP@0.5 = 0.77



mailto:mAP@0.5

Evaluating Object
Detectors: Mean Average
Precision (mAP)

1. For each category, compute Average Precision (AP) mA :)@O 5=0.77
= area under Precision vs Recall Curve S )
1. For each detection (highest score to lowest score) mA P @ O . 5 5 = O 7 1
1. If it matches some GT box with loU > 0.5, mark it _
as positive and eliminate the GT mA P @O 60 - 065

2. Otherwise mark it as negative
3. Plotapoint on PR Curve

2. Average Precision (AP) = area under PR curve mAP @ 095 = O 2

2. Mean Average Precision (mAP) = average of AP
for each category

3. For “COCO mAP”: Compute mAP@thresh for each COCOmAP=0.4
loU threshold (0.5, 0.55, 0.6, ..., 0.95) and take average



mailto:mAP@0.5
mailto:mAP@0.55
mailto:mAP@0.60
mailto:mAP@0.95

Today’s class

* Naive approaches & R-CNN



So far: Image Classification
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Vector:
4096

Fully-Connected:

4096 to 1000

A 4

Class Scores
Cat: 0.9
Dog: 0.05
Car:0.01



DEteCtiﬂg d Sing|e iject “\What” Correct label:

Cat l
| Fully Class Scores Sof
Often pretrained Connected: Cat:0.9 —— oLtmax
on ImageNet 4096101000~ pyo: 0,05 955 Multitask
(Transfer learning) Car: 0.01 LOSS
Sum
Vector: \ '
Fully
Treat localization as a 4096 Zgg;‘?tjd: Box . — L2 Loss
regression problem! °" Coordinates T
(%, y, w, h)
Problem: Images can have  “\\Where” Correct box:

more than one object! (X, vy, w’, i)



Need different numbers
of outputs per image

Detecting Multiple Objects

CAT: (x, y, w, h) 4 numbers

DOG: (x, y, w, h)

DOG: (x, y, w, h) 12 numbers
CAT: (x, y, w, h)

DUCK: (x, y, w, h) Many
DUCK: (x, y, w, h) numbers!

Duck image is free to use under the Pixabay license



Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Dog? NO
Cat? NO
Background? YES




Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Dog? YES
Cat? NO
Background? NO




Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Dog? YES
Cat? NO
Background? NO




Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Dog? NO
Cat? YES
Background? NO




Multiple Objects: Sliding Window

Apply a CNN to many different
crops of the image, CNN classifies
each crop as object or background

Question: How many possible boxes
are there in an image of size H x W?

Consider a box of size h x w:
Possible x positions: W —-w + 1
Possible y positions: H—h +1
Possible positions:
(W=-w+1)*(H-h+1)

800 x 600 image
has ~58M boxes!
No way we can

evaluate them all

Total possible boxes of different size h x w:
w

Z W—w+1)(H-h+1)
h=1

w=1

_HH+DHWW +1)
B 2 2




Region Proposals

Find a small set of boxes that are likely to cover all objects

Often based on heuristics: e.g. look for “blob-like” image regions
Relatively fast to run; e.g. Selective Search algorithm gives 2000 region
proposals in a few seconds on CPU

v

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, JCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014



R-CNN: Region-Based CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN

Regions of
Interest (Rol)
from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN

/___/ Warped image
regions (224x224)

g;./' Regions of

! & Interest (Rol)
image / e e T from a proposal
: | N 4 method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN

Conv
Net

Conv
Net

Forward each
region through
ConvNet

ﬁ Warped image

regions (224x224)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.

Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

g;” Regions of

Interest (Rol)
from a proposal
method (~2k)


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN

Class

Class

Classify each region

Conv

Conv
Net

Class
Conv Forward each
Net region through
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

ﬁ Warped image

regions (224x224)

ﬁ" Regions of

Interest (Rol)
from a proposal
method (~2k)


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN

Classify each region

Bounding box regression:

Bbox

Class

Bbox

Class

Bbox

Class

Predict “transform” to correct the
Rol: 4 numbers (t,, t,, ty, ty)

Forward each

Conv
Net

region through

Conv
Net

Conv

ConvNet

ﬁ Warped image

regions (224x224)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

—

G/

‘ E—
—_—
lg

= ___/

Regions of
Interest (Rol)
from a proposal
method (~2k)


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN: Region-Based CNN

Classify each region

Bounding box regression:
Predict “transform” to correct the
Rol: 4 numbers (t,, t,, ty, tw)

Forward each
region through
ConvNet

ﬁ Warped image

Bbox || Class
Bbox Class
Bbox | | Class g
Conv
Conv Net
Conv Net
Net !

regions (224x224)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Regions of
Interest (Rol)

method (~2k)

from a proposal

Region proposal: (py, py, Ph, Pw)
Transform: (t,, t,, t,, ty)

Output box: (b, by, by, by)

Translate relative to box size:
by = px + Pwix by = Py *+ Pnly

Log-space scale transform:
bw = pwexp(ty) bn = prexp(ty)



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN
Training

Ground-Truth boxes




R-CNN
Training

Ground-Truth boxes

Region Proposals




R-CNN
Training

Categorize each region proposal as positive,
negative, or neutral based on overlap with
ground-truth boxes:

Positive: > 0.5 loU with a GT box
Negative: < 0.3 loU with all GT boxes
Neutral: between 0.3 and 0.5 loU with GT boxes

GT Boxes

Positive

Neutral

Negative




R-CNN
Training

Crop pixels from
each positive and
negative proposal,
resize to 224 x 224

GT Boxes | Positive |

Neutral | Negative |




R-CNN
Training

GT Boxes | Positive |

Neutral | Negative |

Run each region through CNN
Positive regions: predict class and transform
Negative regions: just predict class

Class target: Cat
Box target: mm——p

Class target: Dog
BoX target: mmm—p

Class target: Background
Box target: None




R-CNN Test-
Time

Region Proposals

1. Run proposal method

2. Run CNN on each proposal to get class
scores, transforms

3. Threshold class scores to get a set of

detections

2 problems:

- CNN often outputs overlapping boxes
- Non-maximal suppression

- How to set thresholds?
- Hyper-parameter



Bbox

Class

Bbox

Class

Conv
Net

Conv
Net

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

R-CNN: Region-Based CNN

Bbox || Class

Problem: Very slow!
Need to do ~2k forward
passes for each image!

Solution: Run CNN
*before™ cropping!


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Today’s class

 Fast R-CNN



“Slow” R-CNN

Process each region

independently
| Bbox || Class |
| Bbox | | Class
[Bbox | [ Class | ®
Conv
Conv Net

Conv

Net




Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

“Slow” R-CNN

Process each region

independently
| Bbox || Class |
| Bbox | | Class
[Bbox | [ Class | ®
Conv
Conv Net

Conv

Net



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

/ /Image features

“Backbone” t
network:

AlexNet, VGG,
ResNet, etc

ConvNet

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Run whole image
through ConvNet

“Slow” R-CNN

Process each region
independently

| Bbox || Class |

| Bbox |

Class

[Bbox | [ Class | ®

Conv

Conv
Net

Conv
Net



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN
Process each region

Regi ; independently

egions o

Interest (Rols) Shor] (G | Bbox || Class |

from a proposal X % ass

method | Bbox | | Class | o
ﬁ@:ﬂ/lmage features Com et

“Backbone” Run whole image Conv et

network: through ConvNet

AlexNet, VGG,
ResNet, etc

ConvNet

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of
Interest (Rols)
from a proposal

,— Crop + Resize features

method ﬁ@iﬁ/lmage features

“Backbone”

network:
AlexNet, VGG,
ResNet, etc

ConvNet

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission

Run whole image
through ConvNet

“Slow” R-CNN

Process

each region

independently

| Bbox || Class |

| Bbox |

Class

[Bbox | [ Class | ®

Conv
Conv Net
Net



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN
Process each region

. independently

Regions of = z = || Per-Region Network

Interest (Rols) 5 5 & mar] (G | Bbox || Class |
(0).4 ass

from a proposal b b Crop + Resize features [Bbox | [ Class | "®

method ﬁ@&i/lmage features Conv C,;’Qtv

“Backbone” Run whole image Conv et

network: through ConvNet

AlexNet, VGG, =

ResNet, etc Oy e

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Bbox || Bbox || Bbox | Category and box “Slow” R-CNN
Class | | Class | | Class | transform per region Process each region

T 2 independently

Regions of = z z || Per-Region Network

Interest (Rols) 5 5 & mar] (G | Bbox || Class |
OX ass

from a proposal b b Crop + Resize features [Bbox | [ Class | "®

meth

ethod #&Mlmage features Conv Cl\(l):tv
“Backbone” Run whole image Conv et
network: through ConvNet

AlexNet, VGG,

ResNet, etc ConvNet ?

(AURITERRLETY

' Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of
Interest (Rols)

from a proposal

Bbox Bbox Bbox
Class Class Class
=2 =2 =2
=2 =2 Z

(@) (@)

Category and box

transform per region

Per-Region Network

& b Crop + Resize features

method ﬁ@iﬁ/lmage features

“Backbone”
network:

AlexNet, VGG,

ResNet, etc

Girshick, “Fast R-CNN”, ICCV 2015. Figure co

ConvNet

pyright Ross Girshick, 2015; source.

. Reproduced with permission

Run whole image
through ConvNet

Per-Region network is
relatively lightweight

Most of the computation
happens in backbone
network; this saves work for

overlapping region proposals


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of
Interest (Rols)
from a proposal

Category and box

transform per region

Bbox Bbox Bbox
Class Class Class
=2 =2 =2
=2 =2 =2
(@) (@) (@)

Per-Region Network

Crop + Resize features

method é !Ziy/ Image features

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

ConvNet

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

un whole image
hrough ConvNet

nput image

Example:

When using
AlexNet for
detection, five
conv layers are
used for
backbone and
two FC layers are
used for per-
region network


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of
Interest (Rols)
from a proposal

Category and box

transform per region

Bbox Bbox Bbox
Class Class Class
=2 =2 =2
=2 =2 =2
(@) (@) (@)

Per-Region Network

Crop + Resize features

method é !Ziﬁ/ Image features

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

ConvNet

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

un whole image
hrough ConvNet

nput image

3x3 conv, 512, /2

O

3x3 conv, 128

O
3x3 conv, 128

3x3 conv, 128
Q

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64

Q
3x3 conv, 64
3x3 conv, 64

Example:

For ResNet, last
stage is used as
per-region
network; the rest
of the network is
used as
backbone


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN vs “Slow” R-CNN

Test time (seconds)

Tral ni ng tl me (HOU rS) I Including Region propos... [l Excluding Region Propo...
SPP-Net 23
Fast R-CNN. 8.75 N2 Problem: Runtime
Fast R-CNN o i
. e - e 100 0.32 dominated by

region proposals!
30g p 4?

0 15

Recall: Region proposals computed by
. s N . ” .
Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. heurIStIC SeleCt|Ve SearCh algorlthm On
[, “Spatial pyramid lingind nvolutional networks for visual r nition”, 20 ’ H .
Bk ot Rt ICoy 01 Ccep convolutional nefuworks for visual recognition’, ECCY 2014 CPU -- let’s learn them with a CNN instead!

60



Today’s class

* Region Proposal Network & Faster R-CNN



Faster R-CNN: Learnable Region Proposals

Insert Region Proposal
Network (RPN) to predict
proposals from features

Otherwise same as Fast R-CNN:
Crop features for each
proposal, classify each one

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission
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Region Proposal Network (RPN)

Run backbone CNN to get
features aligned to input image

\
CNN
\ o
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds
features aligned to input image to a point in the input

Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



. Imagine an anchor box
Region Proposal Network (RPN) of fixed size at each

point in the feature map

Run backbone CNN to get Each feature corresponds
features aligned to input image to a point in the input
—
(<
CNN
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



. Imagine an anchor box
Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a point in the input

\
CNN °
. -
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



. Imagine an anchor box
Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a point in the input

Nag Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



. Imagine an anchor box
Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a point in the input

\
CNN
o
o
YUt ITTTaEe Image features Classify each anchor as
(e.g. 3 x 640 x 480) (e.g.512x5x 6) positive (object) or

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



. Imagine an anchor box
Region Proposal Network (RPN) of fixed size at each

point in the feature map
Run backbone CNN to get Each feature corresponds

features aligned to input image to a point in the input

\
CNN °
o
o
YUt ITTTaEe Image features Classify each anchor as
(e.g. 3 x 640 x 480) (e.g.512x5x 6) positive (object) or

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds
features aligned to input image to a point in the input

| Map Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Imagine an anchor box
of fixed size at each
point in the feature map

Classify each anchor as
positive (object) or
negative (no object)



Region Proposal Network (RPN)

Run backbone CNN to get Each feature corresponds
features aligned to input image to a point in the input
\
([
CNN o
o
-
TPUT Tage Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Predict object vs not object
scores for all anchors with
a conv layer (512 input
filters, 2 output filters)

— Anchor is
object?
2X5x6

Conv

-

Classify each anchor as
positive (object) or
negative (no object)



For positive anchors, also
predict a transform that

Region PropOSa| NetWOrk (RPN) converting the anchor to

Run backbone CNN to get Each feature corresponds  the (like R-CNN)
features aligned to input image to a point in the input Predict transforms with conv
— Anchor is
T < object?
2X5x6
CNN ° Conv
Anchor
- e - ” transforms
4x5x6
TPUT ITTTaBe Image features Classify each anchor as

negative (no object)

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a point in the input (here K =6)
o | o | o | o | om0 — Anchor is
T \ object?
® O ® ® ® ® —
2KX5x6
CNN ® ® e O O ® Conv
Anchor
® O ® O O O —
- L transforms
| JQ\‘ O ® O O O O AK x5 x 6
S ———— During training, supervised
InpUt Image Image features positive / negative anchors
(e.g. 3 x 640 x 480) (e.g. 512 x5x6) and box transforms like R-CNN
Positive anchors: >= 0.7 loU Negative anchors: < 0.3 loU with Neutral anchors: between 0.3
with some GT box (plus all GT boxes. Don’t supervised and 0.7 loU with all GT boxes;

highest loU to each GT) transforms for negative boxes. ignored during training



In practice: Rather than using

Region Proposal Network (RPN)  oneanchor per point, instead

consider K different anchors

Run backbone CNN to get Each feature corresponds with different size and scale
features aligned to input image to a point in the input (here K =6)
-~ Anchor is
B object?
 ——
2Kx5x6
CNN ® Conv
Anchor
 ——
L — transforms
R ke AKX 5x6
Input image Image features At test-time, sort all K*5*6 boxes
(e.g. 3 x 640 x 480) (e.g.512x5x6) by their positive score, take top

300 as our region proposals

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



Faster R-CNN: Learnable Region Proposals

Jointly train with 4 losses:

1. RPN classification: anchor box is

object / not an object

2. RPN regression: predict transform
from anchor box to proposal box

3. Object classification: classify

proposals as background / object

class

4. Object regression: predict transform
from proposal box to object box

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Figure copyright 2015, Ross Girshick; reproduced with permission
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Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a
Two-stage object detector

Classification Boun

ding-box

loss % ﬂ regression loss
N

Classification
loss

Bounding-box
regression loss

First stage: Run once per image
Backbone network
Region proposal network

Second stage: Run once per region
Crop features: Rol pool / align
Predict object class
Prediction bbox offset

Ro

VN

1

proposals

7/

p .
Y

Region Proposal Ne

feature map

%

L)

CNN

R o jl.,_"

oooling




Faster R-CNN: Learnable Region Proposals

R-CNN Test-Time Speed

R-CNN

SPP-Net

Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30 45



Today’s class

* Advanced topics:
* Feature Pyramid Networks to detect at scales
* Single Shot detection



Dealing with Scale

We need to detect objects of many different scales.
How to improve scale invariance of the detector?

}
J
i
|

|
Y

J

<.

This image is free for commercial
use under the Pixabay license




Dealing with Scale: Image Pyramid

Classic idea: build an
image pyramid by resizing
the image to different
scales, then process each
image scale independently.

Problem: Expensive! Don’t

share any computation
between scales

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Object
Detector

Object
Detector

Object
Detector




Dealing with Scale: Multiscale Features

CNNs have multiple stages that
operate at different resolutions.
Attach an independent detector
to the features at each level

Problem: detector on early
features doesn’t make use of the
entire backbone; doesn’t get
access to high-level features

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

Stage 5 =—> 7 x 7 features —>

Object
Detector

Stage 4 =—> 14 x 14 features —>

Object
Detector

Stage 3 =—> 28 x 28 features =—>

Object
Detector

Sta

Object

Detector

Stgm

224 x 224 Image




Dealing with Scale: Feature Pyramid Network

Add top down
connections that feed Stage 5

information from high
level features back down

Stage 4 =» 14 x 14 feats
to lower level features

Stage 3 =» 28 x 28 feats

Stage 2 > 56 x 56 feats

Stem

f

224 x 224 Image

Lin et al, “Feature Pyramid Networks
for Object Detection”, ICCV 2017

» 7 x 7 feats —>

Object
Detector




Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7 x 7 foats ——b Dot)ieft

. . . etector

information from high 2x upsample

level features back down Object
Stage 4 =» 14 x 14 feats =—» 1x1 conv 5

to lower level features etector

Stage 3 =» 28 x 28 feats

Stage 2 > 56 x 56 feats

Stem

f

Lin et al, “Feature Pyramid Networks 224 x 224 Image
for Object Detection”, ICCV 2017



Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7% 7 feats — DOEJe;:t
: . . etector
information from high 2x upsample
level features back down Object
Stage 4 =» 14 x 14 feats =—» 1x1 conv 5
to lower level features etector
2x upsample
Stage 3 =» 28 x 28 feats = 1x1 conv Object
Detector

Stage 2 > 56 x 56 feats

Stem

f

Lin et al, “Feature Pyramid Networks 224 x 224 Image
for Object Detection”, ICCV 2017




Dealing with Scale: Feature Pyramid Network
Add top down

connections that feed Stage 5 > 7% 7 feats — DOEJe;:t
: . . etector
information from high 2x upsample
level features back down Object
Stage 4 =» 14 x 14 feats =—» 1x1 conv 5
to lower level features etector
2x upsample
Stage 3 =» 28 x 28 feats = 1x1 conv Object
Detector
2x upsample
Stage 2 > 56 x 56 feats =—»{ 1x1 conv + > Object
Detector
Stem
Lin et al, “Feature Pyramid Networks 224 x 224 Image

for Object Detection”, ICCV 2017



Faster R-CNN: Learnable Region Proposals

Question: Do we really
need the second stage?

Faster R-CNN is a
Two-stage object detector

Classification

Bounding-box

loss % @ regression loss
A

Classification
loss

Bounding-box
regression loss

Ro

First stage: Run once per image
Backbone network
Region proposal network

Second stage: Run once per region
Crop features: Rol pool / align
Predict object class
Prediction bbox offset

proposals/
Region Proposal Network
feature map

VN

__
//J/

v L]

booling




Similar to RPN — but rather

Single-Stage Detectors: RetinaNet  than classify anchors as

object/no object, directly

Run backbone CNN to get Each feature corresponds predict chjeit category
features aligned to input image to a point in the input (among C categories) or
background
Anchor
\
D . g —_— classification
TS Conv 2K*(C+1)x5x6
o C @
Anchor
GG T TR R — transforms
‘x+§ﬁf* SRy LGN s 4K x5x 6
Inpt Iag o Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017



Single-Stage Detectors: RetinaNet

In practice, RetinaNet also uses Feature Pyramid Network to handle multiscale

/*
7

Yo

(a) ResNet (b) feature pyramid net

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

class+box
subnets

class+box
subnets

class+box
subnets

class /

subnet

box

subnet /

(c) class subnet (top)

—————————————————————————————————

________________

(d) box subnet (bottom)

Figure credit: Lin et al, ICCV 2017



Single-Stage Detectors: RetinaNet

Single-Stage detectors can be much faster than two-stage detectors

38 r
—@ RetinaNet-50
36 | ~0 RetinaNet-101
AP time
[A] YOLOV2T [27] |21.6 25
0 34+ [B] SSD321 [22] |28.0 61
< E [C]DSSD321[9] [28.0 85
(@) [D] R-FCNT [3] 299 85
Q32+ [E] SSD513 [22] |312 125
3 [E]
@
30 [D] :
RetinaNet-101-500 [34.4 90
RetinaNet-101-800 [37.8 198
28 - @ Not plotted ¥Extrapolated time
50 100 150 200 250

inference time (ms)

Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Faster R-CNN
with Feature
Pyramid
Network

Figure credit: Lin et al, ICCV 2017



Other popular Single-Stage Detectors

F-[

Laper
Talubdsd

YOLO (You Only Look Once) — v1 to v7 versions

L

Extra Feature Layers
A

VGG-16 It
. through Convs5_3 layer Classifier : Conv: 3x3x(4x(Classes+4)) 2
Y
\ R Classifier : Conv: 3x3x(6x(Classes+4)) 8
\ \ (O]
TR T, o (I, 5
| | o
| |
! 38 ™ 19 &
| | I~
I I - ©
I Comvs 3 I m ?g)’ 5 Conv: 3x3x(4x(Classes+4)) | 2
: : . Comva_2 N %
I I =
T % e 1 " § Con10_2 Com1_2 %
N | 3 N a]
Rfinr e eI 1Y | 1024 1024 512 244 256 Qm i
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256  Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128

Conv: 3x3x512-52 Conv: 3x3x256-82 Conv: 3x3x256-s1 Conv: 3x3x256-51

SSD Multibox detector, developed at UNC



Single-Stage Detectors: FCOS (“Anchor-free” detector)

Run backbone CNN to get Each feature corresponds
features aligned to input image to a point in the input

\ \
CNN CNN
- o
e _
Iput Image | Image features

(e.g. 3 x 640 x 480) (e.g.512x5x6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019



Single-Stage Detectors: FCOS (“Anchor-free” detector)

Classify points as
positive if they fall into

Run backbone CNN to get Each feature corresponds a GT box, or negative if
features aligned to input image to a point in the input they don’t
Train independent per-
. . 2 < = . category logistic regressors
T T Class scores
e ° e &) &) ° — Cx5x6
CNN e | o | @ T, o | o CNN
(@} (@} (@} (@} (@} o
/ /
S\ ° ° ° ° ° ®
l‘\ \\..- Vs e
Input Image Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019



Single-Stage Detectors: FCOS (“Anchor-free” detector)

For positive points, also
Run backbone CNN to get Each feature corresponds regress distance to left, right,

features aligned to input image to a point in the input top, and bottom of ground-
truth box (with L2 loss)

- Class scores

—> Cx5x6

CNN p CNN Box edges
—> 4x5x6

7
MAER=25 0 N
y \\,‘ )

Inpu Iag | Image features
(e.g. 3 x 640 x 480) (e.g.512x5x6)

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019



Single-Stage Detectors: FCOS (“Anchor-free” detector)

Finally, predict “centerness”
for all positive points (using

Run backbone CNN to get Each feature corresponds < ,
logistic regression loss)

features aligned to input image to a point in the input

Class scores

T : — —/™ Cx5x6
Box edges

CNN CNN | —s 4x5x6
Centerness

= — 1x5x6

W \\ Al
B “\ 58 M e
Input Image Image features ~ [min(L,R) min(7’ B)
(e.g. 3 x 640 x 480) (e.g.512x5x6) centerness = | ax(L,R) max(T,B)
Test-time: predicted “confidence” for the box from Ranges from 1 at box center to 0 at box edge

each point is product of its class score and centerness.



Single-Stage Detectors: FCOS (“Anchor-free” detector)

FCOS also uses a Feature Pyramid Network with heads shared across stages

7x8 /128 P74 > Head
f A

13x16 /64 / B // > Head Classification "
] ol HxWxC .
G5 : i

25x32 /32 f ,Z B3 y » Head Eead > N — Cegtxe;}xfss
| HxWx256  HxWx256
Ca | pa ¥ X Wx x Wx

50x64 /16 3 Head 5 Regression
: L o— il — Gl
- Ja | P | ¥ e

100x128 /8 ! ; Ny

RS o | Head LD HXWx256  HxWx256
800x1 024 . Shared Heads Between Feature Levels
HxW /s Backbone Feature Pyramid Classification + Center-ness + Regression

Tian et al, “FCOS: Fully Convolutional One-Stage Object Detection”, ICCV 2019



Ssummary

“Slow” R-CNN: Run
CNN independently
for each region

Bbox || Class
Bbox | | Class

" Conv Forward each

7= Regions of
Interest (Rol)

image _— 4 g froma proposal

method (~2k)

Conv Net region through
Net ConvNet
Conv
ﬁWarped image
regions (224x224)

Fast R-CNN: Apply
differentiable
cropping to shared
image features

Boox || Bbox || Bbox | Category and box
Class | | Class || class | transform perregion

I I Per-Region Network
o o

& b Crop + Resize features

Regions of
Interest (Rols)

L (Gllng

from a proposal

method
Image features

“Backbone” " Run whole image
network: through ConvNet
AlexNet, VGG, »—
ResNet, etc Longhe _g

&7

g

‘?:/ N % B Inputimage

Single-Stage:
Fully convolutional
detector

Faster R-CNN:
Compute proposals
with CNN

With anchors: RetinaNet
Anchor-Free: FCOS



Object Detection on COCO test-dev

Leaderboard Dataset
80
60
oo
<
2 40 L
> Faster R-CNN (box refin
2 "
- SSD512
Fast=RENN
20| &
0
2016

View

box mAP v by Date

v for

DyHead (Swin-L, multi scale,.se,lf-trainiﬁg)——’

All models

FocalNet-H (DINO)

DetectoRS (ResNeXt-101-64x4d, multi-scalg)
—

NAS-FPN (AmoebaNet-D;-learned aug)

D-RFCN + SNIP (DPN-98 with flip, multi-scale)
Mask R-CNN (ResNeXt-101-EPN),

ent, context.@ulti-scale testing)

2017

2018

Other models

2019 2020

-~ Models with highest box mAP

2021

2022

2023



Slide Credits

* EECS 442/498 Computer Vision, by Justin Johnson & David Fouhey,
U Michigan.



https://web.eecs.umich.edu/~justincj/teaching/eecs442/WI2021/

