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Recap



Geometry: How do we represent shape of an object?
2.5D representation:
 1) Depth & Normal map

Explicit representation:
2) Mesh
3) Voxels
4) Point Cloud

Implicit representation:
 5) Surface Representation (SDF)

Easy for neural network but high memory consumption

Hard for neural network but most Graphics pipeline use it. Very efficient with memory.

Output of many RGBD sensors or RGB algorithms

Memory efficient and deep networks can 
predict it. But need to convert it to 
mesh/voxel to be usable in Graphics engines.

Easy to predict with 2D neural networks, efficient 
but do not give full 3D information.



1. Rectify images
(make epipolar lines horizontal)

2. For each pixel
a. Find epipolar line
b. Scan line for best match
c. Compute depth from disparity

How can you make the epipolar lines horizontal?

Stereo



Multi-view stereo: Basic idea

reference view neighbor views

Source: Y. Furukawa



Reference image

Single pixel’s cost 
profile

depth

cost

Plane sweep

Full cost volume

Depth map 
solver

(Belief propagation, 
graph cuts, etc.)

Plane Sweep Stereo: Cost Volumes -> Depth Maps



Slight abuse of notation. In equation (x,y) are image 
co-ordinates, in figure u is image co-ordinate.

Plane-Sweep Stereo

Robert Collins, A Space-Sweep Approach to True Multi-Image Matching, CVPR 1996.
D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang and M. Pollefeys, Real-Time Plane-Sweeping 
Stereo with Multiple Sweeping Directions, CVPR 2007

Try the 
proof in 
HW!



Big picture: 3 key components in 3D

Camera 
(Motion)Correspondences

3D Points 
(Structure) Structure from Motion

(SfM)
Simultaneous 
Localization & Mapping 
(SLAM)



Structure from motion

• SfM solves both of these problems at once
• A kind of chicken-and-egg problem
• (but solvable)



Structure from Motion (SfM)
• Given many images, how can we 

a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem



Photo Tourism
Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring 
photo collections in 3D," SIGGRAPH 2006

https://youtu.be/mTBPGuPLI5Y

http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://phototour.cs.washington.edu/Photo_Tourism.pdf
https://youtu.be/mTBPGuPLI5Y


Large-scale structure from motion

Dubrovnik, Croatia.  4,619 images (out of an initial  57,845).
Total reconstruction time: 23 hours
Number of cores: 352

Building Rome in a Day, Agarwal et al. ICCV 2009



Large-scale structure from motion

Rome’s Colosseum
Building Rome in a Day, Agarwal et al. ICCV 2009



Reconstructing the World in Six Days, 
Jared Heinly, Johannes L. Schönberger, Enrique Dunn, Jan-Michael Frahm, CVPR 2015.
Work done at UNC CS!



Today’s Class
• Ambiguities in SfM
• Affine SfM
• Projective SfM
• Global SfM
• Incremental SfM

• Challenges and Applications
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Structure from motion

Camera 3Camera 1

Camera 2
?

?
?𝑲1, 𝑹1, 𝒕1

𝑲2, 𝑹2, 𝒕2

𝑲3, 𝑹3, 𝒕3

?



Recall: Calibration

Camera 3Camera 1

Camera 2

• Given a set of known 3D points seen by a camera, compute the camera parameters

?
?

?𝑲1, 𝑹1, 𝒕1

𝑲2, 𝑹2, 𝒕2

𝑲3, 𝑹3, 𝒕3



Recall: Triangulation

• Given known cameras and projections of the same 3D point in two or more images, compute 
the 3D coordinates of that point

?

Camera 3Camera 1

Camera 2

𝑲1, 𝑹1, 𝒕1

𝑲2, 𝑹2, 𝒕2

𝑲3, 𝑹3, 𝒕3



Structure from motion: Problem formulation
• Given: 𝑚	images of 𝑛 fixed 3D points such that (ignoring visibility)

• 𝒙𝑖𝑗	 ≅ 	𝑷𝑖	𝑿𝑗	, 𝑖	 = 	1, …	,𝑚, 	 𝑗	 = 	1, …	, 𝑛	

• Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from 
the 𝑚𝑛 correspondences 𝒙𝑖𝑗

𝒙1𝑗

𝒙2𝑗
𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3



Is SFM always uniquely solvable?

Source: N. Snavely

• Necker cube

http://en.wikipedia.org/wiki/Necker_cube


Structure from motion ambiguity

• If we scale the entire scene by some factor 𝑘 and, at the same time, scale 
the camera matrices by the factor of 1/𝑘, the projections of the scene 
points remain exactly the same:

•𝒙 ≅ 𝑷𝑿 = $
%
𝑷 (𝑘𝑿)

• Without a reference measurement, it is impossible to recover the absolute 
scale of the scene!
• In general, if we transform the scene using a transformation 𝑸 and apply 

the inverse transformation to the camera matrices, then the image 
observations do not change:

•𝒙 ≅ 𝑷𝑿 = 𝑷𝑸&$ (𝑸𝑿)



Recall: 2D image transformations

Now, lets extend this to 3D.



Projective ambiguity

• With no constraints on the camera calibration matrices or on the 
scene, we can reconstruct up to a projective ambiguity:

𝒙 ≅ 𝑷𝑿 = 𝑷𝑸!" 𝑸𝑿
𝑸 is a general full-rank 4×4 matrix



Projective ambiguity



Affine ambiguity

• If we impose parallelism constraints, we can get a reconstruction up 
to an affine ambiguity:

Affine

𝒙 ≅ 𝑷𝑿 = 𝑷𝑸#!𝟏 𝑸#𝑿

𝑸# =
𝑨 𝒕
𝟎% 1

3×3 
full-rank 
matrix

3×1 translation 
vector



Affine ambiguity



Similarity ambiguity

• A reconstruction that obeys orthogonality constraints on camera 
parameters and/or scene

𝒙 ≅ 𝑷𝑿 = 𝑷𝑸&!𝟏 𝑸&𝑿

𝑸& =
𝑠𝑹 𝒕
𝟎% 1

3×3 
rotation 
matrix

3×1 translation 
vector



Similarity ambiguity



Today’s Class
• Ambiguities in SfM
• Affine SfM
• Projective SfM
• Global SfM
• Incremental SfM

• Challenges and Applications



The pinhole camera

real-world 
object

camera 
center

image plane

focal length f



What if…

real-world 
object

depth Z focal 
length f

… we continue increasing Z 
and f while maintaining 

same magnification?

𝑍𝑓	→	∞	and	 𝑓	=	constant



camera is close 
to object and has 
small focal length

camera is far from 
object and has 

large focal length



Weak perspective vs perspective camera

image plane

magnification 
changes with depth

• magnification does not 
change with depth

• constant magnification 
depending on f and Zo

𝑍 !



Different cameras

perspective camera weak perspective camera



When can we assume a weak perspective camera?
When the scene (or parts of it) is very far away.

Weak perspective projection applies to the mountains.



Affine structure from motion

• Let’s start with affine or weak perspective cameras

center at
infinity



Orthographic projection

Image World

Just drop the 𝑧 coordinate!

𝑥
𝑦
1

=
1 0 0 0
0 1 0 0
0 0 0 1

𝑥
𝑦
𝑧
1



General affine projection
• A general affine projection is a 3D-to-2D linear mapping plus translation:

• In non-homogeneous coordinates:

•
𝑥
𝑦 =

𝑎"" 𝑎"# 𝑎"$
𝑎#" 𝑎## 𝑎#$

𝑋
𝑌
𝑍

+
𝑡"
𝑡#

= 𝑨𝑿 + 𝒕

𝒙

𝑿𝒂1

𝒂2

Projection of
world origin

𝒂!, 𝒂": rows of projection matrix

𝑷 =
𝑎!! 𝑎!" 𝑎!# 𝑡!
𝑎"! 𝑎"" 𝑎"# 𝑡"
0 0 0 1

= 𝑨 𝒕
𝟎$ 1



Affine structure from motion
• Given: 𝑚 images of 𝑛 fixed 3D points such that

•  𝒙𝑖𝑗	 = 	𝑨𝑖	𝑿𝑗	+ 𝒕𝑖	, 	 𝑖	 = 	1, …	,𝑚, 𝑗	 = 	1, …	, 𝑛  
• Problem: use the 𝑚𝑛 correspondences 𝒙𝑖𝑗 to estimate 𝑚 projection 

matrices 𝑨𝑖 and translation vectors 𝒕𝑖, and 𝑛 points 𝑿𝑗 
• The reconstruction is defined up to an arbitrary affine 

transformation 𝑸 (12 degrees of freedom):
•

𝑨 𝒕
0% 1 → 𝑨 𝒕

0% 1 𝑸&", 𝑿'
1

→ 𝑸 𝑿'
1

• How many knowns and unknowns for 𝑚 images and 𝑛 points? 
• 2𝑚𝑛 knowns and 8𝑚	 + 	3𝑛	unknowns
• To be able to solve this problem, we must have 2𝑚𝑛	 ≥ 	8𝑚 + 3𝑛 − 12 

(affine ambiguity takes away 12 dof)
• E.g., for two views, we need four point correspondences



Affine structure from motion
• First, center the data by subtracting the centroid of the image points 

in each view:

= 𝑨%𝑿& + 𝒕% −
1
𝑛5
'(!

)

𝑨%𝑿' + 𝒕%

6𝒙%& = 𝒙%& −
1
𝑛5
'(!

)

𝒙%'

= 𝑨% 𝑿& −
1
𝑛5
'(!

)

𝑿'

= 𝑨%7𝑿&



Affine structure from motion

• After centering, each normalized 2D point >𝒙(' 	is related to the 3D 
point by

•>𝒙(' = 𝑨(?𝑿'

• We can get rid of the need to center the 3D data (and the translation 
ambiguity) by defining the origin of the world coordinate system as 
the centroid of the 3D points



Affine structure from motion

• Let’s create a 2𝑚	×	𝑛	data (measurement) matrix:

•𝑫 =

#𝒙"" #𝒙"' ⋯ #𝒙"(
#𝒙'" #𝒙'' ⋯ #𝒙'(
⋮ ⋮ ⋱ ⋮

#𝒙)" #𝒙)' ⋯ #𝒙)(

=

𝑨"
𝑨#
⋮
𝑨)

𝑿" 𝑿' ⋯ 𝑿(

points (𝑛)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. 
IJCV, 9(2):137-154, November 1992. 

cameras
(2	𝑚)

#𝒙*+ = 𝑨*𝑿+

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Affine structure from motion

• Let’s create a 2𝑚	×	𝑛	data (measurement) matrix:

•𝑫 =

#𝒙"" #𝒙"' ⋯ #𝒙"(
#𝒙'" #𝒙'' ⋯ #𝒙'(
⋮ ⋮ ⋱ ⋮

#𝒙)" #𝒙)' ⋯ #𝒙)(

=

𝑨"
𝑨'
⋮
𝑨)

𝑿" 𝑿' ⋯ 𝑿(

• What must be the rank of the measurement matrix 𝑫 = 𝑴𝑺?
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. 

IJCV, 9(2):137-154, November 1992. 

cameras
(2	𝑚	×	3)

points (3	×	𝑛)

𝑴

𝑺

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Factorizing the measurement matrix
• We want:

𝑫 𝑴 𝑺×=2𝑚

𝑛 3



Factorizing the measurement matrix

• Perform SVD of 𝑫:

×= ×𝑫
2𝑚×𝑛

𝑼
2𝑚×𝑛

𝚺
𝑛×𝑛

𝑽!
𝑛×𝑛



Factorizing the measurement matrix
• Keep top 3 singular values:

×= ×𝑫
2𝑚×𝑛

𝑽"!
3×𝑛

𝑼"
2𝑚×3

𝚺"
3×3

• What to do about 𝚺$?

• One solution: 𝑴 = 𝑼$𝚺$
!
" , 𝑺 = 𝚺$

!
"𝑽$%  

• This is the closest approximation of 𝑫 with a 
rank-3 matrix in terms of Frobenius norm



Factorizing the measurement matrix

• One possible solution:

×=𝑫
2𝑚×𝑛

𝑺
3×𝑛

𝑴
2𝑚×3

𝑴 = 𝑼$𝚺$
"
#	

𝑺 = 𝚺$
!
"𝑽$%  



Factorizing the measurement matrix
• Other possible solutions (Ambiguity in Reconstruction)

×=𝑫
2𝑚×𝑛

𝑺
3×𝑛

𝑴
2𝑚×3

× ×𝑸
3×3

𝑸#𝟏
3×3

We can estimate 𝑸 to give the camera 
matrices in 𝑴 desirable properties, like 
orthographic projection

How to eliminate ambiguity?
Assume certain special structure of the projection matrix.
Assume certain conditions about the 3D structure.



Dealing with missing data
• So far, we have assumed that all points are visible in all views
• In reality, the measurement matrix typically looks something like this:

• These kind of problems are called Low-rank Matrix Completion 
problems (aka the Netflix Problem). Solved with convex/non-convex 
optimizations.

• Very popular before deep learning era! 

cameras

points



Today’s Class
• Ambiguities in SfM
• Affine SfM
• Projective SfM
• Global SfM
• Incremental SfM

• Challenges and Applications



Projective structure from motion
• Given: 𝑚	images of 𝑛 fixed 3D points such that (ignoring visibility):

• 𝒙𝑖𝑗 ≅ 𝑷𝑖	𝑿𝑗	, 𝑖	 = 	1, …	,𝑚, 	 𝑗	 = 	1, …	, 𝑛	

• Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from the 
𝑚𝑛 correspondences 𝒙𝑖𝑗

𝒙1𝑗

𝒙2𝑗
𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3



Projective structure from motion
• Given: 𝑚	images of 𝑛 fixed 3D points such that (ignoring visibility):

• 𝒙𝑖𝑗 ≅ 𝑷𝑖	𝑿𝑗	, 𝑖	 = 	1, …	,𝑚, 	 𝑗	 = 	1, …	, 𝑛	

• Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from the 
𝑚𝑛 correspondences 𝒙𝑖𝑗

• With no calibration info, cameras and points can only be recovered up to a 
4×4 projective transformation 𝑸:

• 𝑿	 → 	𝑸𝑿, 𝑷	 → 	𝑷𝑸&𝟏

• We can solve for structure and motion when 2𝑚𝑛 ≥ 11𝑚 + 3𝑛	 − 15
• For two cameras, at least 7 points are needed
• You can solve it similar to Affine SfM with matrix factorization.
• Algebraic methods are good for initializing a non-linear optimization 

problem.



Bundle adjustment
• Non-linear method for refining structure and motion
• Minimize reprojection error (with lots of bells and whistles):

•∑(,") ∑',"- 𝑤('𝑑 𝒙(' − proj 𝑷(𝑿'
#

𝒙1𝑗

𝒙2𝑗

𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3

𝑷1𝑿𝑗

𝑷2𝑿𝑗
𝑷3𝑿𝑗

visibility flag: 
is point 𝑗 visible in  view 𝑖?

B. Triggs et al. Bundle adjustment – A modern synthesis. International Workshop on Vision Algorithms, 1999

Factorization based SfM works well for very small scenes 
with limited number of images, even then it produces 
poor result for most practical purposes.

https://hal.inria.fr/inria-00548290/document


Global Structure from Motion

SfM for large scale scenes



Feature detection
Detect features using SIFT [Lowe, IJCV 2004]



Feature detection
Detect features using SIFT [Lowe, IJCV 2004]



Feature matching
Match features between each pair of images



Feature matching
Refine matching using RANSAC to estimate fundamental 
matrix between each pair



Correspondence estimation

• Link up pairwise matches to form connected components of matches across 
several images

Image 1 Image 2 Image 3 Image 4



Global SfM
• Given N images, there are NC2 pairs. Many of these pairs will have no 

overlaps in views and/or Fundamental/Essential matrix between 
them can not be reliably estimated using RANSAC.
• Consider we have N0 (N0 < NC2) pairs of images with fundamental matrix 

estimated

• For each N0 pairs of images decompose essential matrix into relative 
rotation and translation between two cameras: Rij and tij.

• Can we solve for global (world coordinate) rotation and translation of 
the cameras, given pairwise measurements, i.e.
• Given Rij and tij  for N0 pairs, find Rk & Tk for N cameras.

• Once we have the cameras we can better initialize the Bundle 
Adjustment problem.



Rotation & Translation Averaging
Given Rij and tij  for N0 pairs, find Rk & Tk for N cameras

Credits: Venu Madhab Govindu



Camera Pose estimation as matrix completion over Fundamental matrices

“A New Rank Constraint on Multi-view Fundamental Matrices”, Sengupta et. al. CVPR 2017.

• Proves a low-rank property of all the cameras capturing different images of a scene.
• Solves a low-rank camera pose recovery algorithm from Structure from Motion.

64



Bundle adjustment
• Non-linear method for refining structure and motion
• Minimize reprojection error (with lots of bells and whistles):
• 

•∑(,") ∑',"- 𝑤('𝑑 𝒙(' − proj 𝑷(𝑿'
#

• Initialize Pi’s by solving global SfM
• Rotation Averaging
• Translation Averaging 

𝒙1𝑗

𝒙2𝑗

𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3

𝑷1𝑿𝑗

𝑷2𝑿𝑗
𝑷3𝑿𝑗

visibility flag: is 
point 𝑗 visible in 

view 𝑖?

B. Triggs et al. Bundle adjustment – A modern synthesis. International Workshop on Vision Algorithms, 1999

https://hal.inria.fr/inria-00548290/document


Incremental SfM

• Automatically select an initial pair of images

Can handle large scale scene, more than Global SfM



1. Picking the initial pair
• We want a pair with many matches, but which has as 

large a baseline as possible

lots of matches
small baseline

very few matches
large baseline

lots of matches
large baseline



Incremental SFM

• Pick a pair of images with lots of inliers (and preferably, good EXIF data)
• Initialize intrinsic parameters (focal length, principal point) from EXIF
• Estimate extrinsic parameters (𝑹 and 𝒕) using five-point algorithm (similar to 8-pt 

algorithm but for essential matrix)
• Use triangulation to initialize model points

• While remaining images exist
• Find an image with many feature matches with images in the model
• Run RANSAC on feature matches to register new image to 3D model points
• Triangulate new points
• Perform bundle adjustment to re-optimize everything
• Optionally, align with GPS from EXIF data or ground control points

https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf


Next Best View Problem

• Choice of next view impacts reconstruction quality
• almost identical view => high uncertainty in triangulation
• very different view => low overlap and high camera uncertainty
• single bad choice may impact the whole reconstruction

• Popular next best view methods:
• choose view with seeing the most triangulated points
• minimize reconstruction uncertainty

• depends on number of observations
• distribution in the image





Today’s Class
• Ambiguities in SfM
• Affine SfM
• Projective SfM
• Global SfM
• Incremental SfM

• Challenges and Applications



The devil is in the details

• Handling degenerate configurations (e.g., homographies)
• Filtering out incorrect matches
• Dealing with repetitions and symmetries



Repetitive structures cause catastrophic 
failures

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf


Repetitive structures cause catastrophic 
failures

R. Kataria et al. Improving Structure from Motion with Reliable Resectioning. 3DV 2020

https://rajbirkataria.com/assets/ImprovingStructurefromMotionwithReliableResectioning.pdf


The devil is in the details

• Handling degenerate configurations (e.g., homographies)
• Filtering out incorrect matches
• Dealing with repetitions and symmetries
• Reducing error accumulation and closing loops



Loop Detection/Closure

• Problem:
• Structure from motion is an incremental process
• Drift accumulates

• Mitigation:
• Retrieval of long range connections



Reducing error accumulation and closing 
loops

A. Holynski et al. Reducing Drift in Structure From Motion Using Extended Features. arXiv 2020

https://arxiv.org/pdf/2008.12295.pdf


Reducing error accumulation and closing loops

A. Holynski et al. Reducing Drift in Structure From Motion Using Extended Features. arXiv 2020

https://arxiv.org/pdf/2008.12295.pdf


Loop Closure



Can also compute camera poses from video 
(often called Visual SLAM)



Visual Simultaneous Localization and 
Mapping (V-SLAM)
• Main differences with SfM:
• Continuous visual input from sensor(s) over time
• Gives rise to problems such as loop closure
• Often the goal is to be online / real-time

Video from Daniel Cremer’s Lab



SFM software

• Bundler
• OpenSfM
• OpenMVG
• VisualSFM
• COLMAP (Structure-from-motion revisited, JL Schonberger, JM Frahm, CVPR 2016, from UNC!)

• See also Wikipedia’s list of toolboxes

http://www.cs.cornell.edu/~snavely/bundler/
https://github.com/mapillary/OpenSfM
https://github.com/openMVG/openMVG
http://ccwu.me/vsfm/
https://colmap.github.io/
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=nzz6PQMAAAAJ&citation_for_view=nzz6PQMAAAAJ:vMcOFpnEpxoC
https://en.wikipedia.org/wiki/Structure_from_motion%23Structure_from_motion_software_toolboxes


SfM applications

• 3D modeling
• Surveying
• Robot navigation and mapmaking
• Virtual and augmented reality
• Visual effects (“Match moving”)
–https://www.youtube.com/watch?v=RdYWp70P_kY

https://www.youtube.com/watch?v=RdYWp70P_kY


Applications: Match Moving
Or Motion tracking, solving for camera trajectory
Integral for visual effects (VFX)
Why?



Applications: Visual Reality & Augmented 
Reality 

Hololens
https://www.youtube.com/watch?v=FMtvrTGnP04

Oculus
https://www.youtube.com/watch?v=KOG7yTz1iTA 

https://www.youtube.com/watch?v=FMtvrTGnP04
https://www.youtube.com/watch?v=KOG7yTz1iTA


Scape: Building the ‘AR Cloud’: Part Three —3D Maps, the Digital 
Scaffolding of the 21st Century
https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-
scaffolding-of-the-21st-century-465fa55782dd

Applications: Visual Reality & Augmented 
Reality 

https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-scaffolding-of-the-21st-century-465fa55782dd
https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-scaffolding-of-the-21st-century-465fa55782dd


Application: AR walking directions

https://www.theverge.com/2019/8/8/20776247/google-maps-live-view-ar-walking-directions-ios-
android-feature 

https://www.theverge.com/2019/8/8/20776247/google-maps-live-view-ar-walking-directions-ios-android-feature
https://www.theverge.com/2019/8/8/20776247/google-maps-live-view-ar-walking-directions-ios-android-feature


Spatial ordering

3D points & camera poses

Dense 3D

images, 2D feature 
correspondences

images, camera poses

Model generation

images, camera poses, 
depth maps

3D model from video 

M
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Summary: 3D geometric vision
• Fundamentals:
• Camera Models: Intrinsic & Extrinsics
• 3D to 2D projections, perspective distortions
• Vanishing Points & Lines
• Epipolar Geometry
• Essential & Fundamental Matrices

• Core problems:
• Camera calibration: single camera + two camera (estimate E/F matrix)
• Stereo: depth from two calibrated cameras

• Reconstruction Techniques:
• Active Stereo
• Multi-view Stereo
• Structure from Motion
• Photometric Stereo (next class)



Slide Credits

• CS5670, Introduction to Computer Vision, Cornell Tech, by Noah 
Snavely.
• CS 194-26/294-26: Intro to Computer Vision and Computational 

Photography, UC Berkeley, by Angjoo Kanazawa.
• CS 543 Computer Vision, by Stevlana Lazebnik, UIUC.
• COMP 776, by Jan-Michael Frahm, UNC

https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://inst.eecs.berkeley.edu/~cs194-26/
https://slazebni.cs.illinois.edu/fall22/

