Lecture 19: Stereo

Instructor: Roni Sengupta

ULA: Andrea Dunn Beltran, William Li, Liujie Zheng

Recap

Camera Model

Image Coordinates
Camera Coordinates

$$
\mathbf{x}_{i}=\left[\begin{array}{c}
x_{i} \\
y_{i}
\end{array}\right] \underset{\substack{\text { Perspective } \\
\text { Projection }}}{<} \mathbf{X}_{c}=\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right] \underset{\substack{\text { Coordinate } \\
\text { Transformation }}}{<} \mathbf{X}_{w}=\left[\begin{array}{l}
x_{w} \\
y_{w} \\
z_{w}
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
f_{x} & 0 & o_{x} & 0 \\
0 & f_{y} & o_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Intrinsics

$$
\left[\begin{array}{cc}
R_{3 \times 3} & \mathbf{t} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]
$$

Extrinsics

Epipolar geometry

Epipolar constraint

$\mathbf{E} \boldsymbol{x}=\boldsymbol{l}^{\prime} \Rightarrow \boldsymbol{x}^{\prime \top} \mathbf{E} \boldsymbol{x}=0 \Rightarrow\left[\begin{array}{c}\mathbf{E}=\mathbf{R}\left[t_{x} \boldsymbol{x}\right.\end{array}\right.$

Fundamental Matrix

$\mathbf{F}=\mathbf{K}^{\prime-\top} \mathbf{E K}^{-1} \quad \mathbf{F}=\mathbf{K}^{\prime-\top}\left[\mathbf{t}_{\times}\right] \mathbf{R K}^{-1}$

- Essential Matrix operates on points in camera coordinate system (after projection from 3D to 2D)
- Fundamental Matrix operates on points in pixel coordinate system
- E and F are both rank(2), but E has 2 singular values that are equal, but not F.
- E has 5 DoF and F has 7 DoF.

Big picture: 3 key components in 3D

How do we estimate fundamental matrix from pairs of corresponding points in two images?

(Normalized) Eight-Point Algorithm

1. (Normalize points)
2. Construct the $M \times 9$ matrix \mathbf{A}
3. Find the SVD of \mathbf{A}
4. Entries of \mathbf{F} are the elements of column of
\mathbf{V} corresponding to the least singular value
5. (Enforce rank 2 constraint on F)
6. (Un-normalize F)

Big picture: 3 key components in 3D

Today's lecture

- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm
- Beyond local stereo matching
- Active stereo with structured light

Today's lecture

- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm
- Bevond local stereo matching
- Active stereo with structured light

We are equipped with binocular vision. Stereo in humans! Let's try!

Relative displacement is higher as the relative distance grows == Parallax

If you can't close just one of your eyes on its own, just use a line far away in this room.

Use one hand to close your eyes and bring another hand in front of your eyes.

Parallax

Parallax = from ancient Greek parállaxis
 = Para (side by side) + allássō, (to alter)
 $=$ Change in position from different view point

Two eyes give you parallax, you can also move to see more parallax = "Motion Parallax"

Why you need translation to see parallax i.e. relative depth

Stereo in 3D movies

Stereo in the past

Stereograph

Stereoscopes: A 19 ${ }^{\text {th }}$ Century Pastime

Real-time stereo sensing

Nomad robot searches for meteorites in Antartica

Today's lecture

- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm
- Beyond local stereo matching
- Active steren with structured light

Big picture: 3 key components in 3D

How would you reconstruct 3D points?

Left image

Right image

1. Select point in one image (how?)
2. Form epipolar line for that point in second image (how?)
3. Find matching point along line (how?)
4. Perform triangulation

Feature detection: SIFT Calibrate cameras, find E or F Stereo Matching (today!!)

Example: Parallel to Image Plane

Where is the epipole?

Epipoles infinitely far away, epipolar lines parallel

Let's try it again

Objects that are close move more or less?

Depth map

More formally... The amount of horizontal movement is inversely proportional to the distance from the camera, i.e. depth map.

Depth from disparity

Depth from disparity

	$\begin{array}{r} \frac{x}{f}=\frac{B_{1}}{z} \quad \frac{x^{\prime}}{f}=\frac{B_{2}}{z} \\ \frac{x-x^{\prime}}{f}=\frac{B_{1}-B_{2}}{l} \end{array}$
	r
00^{\prime}	$x-x^{\prime}=\frac{f B}{}$
B_{1}	
B_{2}	$\frac{f B}{x-x^{\prime}}$

So can I compute depth from any two images of the same object?

1. Need sufficient baseline
2. Images need to be 'rectified' first (make epipolar lines horizontal)

Effect of baseline on stereo results

- Larger baseline
+ Smaller triangulation error
- Matching is more difficult

- Smaller baseline
- Higher triangulation error
+ Matching is easier

1. Rectify images (make epipolar lines horizontal)
2. For each pixel
a. Find epipolar line
b. Scan line for best match
c. Compute depth from disparity

$$
Z=\frac{b f}{d}
$$

How can you make the epipolar lines horizontal?

When are epipolar lines horizontal?

What's special about these two cameras?

When this relationship holds:

$$
R=I \quad t=(T, 0,0)
$$

Stereo image rectification

- If the image planes are not parallel, we can find homographies to project each view onto a common plane parallel to the baseline

Stereo image rectification

Stereo image rectification

Depth Estimation via Stereo Matching

1. Rectify images (make epipolar lines horizontal)
2. For each pixel
a. Find epipolar line
b. Scan line for best match \qquad
How would
c. Compute depth from disparity you do this?

$$
Z=\frac{b f}{d}
$$

Today's lecture

- Motivation and history
- Basictwo-view sterna setup
- Local stereo matching algorithm
- Beyond ocal stereo matching
- Active stereo with structured light

Matching using Epipolar Lines

Left Image

For a patch in left image Compare with patches along same row in right image

Right Image

Match Score Values (Similarity Measures)

Matching using Epipolar Lines

Left Image

Select patch with highest match score.

Repeat for all pixels in left image.

Right Image

Match Score Values
(Similarity Measures)

Example: 5×5 windows NCC match score

Computed disparities

Black pixels: bad disparity values, or no matching patch in right image

Similarity Measure	Formula
Sum of Absolute Differences (SAD)	$\sum_{(i, j) \in W}\left\|I_{1}(i, j)-I_{2}(x+i, y+j)\right\|$
Sum of Squared Differences (SSD)	$\sum_{(i, j) \in W}\left(I_{1}(i, j)-I_{2}(x+i, y+j)\right)^{2}$
Zero-mean SAD	$\sum_{(i, j) \in W}\left\|I_{1}(i, j)-\bar{I}_{1}(i, j)-I_{2}(x+i, y+j)+\bar{I}_{2}(x+i, y+j)\right\|$
Locally scaled SAD	$\sum_{(i, j) \in W}\left\|I_{1}(i, j)-\frac{\bar{I}_{1}(i, j)}{\bar{I}_{2}(x+i, y+j)} I_{2}(x+i, y+j)\right\|$
Normalized Cross Correlation (NCC)	$\frac{\sum_{(i, j) \in W} I_{1}(i, j) \cdot I_{2}(x+i, y+j)}{\sum_{(i, j) \in W} I_{1}^{2}(i, j) \cdot \sum_{(i, j) \in W} I_{2}^{2}(x+i, y+j)}$

Effects of Patch Size

Disparity Space Image

First we introduce the concept of DSI.
The DSI for one row represents pairwise match scores between patches along that row in the left and right image.

Pixels along left scanline

Disparity Space Image (DSI)

Left Image

Right Image

Disparity Space Image (DSI)

Left Image

Right Image

Dissimilarity Values
(1-NCC) or SSD

Disparity Space Image (DSI)

Left Image

Right Image

Dissimilarity Values
(1-NCC) or SSD

Disparity Space Image (DSI)

Disparity Space Image

Disparity Space Image

Left scanline

Greedy Selection: Simply choose the row with least disparity for each column

Greedy Per-pixel Path matching

Greedy selection often do not satisfy order constraints and produces nonsmooth disparity map.

Today's lecture

- Motivation and history
- Rasic tinın-view steren setup
- Local stereo matching algorithm
- Beyond local stereo matching
- Challenges in Stereo Matching
- Stereo Matching with Dynamic Programming
- Stereo Matching with Graph Cut algorithm
- Stereo in Deep Learning era
- Active stereo with structured light

Why is matching challenging?

- Uniqueness:
- Each point in one image should match at most one point in the other image
- Smoothness
- We expect disparity to change slowly
- Occlusion
- What if a pixel in the left image is not seen in the right image?
- What if a pixel in the right image not seen in the right image?
- Ordering Constraint
- If pixels (a, b, c) are ordered in left image, it should have same order in right image.
- Not always true, depends on the depth of the object.

Non-local constraint: Uniqueness

- Each point in one image should match at most one point in the other image
- Does uniqueness always hold in real life?

Non-local constraint: Uniqueness

- Each point in one image should match at most one point in the other image
- Does uniqueness always hold in real life?

Non-local constraint: Smoothness

- We expect disparity values to change slowly (for the most part)

Occlusions: No matches

Dealing with Occlusions

Ordering Constraint

Today's lecture

- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm
- Beyond local stereo matching
- Challenges in Stereo Matching
- Stereo Matching with Dynamic Programming
- Stereo Matching with Graph Cut algorithm
- Stereo in Deep Learning era
- Active stereo with structured light

Adding Inter-Scanline Consistency

So far, each left image patch has been matched independently along the right epipolar line.

This can lead to errors.

We would like to enforce some consistency among matches in the same row (scanline).

DSI and Scanline Consistency

Assigning disparities to all pixels in left scanline now amounts to finding a connected path through the DSI

Lowest Cost Path

We would like to choose the "best" path.
Want one with lowest "cost" (Lowest sum of dissimilarity scores along the path)

Dealing with Occlusions

Pixel is not present in the right image
Pixel is not present in the left image

Stereo Matching with Dynamic Programming

Occluded Pixels

Start

Dynamic programming yields the optimal path through grid. This is the best set of matches that satisfy the ordering constraint

Occluded from right image: Pixel is present in left image, but no match found in right image.

Correspondence found

Occluded from left image: Pixel is present in right image, but no match found in left image. Disparity mapping has a jump as it ignores these pixels.

Cox et.al. Stereo Matching

Three cases:

- Matching patches. Cost $=$ dissimilarity score
- Occluded from right. Cost is some constant value.
- Occluded from left. Cost is some constant value.

$$
\begin{array}{r}
C(\mathrm{i}, \mathrm{j})=\min ([\mathrm{C}(\mathrm{i}-1, \mathrm{j}-1)+\text { dissimilarity }(\mathrm{i}, \mathrm{j}) \\
\mathrm{C}(\mathrm{i}-1, \mathrm{j})+\text { occlusionConstant, } \\
\mathrm{C}(\mathrm{i}, \mathrm{j}-1)+\text { occlusionConstant }]) ;
\end{array}
$$

Real Scanline Example

DSI

DP cost matrix
(cost of optimal path from each point to END)

Every pixel in left column now is marked with either a disparity value, or an occlusion label.

Proceed for every scanline in left image.

Example

Result of DP alg

Result without DP (greedy)

Result of DP alg. Black pixels $=$ occluded.

Occlusion Filling

Simple trick for filling in gaps caused by occlusion.
\square
= left occluded

Fill in left occluded pixels with value from the nearest valid pixel preceding it in the scanline.

Similarly, for right occluded, look for valid pixel to the right.

Example

Result of DP alg with occlusion filling.

Example

Result of DP alg with occlusion filling. Result without DP (independent pixels)

Example

Result of DP alg with occlusion filling.
Ground Truth

Scanline stereo by dynamic programming

- Generates streaking artifacts!

Today's lecture

- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm
- Beyond local stereo matching
- Challenges in Stereo Matching
- Stereo Matching with Dynamic Programming
- Stereo Matching with Graph Cut algorithm
- Stereo in Deep Learning era
- Active stereo with structured light

Stereo as energy minimization

Energy Minimization via Graph Cut Algorithm

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/

Algorithm Results

Ground truth
J. Sun, Y. Li, S.B. Kang, and H.-Y. Shum.
"Symmetric stereo matching for occlusion handling". IEEE Conference on Computer Vision and Pattern
Recognition, June 2005.

When will stereo block matching fail?

Stereo reconstruction pipeline

- Steps
- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Today's lecture

- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm
- Beyond local stereo matching
- Challenges in Stereo Matching
- Stereo Matching with Dynamic Programming
- Stereo Matching with Graph Cut algorithm
- Stereo in Deep Learning era
- Active stereo with structured light

Stereo matching with deep networks

Self-supervised depth estimation

Predict disparity

Stereo datasets

- Middlebury stereo datasets
- KITTI
- Synthetic data

Today's lecture

- Motivation and history
- Dasictwo-view stereo setup
- Local stereo matching algorithm
- Deyond local stereo matching
- Active stereo with structured light

Active stereo with structured light

Li Zhang's one-shot stereo

- Project "structured" light patterns onto the object
- simplifies the correspondence problem
- basis for active depth sensors, such as Kinect and iPhone X (using IR)

Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Apple TrueDepth

Active stereo with structured light

https://ios.gadgethacks.com/news/watch-iphone-xs-30k-ir-dots-scan-your-face-0180944/

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

Use controlled ("structured") light to make correspondences easier

Disparity between laser points on the same scanline in the images
 determines the 3-D coordinates of the laser point on object

Use controlled ("structured") light to make correspondences easier

Laser scanning

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

- Optical triangulation
- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

3D Photography on your Desk

Aligning range images

- A single range scan is not sufficient to capture a complex surface
- Need techniques to register multiple range images
- ... which brings us to multi-view stereo (next class!)

Slide Credits

- CS5670, Introduction to Computer Vision, Cornell Tech, by Noah Snavely.
- CS 194-26/294-26: Intro to Computer Vision and Computational Photography, UC Berkeley, by Angjoo Kanazawa.
- CS 16-385: Computer Vision, CMU, by Matthew O'Toole.
- CSE 486: Computer Vision, by Robert Collins, Penn State.
- CS 543 Computer Vision, by Stevlana Lazebnik, UIUC.

