Lecture 20: Multi-View Stereo (MVS)

Instructor: Roni Sengupta

ULA: Andrea Dunn Beltran, William Li,
Livjie Zheng oleRERtio

Course Website:
Scan Me!



Geometry: How do we represent shape of an object?

2.5D representation:
1) Depth & Normal map

Explicit representation:
2) Mesh
3) Voxels
4) Point Cloud

Implicit representation:
5) Surface Representation (SDF)



Geometry: How do we represent shape of an object?

2.5D representation:
1) Depth & Normal map



Depth Map

REFTRAIFNCTE IMAGT

Depth Map D(u,v): Distance of any pixel (u,v) from the camera (usually image plane)
Red-> nearer; blue-> further

For an image HxWx3, a depth map is HxXWx1 (scalar value for every pixel)



Surface Normal

Surface Normal (in blue) of a point P is a
vector perpendicular to the tanget plane at P.

Surface normal (in blue) of a surface

Surface normal indicate orientation of the surface.



Normal Map

Normal Map N(u,v): [Nx,Ny,Nz] is a unit vector
indicating the orientation of the surface.

Pink-> towards left; blue-> towards right

For an image HxWx3, a normal map is HxWx3.

Credits: ibug imperial college london



Relationship between Depth & Normal Map

. oD 0D * Differentiation of depth map leads
N = 1 to normal ma
[ax ) ay ) ] p
N * Integration of normal map leads to

depth map

[NV

Further reading: Normal Integration: A Survey

Normalizing to unit vector.


https://arxiv.org/pdf/1709.05940.pdf

Geometry: How do we represent shape of an object?

Explicit representation:
2) Mesh



A Small Triangle Mesh

8 vertices, 12 triangles



vertices




A Large Triangle Mesh

David

Digital Michelangelo Project
28,184,526 vertices

56,230,343 triangles

Marc Levoy at Stanford (https://accademia.stanford.edu/mich/)



Geometry: How do we represent shape of an object?

Explicit representation:

3) Voxels



Voxel Representation

It’s like playing with Lego!



Voxel Representation
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Voxel with octree



Geometry: How do we represent shape of an object?

Explicit representation:

4) Point Cloud






il

Dense models of several landmarks produced by COLMAP’s MVS pipeline.

Started at UNC!! —Jan Michael Frahm’s group



3D Representations (Explicit)

{‘\ \:
\\_ y
Point cloud Polygon mesh

Not good Good
No Yes
Not easy Not easy

Memory efficiency
Textures
For neural networks

We adopt polygon mesh for its high potential

Images are from

http://cse.iitkgp.ac.in/~pb/research/3dpoly/3dpoly.html

http://waldyrious.net/learning-holography/pb-cgh-formulas.xhtm #3
http://www.cs.mun.ca/~omeruvia/philosophy/images/BunnyWire.gif



Geometry: How do we represent shape of an object?

Implicit representation:
5) Surface Representation (SDF)



Surface Representation:
Signed Distance Function (SDF)
- implicit representation via level set

® o ¢ Decision
s boundary
e ofimplict

surface
. o

e SDF >0
.0

SDF(X) = 0, when X is on the surface.
SDF(X) > 0, when X is outside the surface | « - ~——
SDF(X) < 0, when X is inside the surface | SPF<0

Note: SDF is an implicit representation!
Suitable for neural networks but hard to
import inside existing graphics software.

{c)

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.



BundleFusion [Dai et al. 17]

Neural RGB-D Scene Reconstruction, Azinovic et. al.




Recap
(Stereo)



?’fﬂ?*”uom. ABRAIAM LINCOLN, President of United States. |
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1. Rectify 1mages

(make epipolar lines horizontal)
2. For each pixel

a.Find epipolar line

b. Scan line for best match

c. Compute depth from disparity

bf
7 = -~
d




How to do Stereo Matching

* Greedy: for every pixel in left scanline -> choose best match in right
scanline.

* What properties get violated in greedy approach?
* Unigueness: match should be unique
* Smoothness: disparity should vary slowly
* Occlusion: handle pixels when occluded in left or right image
* Ordering constraint: Ordered set of points should have same match.

* Non-greedy: choose best match for all pixels in the left scanline. How?
* Dynamic Programming
* Graph Cut approach
* Deep Learning



Why Study Stereo?

* Passive Stereo:
 Self-driving car
* Any autonomous robots
* 3D movies

* Active Stereo: Make correspondence easier by projecting patterns
(structured lights)
* Apple TrueDepth
* Kinect
e Laser scanning for 3D reconstruction



Active stereo with structured light

Li Zhang’s one-shot stereo

camera 1

[+

camera 1

camera 2 , &

* Project “structured” light patterns onto the object
* simplifies the correspondence problem
* basis for active depth sensors, such as Kinect and iPhone X (using IR)

projector




Today’s class

* Motivation

* Simple Approach to MVS

* Advanced Approach to MVS

* Plane Sweep Stereo
* Space Curving Stereo

* Converting depth to mesh
* MVS in deep learning era (more later)



Today’s class

* Motivation



Multi-view Stereo

Problem formulation: given several images of the same
object or scene, compute a representation of its 3D shape
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Multi-view stereo




Multi-view Stereo

Point Grey's ProFusion 25

CMU'’s Panoptic Studio



http://www.ptgrey.com/
http://www.ptgrey.com/
http://domedb.perception.cs.cmu.edu/

Multi-view Stereo

Input: calibrated images from several viewpoints (known intrinsics and
extrinsics / projection matrices)

Output: 3D object model

Figures by Carlos Hernandez
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https://renderpeople.com/about-us/

Virtual Reality Video

Anderson, et al. Jump: Virtual Reality
Video. SIGGRAPH Asia 2016.

Broxton, et al. Immersive Light Field Video
with a Layered Mesh Representation.
SIGGRAPH 2020.




Today’s class

* Simple Approach to MVS



Multi-view stereo: Basic idea

reference view neighbor views

Source: Y. Furukawa



Multi-view stereo: Basic idea

depth

reference view neighbor views

Source: Y. Furukawa



Multi-view stereo: Basic idea

depth

reference view neighbor views

Source: Y. Furukawa



Multi-view stereo: Basic idea

depth

In this manner, solve for a depth map
over the whole reference view

reference view neighbor views

Source: Y. Furukawa



Multi-view stereo: advantages

* Can match windows using more than 1 neighbor, giving a stronger
match signal

* If you have lots of potential neighbors, can choose the best subset of
neighbors to match per reference image

* Can reconstruct a depth map for each reference frame, and the
merge into a complete 3D model



Choosing the stereo baseline

all of these
points project
to the same
pair of pixels
width of
a pixel

/ N [\

Large Baseline Small Baseline

What'’s the optimal baseline?
* Too small: large depth error
* Too large: difficult search problem



Multiple-baseline stereo

SSD

e ¢ » width of

pixel matching score a pixel

« For short baselines, estimated depth will be less

precise due to narrow triangulation

width of

a pixel \

« For larger baselines, must search larger

area in second image

M. Okutomi and T.Kanade, "A Multiple-Baseline Stereo System,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).




The Effect of Baseline on Depth Estimation
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HFgure 2: An example scene. The grid

ﬁ?ﬁ:ﬂ?&‘lgg;ﬁ‘:ﬁ;ﬂd a8 Baseline b 2b 3b 4b Sb 6b 7b 8b 9b




5b

B=b2b....8b

Bu2b,4b,6b.8b

3

B=4b,8b

B=8b

(h) inverse depth
Fig. 5. SSD valucs versus inverse distance: (a) B = b; (b) B = 2b; (c)
B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7b; (h) B = 8b.

Fig. 7. Combining multiple baseline stereo pairs.
The horizontal axis is normalized such that SbF = 1.



Multiple-baseline stereo results

M. Okutomi and T. Kanade, A Multiple-Baseline Stereo System, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).




Takeo Kanade

Article Talk

From Wikipedia, the free encyclopedia

Takeo Kanade (£ Eiff, Kanade Takeo, born October 24, 1945 in Hydgo) is a Japanese computer
scientist and one of the world's foremost researchers in computer vision. He is U.A. and Helen Whitaker
Professor at Carnegie Mellon University. He has approximately 300 peer-reviewed academic publications
and holds around 20 patents.!']

Honors and achievements |[edit]

¢ In 1997, he was elected to the US National Academy of Engineering for contributions to computer vision
and robotics.[?!

¢ In 1997, he was elected to the American Academy of Arts and Sciences

¢ In 1999 he was inducted as a Fellow of the Association for Computing Machinery.

¢ In 2008 Kanade received the Bower Award and Prize for Achievement in Science from The Franklin
Institute in Philadelphia, Pennsylvania.[®!

e A special event called TK60: Celebrating Takeo Kanade's vision was held to commemorate his 60th
birthday.*! This event was attended by prominent computer vision researchers.

e Elected member of American Association of Artificial Intelligence, Robotics Society of Japan, and Institute
of Electronics and Communication Engineers of Japan

e Marr Prize, 1990 for the paper Shape from Interreflections which he co-authored with Shree K. Nayar and
Katsushi Ikeuchil%]

¢ Longuet-Higgins Prize for lasting contribution in computer vision at

« CVPR 2006 for the paper "Neural Network-Based Face Detection"(®! coauthored with H. Rowley and
S. Balujal”!
» CVPR 2008!8! for the paper "Probabilistic modeling of local appearance and spatial relationships for
object recognition"®! coauthored with H Schneiderman

e The other awards he has received include the C&C Award, the Joseph Engelberger Award, FIT Funai
Accomplishment Award, the Allen Newell Research Excellence Award, and the JARA Award.

¢ He has served for many government, industrial, and university advisory boards, including the Aeronautics
and Space Engineering Board (ASEB) of the National Research Council, NASA's Advanced Technology
Advisory Committee, PITAC Panel for Transforming Healthcare Panel, and the Advisory Board of
Canadian Institute for Advanced Research.['0]

« In 2016 Kanade received the Kyoto Prize in Information Sciences.[']

XA 8 languages v

Read Edit View history

Takeo Kanade

Dr Takeo Kanade at the 2016 Kyoto Prize
Presentation Ceremony

Born October 24, 1945

(age 77)

Hydgo, Japan
Nationality Japanese
Alma mater Kyoto University
Known for Lucas—Kanade method

Tomasi-Kanade method
Face Detection
Virtualized Reality

Awards Kyoto Prize (2016)
Bowers Award (2008)
NAE Member (1997)

Scientific career

Fields Computer vision
Robotics



Multibaseline Stereo

Basic Approach
* Choose a reference view

* Use your favorite stereo algorithm BUT
* replace two-view SSD with SSSD over all baselines

* SSSD: the SSD values are computed first for each pair of stereo images, and then add all
together from multiple stereo pairs.

Limitations
* Only gives a depth map (not an “object model”)
* Won’t work for widely distributed views.



Popular matching scores

* SSD (Sum of Squared Differences) > Wiz, y) — Walz,y)|?
x,y
* SAD (Sum of Absolute Differences) ; Wilw,y) = Walz,y)|

* ZNCC (Zero-mean Normalized Cross Correlation)
> wy Wiz, y) — Wh) (Wa(z,y) — Wa)

O'W10'W2

1 1 _
« where ~ Z Wi =, > (Wi = Wi)?
L,y

* what advantages might NCC have?



Bu2b.4b,6b,8

inverse depth

Fig. 7. Combining multiple baseline stereo pairs.

Some Solutions
Match only nearby photos [Narayanan 98]

Use NCC instead of SSD,
Ignore NCC values > threshold

Fig. 5. SSD valucs versus inverse distance: (a) B = b; (b) B = 2b; (¢) i
B = 3b; (d) B = 4b; (e) B = 5b; (f) B = 6b; (g) B = 7h; (h) B = 8b. [Hernandez & SChmItt 03]
The horizontal axis is normalized such that 8bF = 1.




Visibility
Which points are visible in which images?

.

\ Known Scene Unknown Scene
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Inverse Visibility
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Forward Visibility




Today’s class

* Advanced Approach to MVS

* Plane Sweep Stereo
* Space Curving Stereo



Plane-Sweep Stereo
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Plane-Sweep Stereo

Proposed point

at correct depth ‘

\

.. Photo-consistent projections
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Plane-Sweep S}ereo

Proposed point at

incorrect depth ‘
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Photo-inconsistent projections
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Plane-Sweep Stereo

* Sweep family of planes parallel to the reference camera image plane
* Reproject neighbors onto each plane and compare reprojections

<— projective re-sampling of (X, Y,2)

neighbor camera 1 neighbor camera 2

reference camera



Example

Left neighbor Refernce image Right neighbor

For a particular depth sweep, some regions in the
average image appears sharp, i.e. photo-consistent.

Starts with near-depth and sweeps till far-depth Planar image reprojections swept over depth
(averaged)



Cost Volumes -> Depth Maps

Depth map
solver

(Belief propagation,
graph cuts, etc.)

Reference image “ Full cost volume

405 06
inverse depth

» depth
Single pixel’s cost
profile
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Cost Volume

Cost Volume is a 3D tensor WxHxD for D depth proposal

C(u,v,d) indicates photo-consistency between (u,v) pixel in the reference
image to that of it’s corresponding pixels in neighboring images
assuming the depth proposal at d.

There are various measures of photo consistency, a simple one is variance.

How do we find the corresponding pixels in neighboring images?

* Backproject every pixel using camera matrix (Computationally
expensive)

 Homography transformation over the whole image.



Plane-Sweep Stereo

Reference camera

* For each depth plane proposal d,,, map each target
image |, to the reference image I+ using

homography (H,, ). Let the warped image be W,,,. Ras=
* H,, can be calculated from the camera
parameters and depth of the plane d,,.. Kyes 1
Pref
e For each pixel (u,v) in the reference image compute £ /T >
similarity scores between W,,,and | .. v o

* |f you use Zero Mean Normalized Cross
Correlation, you have ZNCC(l . u,v), W,,,(u,v))

u-= Kref[l | 0]X

Camera k

u' = K, [Ry | t;]X

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping
Stereo with Multiple Sweeping Directions, CVPR 2007



Plane-Sweep Stereo

» The family of depth planes
in the coordinate frame of the reference view

I =[nr —dm]

m m

« The mapping from the reference camera P,., onto the

plane I1,,, and back to camera P, is described by
the homography induced by the plane I1,,

Try the
T -1
Hll,,,.P,\ - Kk (RA —tknm /dm )Krcf pI’OOf in
HW!

« The mapping from P, to P, induced by II,, is the
inverse homography H,,' ,

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping
Stereo with Multiple Sweeping Directions, CVPR 2007

Reference camera Camera k
u= K[l | 0]X u' = Ki[Ry | t;]X
1 H
>
A it
A
Kref
Pref
k-~~~ 7 n >
R V*\‘.

Slight abuse of notation. In equation (x,y) are image
co-ordinates, in figure u is image co-ordinate.



Plane-Sweep Stereo

: : : Reference camera Camera k

* For each pixel (u,v) in the reference image

compute similarity scores between W, ,,and | as u=Krerll 101X ; % = Kl | £l

ZNCC(Iref(u;V)i ka(ulv)) U o — o U
* Create a cost volume C(u,v,m) = sum (ZNCC(I.¢(u,v), Kyef 1 T K,

W,..(u,v)) over all k target images. p

/ U 7 . raef /rpk

* Greedy: At each pixel choose the maximum of the v x, x'_‘"

cost volume as the correct depth. g ’

m-—1

* Non-greedy: Use advanced techniques like belief /"/ Tnm—l \

propagation, graph cut, or 3D convolution. /

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.

D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping
Stereo with Multiple Sweeping Directions, CVPR 2007



Plane-Sweep Stereo

KANJI ? 2 9
GUIDE | ;
<

Left neighbor projected into Average images on each plane Right neighbor projected into
reference image reference image



Today’s class

* Advanced Approach to MVS

* Plane Sweep Stereo
* Space Curving Stereo



Volumetric stereo

Discretized
Scene Volume

Input Images
(Calibrated)

Goal: Assign RGB values to voxels in V
photo-consistent with images



Space Carving

Image 1 Image N

*Space Carving Algorithm

* Initialize to a volume V containing the true scene

Choose a voxel on the outside of the volume

Project to visible input images

Carve if not photo-consistent

Repeat until convergence

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999



http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf

Space Carving Results

Reconstruction

Reconstruction Reconstruction

Source: S. Seitz



Space Carving Results

Input Image
(1 of 100)

Reconstrction

Source: S. Seitz



How do you initialize the voxel?
Visual Hull Extraction

1. Segment out object from background
2. Backproject each silhouette
3. Intersect backprojected volumes

y




Summary of approached to MVS

* Plane Sweep Depth maps
* Robust and adaptable multiple-view stereo matching
* Real-time applications
e Fusion of point clouds from different reference views
* Sampling of scene depends on the reference views

* Volumetric Stereo
* View-independent representation
* Need silhouette extraction
* Accuracy depends on the density of the grid
* High computational and memory costs



Today’s class

* Converting depth to mesh



Depth Map to Point Cloud

Credits: Pierre-Nicolas Perrin



(u,v) are in image coordinate. Convert (u,v) in image Convert from camera to
Z is in camera coordinate coordinate to (x,y) in world coordinate system
camera coordinate.

(ul, vi, z1)
r — z(u _ Cx) -:B‘w- -2'13@-
= £ =y, =y | [R]E]
(U2, v2, z2) A A
S_some)
(u3, v3, z3)

All cameras have different
coordinate system.
Different Rotation and

Translation. Credits: Pierre-Nicolas Perrin



How do we obtain mesh
from point cloud?

Screened Poisson Surface
Reconstruction

Credits: Pierre-Nicolas Perrin



Today’s class

* MVS in deep learning era (more later)



Multi-view stereo: in Deep Learning Era

reference view

neighbor views

Classical MVS Deep MVS

Photo consistency (error Photo consistency (error
metric) is applied on raw metric) is applied on Deep
image intensities — not so Features- very robust

robust w.r.t. illumination,
highlights etc.

Tries to minimize photo Uses reprojection error (self-
consistency error after supervision) + synthetic/real
reprojection data with GT.

Cost Volume is used in both.

Will learn more about this towards the end of the course in details.



Plane Sweep Stereo in Deep Learning era

Depth map
solver i

(Belief propagation,
graph cuts, etc.)

,, -
Reference image W Full cost volume

» depth
Instead of raw-pixels Single pixel’s cost

use deep features profile

Use 3D convolution to
predict depth map
from cost volume.



Another approach: NeRF

* Represent scenes as functions from (x, y, z) to RGB and alpha
(transparency), use volume rendering to render images

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

Will learn more about this towards the end of the course in details.

https://www.matthewtancik.com/nerf



https://www.matthewtancik.com/nerf

Slide Credits

* CS5670, Introduction to Computer Vision, Cornell Tech, by Noah
Snavely.

* CS 194-26/294-26: Intro to Computer Vision and Computational
Photography, UC Berkeley, by Angjoo Kanazawa.

e CS 16-385: Computer Vision, CMU, by Matthew O’Toole.
* CSE 486: Computer Vision, by Robert Collins, Penn State.
* CS 543 Computer Vision, by Stevlana Lazebnik, UIUC.



https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://inst.eecs.berkeley.edu/~cs194-26/
http://16385.courses.cs.cmu.edu/fall2022/
https://slazebni.cs.illinois.edu/fall22/

