Lecture 16: Camera Models -2

Instructor: Roni Sengupta
ULA: Andrea Dunn Beltran, William Li, Liujie Zheng

Course Website:

Coordinate frames

Camera Extrinsic: Change Camera Intrinsic: Change coordinate from world to camera. coordinate from camera to image. (3D -> 3D) M
$K \quad$ (3D $\rightarrow 2 \mathrm{D})$

World coordinates

Camera coordinates

Image coordinates

A camera is a mapping between the 3D world and a 2D image

2D image point

$\begin{array}{cc}\text { camera } & \text { 3D world } \\ \text { matrix } & \text { point }\end{array}$

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

homogeneous
image
3×1

Camera
matrix
3×4
homogeneous world point
4×1

The (rearranged) pinhole camera

Today's Class

- Perspective Distortion
- Camera Calibration
- Vanishing Points and Lines

Today's Class

- Perspective Distortion
- Camera Calibration - Vanishing Points and Lines

The 2D view of the (rearranged) pinhole camera

Perspective distortion: magnification changes with
depth

Perspective projection in 2D
$\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}f X / Z & f Y / Z\end{array}\right]^{\top}$

Perspective distortion

long focal length

mid focal length

short focal length

Perspective distortion

http://petapixel.com/2013/01/11/how-focal-length-affects-vour-subjects-apparent-weight-as-seen-with-a-cat/

Forced perspective

The Ames room illusion

The Ames room illusion

Dolly Zoom aka Vertigo Effect

Forced Perspective in displays

Today's Class

- Perspective Distortion

- Camera Calibration

Pose Estimation

Given a single image,
estimate the exact position of the photographer

+ the intrinsics of the camera (focal length)

Geometric camera calibration

Given a set of matched points

$$
\left\{\begin{array}{c}
\{2,20 \\
\text { point in 3D } \\
\text { space } \\
\text { point in the } \\
\text { image }
\end{array}\right.
$$

Same setup as homography estimation
(slightly different derivation here)
and camera model

$\boldsymbol{x}=\underset{\substack{\text { popectar } \\ \text { moded }}}{\boldsymbol{f}}(\mathbf{X} ; \boldsymbol{p})=\underset{\substack{\text { camanesees } \\ \text { matix }}}{\mathbf{P}}$

Find the (pose) estimate of

Mapping between 3D point and image points

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ll}
- & \boldsymbol{p}_{1}^{\top}- \\
- & \boldsymbol{p}_{2}^{\top}-
\end{array}\right]\left[\begin{array}{c}
\mid \\
\boldsymbol{X} \\
\mid
\end{array}\right]}
\end{aligned}
$$

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

(non-linear relation between coordinates)
How can we make these relations linear?

$$
x^{\prime}=\frac{\boldsymbol{p}_{1}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}} \quad y^{\prime}=\frac{\boldsymbol{p}_{2}^{\top} \boldsymbol{X}}{\boldsymbol{p}_{3}^{\top} \boldsymbol{X}}
$$

Make them linear with algebraic manipulation...

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

Now we can setup a system of linear equations with multiple point correspondences

$$
\begin{aligned}
& \boldsymbol{p}_{2}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} y^{\prime}=0 \\
& \boldsymbol{p}_{1}^{\top} \boldsymbol{X}-\boldsymbol{p}_{3}^{\top} \boldsymbol{X} x^{\prime}=0
\end{aligned}
$$

In matrix form $\ldots .\left[\begin{array}{ccc}\boldsymbol{X}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}^{\top} \\ \mathbf{0} & \boldsymbol{X}^{\top} & -y^{\prime} \boldsymbol{X}^{\top}\end{array}\right]\left[\begin{array}{l}\boldsymbol{p}_{1} \\ \boldsymbol{p}_{2} \\ \boldsymbol{p}_{3}\end{array}\right]=\mathbf{0}$

For N points ...

$$
\left[\begin{array}{ccc}
\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\
\vdots & \vdots & \vdots \\
\boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\
\mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]=\mathbf{0} \quad \begin{aligned}
& \text { How do we solve } \\
& \text { this system? }
\end{aligned}
$$

$\hat{\boldsymbol{x}}=\underset{\boldsymbol{x}}{\arg \min }\|\mathbf{A} \boldsymbol{x}\|^{2}$ subject to $\|\boldsymbol{x}\|^{2}=1$ \boldsymbol{x}
$\mathbf{A}=\left[\begin{array}{ccc}\boldsymbol{X}_{1}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{1}^{\top} \\ \mathbf{0} & \boldsymbol{X}_{1}^{\top} & -y^{\prime} \boldsymbol{X}_{1}^{\top} \\ \vdots & \vdots & \vdots \\ \boldsymbol{X}_{N}^{\top} & \mathbf{0} & -x^{\prime} \boldsymbol{X}_{N}^{\top} \\ \mathbf{0} & \boldsymbol{X}_{N}^{\top} & -y^{\prime} \boldsymbol{X}_{N}^{\top}\end{array}\right]$

$$
\boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{p}_{1} \\
\boldsymbol{p}_{2} \\
\boldsymbol{p}_{3}
\end{array}\right]
$$

Solution \mathbf{x} is the column of \mathbf{V} corresponding to smallest singular value of

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}
$$

Equivalently, solution \boldsymbol{x} is the Eigenvector corresponding to smallest Eigenvalue of
$\mathbf{A}^{\top} \mathbf{A}$

Now we have: $\quad \mathbf{P}=\left[\begin{array}{cccc}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{5} & p_{6} & p_{7} & p_{8} \\ p_{9} & p_{10} & p_{11} & p_{12}\end{array}\right]$
How do you get the intrinsic and extrinsic parameters from the projection matrix?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Decomposition of the Camera Matrix

$$
\begin{array}{rlr}
\mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] & & \text { Let } \mathrm{v}=[\mathrm{c} \\
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] & \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] & \\
& =[\mathbf{M} \mid-\mathbf{M c}] & \text { Then } \mathrm{Pv}=\mathrm{Mc}-\mathrm{Mc}=0
\end{array}
$$

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C} $\mathbf{P c}=\mathbf{0}$

How do we compute the camera center from this?

Find intrinsic \mathbf{K} and rotation \mathbf{R}

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}
Find intrinsic \mathbf{K} and rotation \mathbf{R}
$\mathbf{P c}=\mathbf{0}$
SVD of P!
c is the singular vector corresponding to the smallest singular value

Note that we will have c as 4D homogenous coordinate. You will need to convert this to 3D heterogenous coordinate.

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}

$$
\mathrm{Pc}=\mathbf{0}
$$

SVD of P!
c is the singular vector corresponding to the smallest singular value

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

Any useful properties of K and R we can use?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}

$$
\mathrm{Pc}=\mathbf{0}
$$

SVD of P!
c is the singular vector corresponding to the smallest singular value

Find intrinsic \mathbf{K} and rotation \mathbf{R}

How do we find K and R ?

Decomposition of the Camera Matrix

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc|c}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right] \\
& \begin{aligned}
\mathbf{P} & =\mathbf{K}[\mathbf{R} \mid \mathbf{t}] \\
& =\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}] \\
& =[\mathbf{M} \mid-\mathbf{M c}]
\end{aligned}
\end{aligned}
$$

Find the camera center \mathbf{C}

$$
\mathrm{Pc}=\mathbf{0}
$$

SVD of P!
c is the singular vector corresponding to the smallest singular value

Find intrinsic \mathbf{K} and rotation \mathbf{R}

$$
\mathbf{M}=\mathbf{K R}
$$

QR decomposition

Geometric camera calibration

Given a set of matched points

$$
\left\{\boldsymbol{X}_{i}, \boldsymbol{\mathscr { X }}_{\boldsymbol{i}}\right\} \quad \begin{gathered}
\text { Where do we get these } \\
\text { matched points from? }
\end{gathered}
$$

point in 3D point in the space
image
and camera model

Find the (pose) estimate of

We'll use a perspective camera model for pose estimation

Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence

Geometric camera calibration (how to solve in practice)

- Step 1: Use SVD to find P from N pairs of x_{i} and X_{i}.
- Step 2: Decompose P to obtain individual elements: K (intrinsics), R (rotation), t (translation).
- Step 3: Formulate a non-linear optimization to obtain optimal set of (K, R, t) that minimizes the re-projection error:

$$
\left\|x_{i}-K^{*} R^{*}\left(X_{i}-t\right)\right\|
$$

Initialize the optimization with ($\mathrm{K}, \mathrm{R}, \mathrm{t}$) obtained from Step 2.

Today's Class

- Perspective Distortion
- Camara Calihration
- Vanishing Points and Lines

Points at infinity

Vanishing points (1D)

- Vanishing point
- projection of a point at infinity
- can often (but not always) project to a finite point in the image

Vanishing points (2D)

Vanishing points

- Properties

- Any two parallel lines (in 3D) have the same vanishing point v
- The ray from \mathbf{C} through \mathbf{v} is parallel to the lines
- An image may have more than one vanishing point
- in fact, every image point is a potential vanishing point

Computing vanishing points

Computing vanishing points

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{X}+t D_{X} \\
P_{Y}+t D_{Y} \\
P_{Z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{X} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right]
$$

- Properties $\quad \mathbf{v}=\boldsymbol{\Pi} \mathbf{P}_{\infty}$
- \mathbf{P}_{∞} is a point at infinity, \mathbf{v} is its projection
- Depends only on line direction
- Parallel lines $\mathbf{P}_{0}+\mathrm{tD}, \mathbf{P}_{1}+\mathrm{tD}$ intersect at \mathbf{P}_{∞}

One-point perspective

Two-point perspective

Three-point perspective

3 VANISHING POINTS -

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes (can) define different vanishing lines

Vanishing lines

- Multiple Vanishing Points
- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line
- also called vanishing line
- Note that different planes (can) define different vanishing lines

Vanishing Lines

.

Computing vanishing lines

- Properties
- I is intersection of horizontal plane through \mathbf{C} with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as \mathbf{C} project to \mathbf{I}
- points higher than C project above I
- Provides way of comparing height of objects in the scene

Is this parachuter higher or lower than the person taking this picture?

Perspective cues

Perspective cues

Slide Credits

- CS5670, Introduction to Computer Vision, Cornell Tech, by Noah Snavely.
- CS 194-26/294-26: Intro to Computer Vision and Computational Photography, UC Berkeley, by Angjoo Kanazawa.
- CS 16-385: Computer Vision, CMU, by Matthew O’Toole

Additional Reading

- Multiview Geometry, Hartley \& Zisserman, Chapter 6.1, 6.2.

Related Readings from the past

- Multiview Geometry, Hartley \& Zisserman, Chapter 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 3.1, 3.2, 4.1, 4.2

