
Lecture 20: Multi-View Stereo (MVS)

Course Website:
Scan Me!

Instructor: Roni Sengupta

ULA: Andrea Dunn Beltran, William Li, 
Liujie Zheng



Geometry: How do we represent shape of an object?
2.5D representation:
 1) Depth & Normal map

Explicit representation:
2) Mesh
3) Voxels
4) Point Cloud

Implicit representation:
 5) Surface Representation (SDF)
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Depth Map

Depth Map D(u,v): Distance of any pixel (u,v) from the camera (usually image plane)

Red-> nearer; blue-> further 

For an image HxWx3, a depth map is HxWx1 (scalar value for every pixel)



Surface Normal

Surface Normal (in blue) of a point P is a 
vector perpendicular to the tanget plane at P. Surface normal (in blue) of a surface

Surface normal indicate orientation of the surface.



Normal Map

Credits: ibug imperial college london

Normal Map N(u,v): [Nx,Ny,Nz] is a unit vector 
indicating the orientation of the surface.

Pink-> towards left; blue-> towards right 

For an image HxWx3, a normal map is HxWx3.



Relationship between Depth & Normal Map
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• Differentiation of depth map leads 
to normal map

• Integration of normal map leads to 
depth map

Further reading: Normal Integration: A Survey
Normalizing to unit vector.

https://arxiv.org/pdf/1709.05940.pdf
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A Small Triangle Mesh

8 vertices, 12 triangles



Mesh



A Large Triangle Mesh

David
Digital Michelangelo Project 
28,184,526 vertices
56,230,343 triangles

Marc Levoy at Stanford (https://accademia.stanford.edu/mich/)



Geometry: How do we represent shape of an object?
2.5D representation:
 1) Depth & Normal map

Explicit representation:
2) Mesh
3) Voxels
4) Point Cloud

Implicit representation:
 5) Surface Representation (SDF) – implicit



Voxel Representation

It’s like playing with Lego!



Voxel Representation

Voxel with octree



Geometry: How do we represent shape of an object?
2.5D representation:
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Implicit representation:
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Point Clouds

LiDAR and many other range sensors produces point cloud.



Started at UNC!! – Jan Michael Frahm’s group



(Explicit)
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Surface Representation: 
Signed Distance Function (SDF)

- implicit representation via level set

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.

SDF(X) = 0, when X is on the surface.
SDF(X) > 0, when X is outside the surface
SDF(X) < 0, when X is inside the surface

Note: SDF is an implicit representation!
Suitable for neural networks but hard to 
import inside existing graphics software.



Neural RGB-D Scene Reconstruction, Azinovic et. al.



Recap
(Stereo)



1. Rectify images
(make epipolar lines horizontal)

2. For each pixel
a. Find epipolar line
b. Scan line for best match
c. Compute depth from disparity



How to do Stereo Matching
• Greedy: for every pixel in left scanline -> choose best match in right 

scanline.

• What properties get violated in greedy approach?
• Uniqueness: match should be unique
• Smoothness: disparity should vary slowly
• Occlusion: handle pixels when occluded in left or right image
• Ordering constraint: Ordered set of points should have same match.

• Non-greedy: choose best match for all pixels in the left scanline. How?
• Dynamic Programming
• Graph Cut approach
• Deep Learning



Why Study Stereo?

• Passive Stereo:
• Self-driving car
• Any autonomous robots
• 3D movies

• Active Stereo: Make correspondence easier by projecting patterns 
(structured lights)
• Apple TrueDepth
• Kinect
• Laser scanning for 3D reconstruction



Active stereo with structured light

• Project “structured” light patterns onto the object
• simplifies the correspondence problem
• basis for active depth sensors, such as Kinect and iPhone X (using IR)

camera 2

camera 1

projector

camera 1

projector

Li Zhang’s one-shot stereo



Today’s class

•Motivation
• Simple Approach to MVS
• Advanced Approach to MVS
• Plane Sweep Stereo
• Space Curving Stereo

• Converting depth to mesh
•MVS in deep learning era (more later)
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Multi-view Stereo

Binocular Stereo Multi-view stereo

Problem formulation: given several images of the same 
object or scene, compute a representation of its 3D shape



Multi-view Stereo

Point Grey’s Bumblebee XB3

Point Grey’s ProFusion 25

CMU’s Panoptic Studio

http://www.ptgrey.com/
http://www.ptgrey.com/
http://domedb.perception.cs.cmu.edu/


Multi-view Stereo

Figures by Carlos Hernandez

Input: calibrated images from several viewpoints (known intrinsics and 
extrinsics / projection matrices)
Output: 3D object model







https://renderpeople.com/about-us/

https://renderpeople.com/about-us/


Virtual Reality Video

Broxton, et al. Immersive Light Field Video 
with a Layered Mesh Representation. 
SIGGRAPH 2020.

Anderson, et al. Jump: Virtual Reality 
Video. SIGGRAPH Asia 2016.



Today’s class

•Motivation
• Simple Approach to MVS
• Shape representations
• Advanced Approach to MVS
• Plane Sweep Stereo
• Space Curving Stereo

• Converting depth to mesh
•MVS in deep learning era (more later)



Multi-view stereo: Basic idea

reference view neighbor views

Source: Y. Furukawa



reference view neighbor views

Source: Y. Furukawa

Multi-view stereo: Basic idea
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reference view neighbor views

Source: Y. Furukawa

In this manner, solve for a depth map 
over the whole reference view

Multi-view stereo: Basic idea



Multi-view stereo: advantages

• Can match windows using more than 1 neighbor, giving a stronger 
match signal

• If you have lots of potential neighbors, can choose the best subset of 
neighbors to match per reference image

• Can reconstruct a depth map for each reference frame, and the 
merge into a complete 3D model



width of 
a pixel

Choosing the stereo baseline

What’s the optimal baseline?
• Too small:  large depth error
• Too large:  difficult search problem

Large Baseline Small Baseline

all of these
points project
to the same 
pair of pixels



z

z

pixel matching score

M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,” IEEE Trans. on  
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).

• For larger baselines, must search larger  
area in second image

• For short baselines, estimated depth will be less 
precise due to narrow triangulation

Multiple-baseline stereo



The Effect of Baseline on Depth Estimation

I1 I2 I10



5b

8b



I1 I2 I10

Multiple-baseline stereo results

M. Okutomi and T. Kanade, A Multiple-Baseline Stereo System, IEEE Trans. on  
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).





Multibaseline Stereo
Basic Approach
• Choose a reference view
• Use your favorite stereo algorithm BUT

• replace two-view SSD with SSSD over all baselines
• SSSD: the SSD values are computed first for each pair of stereo images, and then add all 

together from multiple stereo pairs.

Limitations
• Only gives a depth map (not an “object model”)
• Won’t work for widely distributed views.



Popular matching scores
• SSD (Sum of Squared Differences)

• SAD (Sum of Absolute Differences)

• ZNCC (Zero-mean Normalized Cross Correlation)

• where          

• what advantages might NCC have?



Some Solutions
• Match only nearby photos [Narayanan 98]
• Use NCC instead of SSD,

Ignore NCC values > threshold 
[Hernandez & Schmitt 03]

Problem: visibility



Visibility
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Plane-Sweep Stereo

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2
R3,t3



Plane-Sweep Stereo

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2
R3,t3

Proposed point 
at correct depth

Photo-consistent projections



Plane-Sweep Stereo

Camera 1

Camera 2

Camera 3
R1,t1

R2,t2
R3,t3

Proposed point at 
incorrect depth

Photo-inconsistent projections



Plane-Sweep Stereo

• Sweep family of planes parallel to the reference camera image plane
• Reproject neighbors onto each plane and compare reprojections

reference camera

neighbor camera 1 neighbor camera 2



Reference image Right neighborLeft neighbor

Planar image reprojections swept over depth 
(averaged)

Example

For a particular depth sweep, some regions  in the 
average image appears sharp, i.e. photo-consistent.

Starts with near-depth and sweeps till far-depth 



Reference image

Single pixel’s cost 
profile

depth

cost

Plane sweep

Full cost volume

Depth map 
solver

(Belief propagation, 
graph cuts, etc.)

Cost Volumes -> Depth Maps



Cost Volume

Cost Volume is a 3D tensor WxHxD for D depth proposal

C(u,v,d) indicates photo-consistency between (u,v) pixel in the reference 
image to that of it’s corresponding pixels in neighboring images 
assuming the depth proposal at d.

There are various measures of photo consistency, a simple one is variance.

How do we find the corresponding pixels in neighboring images?
• Backproject every pixel using camera matrix (Computationally 

expensive)
• Homography transformation over the whole image.



Plane-Sweep Stereo

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping 
Stereo with Multiple Sweeping Directions, CVPR 2007

• For each depth plane proposal dm, map each target 
image Ik to the reference image Iref  using 
homography (Hkm

-1). Let the warped image be Wkm.
• Hkm can be calculated from the camera 

parameters and depth of the plane dm.

• For each pixel (u,v) in the reference image compute 
similarity scores between Wkm and Iref.
• If you use Zero Mean Normalized Cross 

Correlation, you have ZNCC(Iref(u,v), Wkm(u,v))



Slight abuse of notation. In equation (x,y) are image 
co-ordinates, in figure u is image co-ordinate.

Plane-Sweep Stereo

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping 
Stereo with Multiple Sweeping Directions, CVPR 2007

Try the 
proof in 
HW!



Plane-Sweep Stereo

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping 
Stereo with Multiple Sweeping Directions, CVPR 2007

• For each pixel (u,v) in the reference image  
compute similarity scores between Wkm and Iref, as 
ZNCC(Iref(u,v), Wkm(u,v))

• Create a cost volume C(u,v,m) = sum (ZNCC(Iref(u,v), 
Wkm(u,v)) over all k target images.

• Greedy: At each pixel choose the maximum of the 
cost volume as the correct depth.

• Non-greedy: Use advanced techniques like belief 
propagation, graph cut, or 3D convolution.



Plane-Sweep Stereo

Reference image Right neighborLeft neighbor

Left neighbor projected into 
reference image

Right neighbor projected into 
reference image

Average images on each plane
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Volumetric stereo

Discretized 
Scene Volume

Input Images
(Calibrated)

Goal:  Assign RGB values to voxels in V
photo-consistent with images



• Initialize to a volume V containing the true scene

Space Carving

•Space Carving Algorithm

Image 1 Image N

…...

• Repeat until convergence

• Choose a voxel on the outside of the volume
• Project to visible input images
• Carve if not photo-consistent

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999

http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf


Space Carving Results

Input Image (1 of 45) Reconstruction

ReconstructionReconstruction Source: S. Seitz



Space Carving Results

Input Image
(1 of 100) 

Reconstruction
Source: S. Seitz



How do you initialize the voxel?
Visual Hull Extraction

1. Segment out object from background 
2. Backproject each silhouette 
3. Intersect backprojected volumes



Summary of approached to MVS

• Plane Sweep Depth maps
• Robust and adaptable multiple-view stereo matching
• Real-time applications 
• Fusion of point clouds from different reference views 
• Sampling of scene depends on the reference views

• Volumetric Stereo
• View-independent representation
• Need silhouette extraction
• Accuracy depends on the density of the grid
• High computational and memory costs
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Depth Map to Point Cloud

Credits: Pierre-Nicolas Perrin



(u1, v1, z1)

(u2, v2, z2)

(u3, v3, z3)

(u,v) are in image coordinate.
z is in camera coordinate

Convert (u,v) in image 
coordinate to (x,y) in 
camera coordinate.

All cameras have different 
coordinate system.

Different Rotation and 
Translation.

Convert from camera to 
world coordinate system

Credits: Pierre-Nicolas Perrin



How do we obtain mesh 
from point cloud?

Credits: Pierre-Nicolas Perrin

Screened Poisson Surface 
Reconstruction
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reference view neighbor views

Multi-view stereo: in Deep Learning Era

Classical MVS Deep MVS

Photo consistency (error 
metric) is applied on raw 
image intensities – not so 
robust w.r.t. illumination, 

highlights etc.

Photo consistency (error 
metric) is applied on Deep 

Features- very robust

Tries to minimize photo 
consistency error after 

reprojection

Uses reprojection error (self-
supervision) + synthetic/real 

data with GT.

Cost Volume is used in both.

Will learn more about this towards the end of the course in details.



Reference image

Single pixel’s cost 
profile

depth

cost

Plane sweep

Full cost volume

Depth map 
solver

(Belief propagation, 
graph cuts, etc.)

Plane Sweep Stereo in Deep Learning era

Instead of raw-pixels 
use deep features

Use 3D convolution to 
predict depth map 
from cost volume.



Another approach: NeRF
• Represent scenes as functions from (x, y, z) to RGB and alpha 

(transparency), use volume rendering to render images

https://www.matthewtancik.com/nerf

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Will learn more about this towards the end of the course in details.

https://www.matthewtancik.com/nerf


Slide Credits

• CS5670, Introduction to Computer Vision, Cornell Tech, by Noah 
Snavely.
• CS 194-26/294-26: Intro to Computer Vision and Computational 

Photography, UC Berkeley, by Angjoo Kanazawa.
• CS 16-385: Computer Vision, CMU, by Matthew O’Toole.
• CSE 486: Computer Vision, by Robert Collins, Penn State.
• CS 543 Computer Vision, by Stevlana Lazebnik, UIUC.

https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://inst.eecs.berkeley.edu/~cs194-26/
http://16385.courses.cs.cmu.edu/fall2022/
https://slazebni.cs.illinois.edu/fall22/

