Lecture 17: Two-view Geometry

Instructor: Roni Sengupta

ULA: Andrea Dunn Beltran, William Li, Liujie Zheng

Course Website: Scan Me!

Intrinsics

Image Coordinates

Camera Coordinates

World Coordinates

$$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix} \qquad \mathbf{X}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix} \qquad \mathbf{X}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix}$$
Perspective Projection
$$\begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} R_{3\times3} & \mathbf{t} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix}$$

Extrinsics

The (rearranged) pinhole camera

Computing vanishing points

Any point on a line= P0 + t[Dx,Dy,Dz]

Projection of that point on image plane =
$$f^*[(P0x + t^*Dx), (P0y + t^*Dy)]$$
 $(P0z + t^*Dz)$

Vanishing Point = Limit t->infinity
$$f^*[\underline{(P0x + t^*Dx)}, \underline{(P0y + t^*Dy)}]$$

 $(P0z + t^*Dz)$

= (f*Dx/Dz, f*Dy/Dz)

Properties:

2 set of parallel lines project to the same vanishing point.

Vanishing lines (Horizon Lines)

Properties:

- Union of any 2 vanishing points create a vanishing line
- Horizon line is the projection of a plane at infinity
- A point on horizon line visible in the image is at the height of the camera.

Geometric camera calibration

Given a set of matched points

$$\{\mathbf{X}_i, oldsymbol{x}_i\}$$

point in 3D space

point in the image

and camera model

$$oldsymbol{x} = oldsymbol{f(X;p)} = oldsymbol{PX}$$

projection parameters Camera matrix

Find the (pose) estimate of

 ${f P}$

Same setup as homography estimation

(slightly different derivation here)

Compute SVD of a measurement matrix to obtain P

$$egin{aligned} \mathbf{P} &= \mathbf{K}[\mathbf{R}|\mathbf{t}] \ &= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}] \ &= [\mathbf{M}|-\mathbf{M}\mathbf{c}] \end{aligned}$$

Find the camera center C

$$\mathbf{Pc} = \mathbf{0}$$

SVD of P!

c is the singular vector corresponding to the smallest singular value

Find intrinsic **K** and rotation **R**

$$M = KR$$

QR decomposition

Now that our cameras are calibrated, can we find the 3D scene point of a pixel?

You know we can't, but we know it'll be... on the ray!

Camera coord frame

Ray

3D to 2D: (point)
$$u = f_x \frac{x_c}{z_c} + o_x \\ v = f_y \frac{y_c}{z_c} + o_y$$

2D to 3D: (ray) Back projection

$$x = \frac{z}{f_x}(u - o_x)$$

$$y = \frac{z}{f_y}(v - o_y)$$

$$z > 0$$

Our goal: Develop theories and study how a 3D point and its projection in 2 images are related to each other!

From a single image you can only back project a pixel to obtain a ray on which the actual 3D point lies

To find the actual location of the 3D point, you need:

an additional image captured from another viewpoint.

Today's class

- Epipolar Geometry
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

Today's class

- Epipolar Geometry (few definitions)
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

The Epipole

Epipolar constraint

Another way to construct the epipolar plane, this time given $oldsymbol{x}$

Epipolar constraint

Example: Converging Cameras

Example: Converging Cameras

Epipoles finite, maybe in image; epipolar lines converge Epipolar lines come in pairs:

given a point p, we can construct the epipolar line for p'.

Slide credit: David Fouhey

Example: Parallel to Image Plane

Epipoles infinitely far away, epipolar lines parallel

Example: Forward Motion

Example: Forward Motion

Example: Forward Motion

Epipole is focus of expansion / principal point of the camera.

Epipolar lines go out from principal point

Motion perpendicular to image plane

http://vimeo.com/48425421

The point **x** (left image) maps to a _____ in the right image

The baseline connects the _____ and ____

An epipolar line (left image) maps to a _____ in the right image

An epipole **e** is a projection of the _____ on the image plane

All epipolar lines in an image intersect at the ______

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

How would you do it?

Epipolar constraint

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line

How do you compute the epipolar line?

Today's class

- Epipolar Geometry
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

Recall:Epipolar constraint

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Epipolar Line

$$ax+by+c=0$$
 in vector form $egin{array}{c|c} a & b \ c & c \end{array}$

If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

$$\boldsymbol{x}^{\top}\boldsymbol{l} = 0$$

So if $oldsymbol{x'}^ op oldsymbol{l}' = 0$ and $oldsymbol{\mathbf{E}} oldsymbol{x} = oldsymbol{l}'$ then

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Where does the essential matrix come from?

Can we express essential matrix as function of camera parameters?

Linear algebra reminder: cross product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$egin{aligned} oldsymbol{a} imesoldsymbol{b} & a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{aligned} egin{aligned} oldsymbol{a} & a_1b_2-a_2b_1 \end{aligned}$$

cross product of two vectors in the same direction is zero vector

$$\boldsymbol{a} \times \boldsymbol{a} = 0$$

remember this!!!

$$\mathbf{c} \cdot \mathbf{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

Linear algebra reminder: cross product

Cross product

$$oldsymbol{a} imesoldsymbol{b}=\left[egin{array}{c} a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{array}
ight]$$

Can also be written as a matrix multiplication

$$oldsymbol{a} imesoldsymbol{b}=egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}$$

Skew symmetric

Compare with: dot product

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

dot product of two orthogonal vectors is (scalar) zero

$$\boldsymbol{x}' = \mathbf{R}(\boldsymbol{x} - \boldsymbol{t})$$

Camera-camera transform just like world-camera transform

dot product of orthogonal vectors cross-product: vector orthogonal to plane

Putting it together

rigid motion

coplanarity

$$oldsymbol{x}' = \mathbf{R}(oldsymbol{x} - oldsymbol{t})$$

$$\mathbf{x}' = \mathbf{R}(\mathbf{x} - \mathbf{t}) \qquad (\mathbf{x} - \mathbf{t})^{\top} (\mathbf{t} \times \mathbf{x}) = 0$$

use skew-symmetric matrix to represent cross $({m x'}^{ op}{m R})([{f t}_{ imes}]{m x})=0$ product

$$(\boldsymbol{x}'^{\top}\mathbf{R})(\boldsymbol{t}\times\boldsymbol{x})=0$$

$$(\boldsymbol{x}'^{\top}\mathbf{R})([\mathbf{t}_{\times}]\boldsymbol{x})=0$$

$$\boldsymbol{x}'^{\top}(\mathbf{R}[\mathbf{t}_{\times}])\boldsymbol{x} = 0$$

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Essential Matrix [Longuet-Higgins 1981]

$$m{a} imes m{b} = [m{a}]_ imes m{b} = \left[egin{array}{ccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight] \left[egin{array}{c} b_1 \ b_2 \ b_3 \end{array}
ight] m{E} = m{R} [m{t}]_ imes$$

Skew symmetric

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

Properties of the E matrix

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

Longuet-Higgins equation

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\mathsf{T}}\boldsymbol{l} = 0$$

$$\boldsymbol{x}'^{\top}\boldsymbol{l}' = 0$$

$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

$$oldsymbol{l} = \mathbf{E}^T oldsymbol{x}'$$

Epipoles

$$e'^{\top}\mathbf{E} = \mathbf{0}$$

$$\mathbf{E}e = \mathbf{0}$$

(2D points expressed in <u>camera</u> coordinate system)

Properties of the E matrix

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

- E has 5 degrees of freedom, why?
 - R has 3 degree of freedom
 - T has 3 degree of freedom
 - However since this is a projective transformation one can apply an arbitrary scale to E. Thus 1 degree of freedom less.
- E is rank 2, why?
 - [t_x] is skew symmetric, hence rank 2.
 - Thus Det(E) = 0.
- E has 2 singular value both of which are equal.
 - [t_x] a skew symmetric matrix has 2 equal singular values

2 possible notation

$$x' = R(x - t)$$

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

$$x' = Rx - Rt$$

= $Rx + t'$

$$\mathbf{E} = [\mathbf{ ilde{t}}]_{ imes} \mathbf{R}$$

Today's class

- Epipolar Geometry
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

In practice we have points in image coordinate, i.e. pixel values.

The essential matrix operates on image points expressed in **2D coordinates** in the camera coordinate system.

$$\hat{m{x}'} = \mathbf{K}'^{-1}m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1}m{x}$

Writing out the epipolar constraint in terms of image coordinates

$$oldsymbol{x}'^ op (\mathbf{K}'^{- op}\mathbf{E}\mathbf{K}^{-1})oldsymbol{x} = 0$$
 $oldsymbol{x}'^ op \mathbf{F}oldsymbol{x} = 0$ Fundamental Matrix

Properties of the E matrix

$$\mathbf{E}=\mathbf{R}\,[\mathbf{t}]_{\times}$$

$$\mathbf{F} = \mathbf{R}[\mathbf{t}]_{ imes}$$
 $\mathbf{F} = \mathbf{K'}^{- op} \mathbf{E} \mathbf{K}^{-1}$ $\mathbf{F} = \mathbf{K'}^{- op} [\mathbf{t}_{ imes}] \mathbf{R} \mathbf{K}^{-1}$

 $\mathbf{x}'^{\top}\mathbf{E}\mathbf{x}=0$

Longuet-Higgins equation

$$\boldsymbol{x}^{\mathsf{T}}\boldsymbol{l} = 0$$

$$oldsymbol{l}' = \mathbb{E} oldsymbol{x}$$

$$\mathbf{x}'^{\mathsf{T}}\mathbf{l}' = 0$$

$$oldsymbol{l} = \mathbb{E}^T oldsymbol{x}'$$

Epipoles

$$e'^{\top} \mathbf{E} = \mathbf{0}$$

$$\mathbf{E}e=\mathbf{0}$$

(2D points expressed in image coordinate system)

Properties of the E matrix

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

$$\mathbf{F} = \mathbf{R}[\mathbf{t}]_{\times}$$
 $\mathbf{F} = \mathbf{K'}^{-\top}\mathbf{E}\mathbf{K}^{-1}$ $\mathbf{F} = \mathbf{K'}^{-\top}[\mathbf{t}_{\times}]\mathbf{R}\mathbf{K}^{-1}$

- Lenas 5 degrees of freedom, why?
 - F is 3x3, has 8 degrees of freedom, since it is a projective transformation.
 - F is rank 2. So 1 less degree of freedom.
- Eis rank 2, why?
 - Same reason as E
 - [t_x] is skew symmetric, hence rank 2.

• Ehas 2 singular value both of which are equal.

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

point to a line

Essential matrix maps a

- Rank 2
- 5 DoF

$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

Fundamental matrix maps a **point** to a **line**

- Rank 2
- 7 DoF

$$x' = \mathbf{H}x$$

Homography maps a **point** to a **point**

- Rank 3
- 8 DoF

Homography is a special case of the Essential/Fundamental matrix, for planar scenes

Example

epipolar lines

$$\mathbf{F} = \begin{bmatrix} -0.00310695 & -0.0025646 & 2.96584 \\ -0.028094 & -0.00771621 & 56.3813 \\ 13.1905 & -29.2007 & -9999.79 \end{bmatrix}$$

$$x = \begin{bmatrix} 343.53 \\ 221.70 \\ 1.0 \end{bmatrix}$$

$$m{l}' = \mathbf{F} m{x}$$
 $= egin{bmatrix} 0.0295 \\ 0.9996 \\ -265.1531 \end{bmatrix}$

$$m{l}' = \mathbf{F} m{x}$$

$$= \left[egin{array}{c} 0.0295 \\ 0.9996 \\ -265.1531 \end{array} \right]$$

Where is the epipole?

$$\mathbf{F}e = \mathbf{0}$$

The epipole is in the right null space of **F**

How would you solve for the epipole?

 $\mathbf{F}e = \mathbf{0}$

The epipole is in the right null space of **F**

How would you solve for the epipole?

SVD!

SVDs are pretty useful, huh?

Continue to next Lecture 18

Slide Credits

- <u>CS5670, Introduction to Computer Vision</u>, Cornell Tech, by Noah Snavely.
- <u>CS 194-26/294-26</u>: Intro to Computer Vision and Computational Photography, UC Berkeley, by Angjoo Kanazawa.
- CS 16-385: Computer Vision, CMU, by Matthew O'Toole

Additional Reading

- Multiview Geometry, Hartley & Zisserman,
 - Chapter 9 (focus on topics discussed or mentioned in the slides).
 - Chapter 10.1, 10.2 (not discussed in class, no midterm ques, but imp to understand, practical importance.)
 - Chapter 11.1, 11.2
 - Chapter 12.1, 12.2, 12.3, 12.4 (no midterm ques, but imp to understand)