Lecture 16:
 Structure from Motion

COMP 590/776: Computer Vision
Instructor: Soumyadip (Roni) Sengupta
TA: Mykhailo (Misha) Shvets

Course Website:

Recap

Geometry: How do we represent shape of an object?

2.5D representation:
 1) Depth \& Normal map

Easy to predict with 2D neural networks, efficient but do not give full 3D information.

Explicit representation:

2) Mesh Hard for neural network but most Graphics pipeline use it. Very efficient with memory. 3) Voxels Easy for neural network but high memory consumption
3) Point Cloud Output of many RGBD sensors or RGB algorithms

Implicit representation:

5) Surface Representation (SDF)

Memory efficient and deep networks can predict it. But need to convert it to mesh/voxel to be usable in Graphics engines.

1. Rectify images (make epipolar lines horizontal)
2. For each pixel
a. Find epipolar line
b. Scan line for best match
c. Compute depth from disparity

$$
Z=\frac{b f}{d}
$$

How can you make the epipolar lines horizontal?

Multi-view stereo: Basic idea

Plane Sweep Stereo: Cost Volumes -> Depth Maps

Plane-Sweep Stereo

Reference camera
Camera k

- The family of depth planes
in the coordinate frame of the reference view

$$
\Pi_{m}=\left[\begin{array}{ll}
\boldsymbol{n}_{m}^{T} & -d_{m}
\end{array}\right]
$$

- The mapping from the reference camera $P_{\text {ref }}$ onto the plane Π_{m} and back to camera P_{k} is described by the homography induced by the plane Π_{m}

$$
H_{\Pi_{m}, P_{k}}=K_{k}\left(R_{k}-\boldsymbol{t}_{k} \boldsymbol{n}_{m}^{T} / d_{m}\right) K_{\text {ref }}^{-1} \quad \begin{aligned}
& \text { Try the } \\
& \\
& \\
& \text { proof in } \\
& \text { HW! }
\end{aligned}
$$

- The mapping from P_{k} to $P_{r e f}$ induced by Π_{m} is the inverse homography $H_{\Pi_{m}, P_{k}}^{-1}$

Slight abuse of notation. In equation (x, y) are image co-ordinates, in figure u is image co-ordinate.

Big picture: 3 key components in 3D

Structure from motion

- SfM solves both of these problems at once
- A kind of chicken-and-egg problem
- (but solvable)

Structure from Motion (SfM)

- Given many images, how can we
a) figure out where they were all taken from?
b) build a 3D model of the scene?

This is (roughly) the structure from motion problem

Photo Tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring photo collections in 3D," SIGGRAPH 2006

Large-scale structure from motion

Dubrovnik, Croatia. 4,619 images (out of an initial 57,845).
Total reconstruction time: 23 hours
Number of cores: 352

Large-scale structure from motion

Rome's Colosseum

Reconstructing the World in Six Days,

Jared Heinly, Johannes L. Schönberger, Enrique Dunn, Jan-Michael Frahm, CVPR 2015.
Work done at UNC CS!

St. Peter's Basilica, Vatican City Yahoo Flickr Creative Commons 100M Dataset

Today's Class

- Ambiguities in SfM
- Affine SfM
- Projective SfM
- Global SfM
- Incremental SfM
- Challenges and Applications

Today's Class

- Ambiguities in SfM
- Affine SfM
- Projective SFM
- Global SfM
- Incremental SfM
- Challenges and Applications

Structure from motion

Camera 3
$\boldsymbol{K}_{3}, \boldsymbol{R}_{3}, \boldsymbol{t}_{3}$
?
?

Recall: Calibration

Camera 1
$\boldsymbol{K}_{1}, \boldsymbol{R}_{1}, \boldsymbol{t}_{1}$

$$
\begin{aligned}
& \text { Camera } 3 \\
& \boldsymbol{K}_{3}, \boldsymbol{R}_{3}, \boldsymbol{t}_{3}
\end{aligned}
$$

- Given a set of known 3D points seen by a camera, compute the camera parameters

Recall: Triangulation

- Given known cameras and projections of the same 3D point in two or more images, compute the 3D coordinates of that point

Structure from motion: Problem formulation

- Given: m images of n fixed 3D points such that (ignoring visibility)

$$
\text { - } \boldsymbol{x}_{i j} \cong \boldsymbol{P}_{i} \boldsymbol{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \boldsymbol{P}_{i} and n 3D points \boldsymbol{X}_{j} from the $m n$ correspondences $\boldsymbol{x}_{i j} \quad X_{j}$

Is SFM always uniquely solvable?

- Necker cube

Structure from motion ambiguity

- If we scale the entire scene by some factor k and, at the same time, scale the camera matrices by the factor of $1 / k$, the projections of the scene points remain exactly the same:
- $\boldsymbol{X} \cong \boldsymbol{P} \boldsymbol{X}=\left(\frac{1}{k} \boldsymbol{P}\right)(k \boldsymbol{X})$
- Without a reference measurement, it is impossible to recover the absolute scale of the scene!
- In general, if we transform the scene using a transformation \boldsymbol{Q} and apply the inverse transformation to the camera matrices, then the image observations do not change:

$$
\cdot x \cong P X=\left(P Q^{-1}\right)(Q X)
$$

Recall: 2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Now, lets extend this to 3D.

Projective ambiguity

- With no constraints on the camera calibration matrices or on the scene, we can reconstruct up to a projective ambiguity:

$$
x \cong P X=\left(P Q^{-1}\right)(Q X)
$$

Q is a general full-rank 4×4 matrix

Projective ambiguity

Affine ambiguity

- If we impose parallelism constraints, we can get a reconstruction up to an affine ambiguity:

$$
x \cong P X=\left(P Q_{A}^{-1}\right)\left(Q_{A} X\right)
$$

\(\boldsymbol{Q}_{A}=\underbrace{\substack{\boldsymbol{t}

full-rank

matrix}}_{\substack{\boldsymbol{A}

\mathbf{0}^{T}}}\)| 3×3
 vector |
| :---: |

Affine ambiguity

Similarity ambiguity

- A reconstruction that obeys orthogonality constraints on camera parameters and/or scene

$$
\begin{aligned}
& x \cong P X=\left(P Q_{S}^{-1}\right)\left(Q_{S} X\right) \\
& 3 \times 3 \quad 3 \times 1 \text { translation } \\
& \text { rotation } \\
& \text { matrix } \\
& \left.\boldsymbol{Q}_{S}=\begin{array}{cc}
\stackrel{S}{s} & \hat{\boldsymbol{t}} \\
\mathbf{0}^{T} & 1
\end{array}\right]
\end{aligned}
$$

Similarity ambiguity

Today's Class

- Ambiguities in SfM

- Affine SfM
- Global SfM
- Incremental Sf M

The pinhole camera

$$
(x, y, z) \rightarrow\left(f \frac{x}{z}, f \frac{y}{z}\right)
$$

image plane

> real-world object

What if...

real-world object

... we continue increasing Z and f while maintaining same magnification?

$$
f \rightarrow \infty \text { and } \frac{f}{Z}=\text { constant }
$$

camera is close to object and has small focal length

perspective
perspective

weak perspective
camera is far from object and has large focal length
increasing focal length

Weak perspective vs perspective camera
$\left.\begin{array}{|l|lll}y & & \left.\begin{array}{lll}X & Y & Z\end{array}\right]^{\top} \mapsto\left[\begin{array}{lll}{\left[f X / Z_{0} f Y / Z_{0}\right.}\end{array}\right]^{\top} \\ \text { image plane }\end{array} \quad \begin{array}{l}\text { magnification does not } \\ \text { change with deth }\end{array}\right)$

Different cameras

perspective camera

When can we assume a weak perspective camera?

When the scene (or parts of it) is very far away.

Weak perspective projection applies to the mountains.

Affine structure from motion

- Let's start with affine or weak perspective cameras

perspective

increasing focal length

Orthographic projection

Just drop the z coordinate!

$$
\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

General affine projection

- A general affine projection is a 3D-to-2D linear mapping plus translation:

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & t_{1} \\
a_{21} & a_{22} & a_{23} & t_{2} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]
$$

- In non-homogeneous coordinates: $\quad a_{1}, a_{2}$: rows of projection matrix

$$
\binom{x}{y}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)+\binom{t_{1}}{t_{2}}=\boldsymbol{A X}+\boldsymbol{t}
$$

Affine structure from motion

- Given: m images of n fixed 3D points such that

$$
\text { - } \boldsymbol{x}_{i j}=\boldsymbol{A}_{i} \boldsymbol{X}_{j}+\boldsymbol{t}_{i}, \quad i=1, \ldots, m, j=1, \ldots, n
$$

- Problem: use the $m n$ correspondences $x_{i j}$ to estimate m projection matrices \boldsymbol{A}_{i} and translation vectors \boldsymbol{t}_{i}, and n points \boldsymbol{X}_{j}
- The reconstruction is defined up to an arbitrary affine transformation Q (12 degrees of freedom):

$$
\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{t} \\
0^{T} & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \dot{\boldsymbol{Q}^{-1},} \quad\binom{\boldsymbol{X}_{j}}{1} \rightarrow \boldsymbol{Q}\binom{\boldsymbol{X}_{j}}{1}
$$

- How many knowns and unknowns for m images and n points?
- $2 m n$ knowns and $8 m+3 n$ unknowns
- To be able to solve this problem, we must have $2 m n \geq 8 m+3 n-12$ (affine ambiguity takes away 12 dof)
- E.g., for two views, we need four point correspondences

Affine structure from motion

- First, center the data by subtracting the centroid of the image points in each view:

$$
\begin{aligned}
\widehat{\boldsymbol{x}}_{i j} & =\boldsymbol{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \boldsymbol{x}_{i k} \\
& =\boldsymbol{A}_{i} \boldsymbol{X}_{j}+\boldsymbol{t}_{i}-\frac{1}{n} \sum_{k=1}^{n}\left(\boldsymbol{A}_{i} \boldsymbol{X}_{k}+\boldsymbol{t}_{i}\right) \\
& =\boldsymbol{A}_{i}\left(\boldsymbol{X}_{j}-\frac{1}{n} \sum_{k=1}^{n} \boldsymbol{X}_{k}\right) \\
& =\boldsymbol{A}_{i} \widehat{\boldsymbol{X}}_{j}
\end{aligned}
$$

Affine structure from motion

- After centering, each normalized 2D point $\widehat{x}_{i j}$ is related to the 3D point by

$$
\cdot \widehat{x}_{i j}=A_{i} \widehat{X}_{j}
$$

- We can get rid of the need to center the 3D data (and the translation ambiguity) by defining the origin of the world coordinate system as the centroid of the 3D points

Affine structure from motion

- Let's create a $2 m \times n$ data (measurement) matrix:
$\left.\cdot \boldsymbol{D}=\underbrace{\left[\begin{array}{cccc}\widehat{\boldsymbol{x}}_{11} & \widehat{\boldsymbol{x}}_{12} & \cdots & \widehat{\boldsymbol{x}}_{1 n} \\ \widehat{\boldsymbol{x}}_{21} & \widehat{\boldsymbol{x}}_{22} & \cdots & \widehat{\boldsymbol{x}}_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{\boldsymbol{x}}_{m 1} & \widehat{\boldsymbol{x}}_{m 2} & \cdots & \widehat{\boldsymbol{x}}_{m n}\end{array}\right]}_{\text {points }(n)} \right\rvert\, \begin{aligned} & \text { cameras } \\ & (2 m)\end{aligned} \widehat{\boldsymbol{x}}_{i j}=\boldsymbol{A}_{i} \boldsymbol{X}_{j}$
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method.

Affine structure from motion

- Let's create a $2 m \times n$ data (measurement) matrix:

- What must be the rank of the measurement matrix $\boldsymbol{D}=\boldsymbol{M S}$?
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Factorizing the measurement matrix

- We want:

Factorizing the measurement matrix

- Perform SVD of \boldsymbol{D} :

\times
$\underset{n \times n}{\boldsymbol{V}^{T}}$

Factorizing the measurement matrix

- Keep top 3 singular values:
- This is the closest approximation of D with a rank-3 matrix in terms of Frobenius norm

- What to do about Σ_{3} ?
- One solution: $M=U_{3} \Sigma^{\frac{1}{2}}, S=\Sigma_{3}^{\frac{1}{2}} V_{3}^{T}$

Factorizing the measurement matrix

- One possible solution:

Factorizing the measurement matrix

- Other possible solutions (Ambiguity in Reconstruction)

How to eliminate ambiguity?
Assume certain special structure of the projection matrix.
Assume certain conditions about the 3D structure.

We can estimate \boldsymbol{Q} to give the camera matrices in M desirable properties, like orthographic projection

Dealing with missing data

- So far, we have assumed that all points are visible in all views
- In reality, the measurement matrix typically looks something like this:

- These kind of problems are called Low-rank Matrix Completion problems (aka the Netflix Problem). Solved with convex/non-convex optimizations.
- Very popular before deep learning era!

Today's Class

- Ambiguities in SfM
- Δ ffine SfM
- Projective SfM
- Global SfM
- Incremental SfM

Projective structure from motion

- Given: m images of n fixed 3D points such that (ignoring visibility):

$$
\text { - } \boldsymbol{x}_{i j} \cong \boldsymbol{P}_{i} \boldsymbol{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \boldsymbol{P}_{i} and n 3D points \boldsymbol{X}_{j} from the mn correspondences $\boldsymbol{x}_{i j}$

Projective structure from motion

- Given: m images of n fixed 3D points such that (ignoring visibility):

$$
\text { - } \boldsymbol{x}_{i j} \cong \boldsymbol{P}_{i} \boldsymbol{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \boldsymbol{P}_{i} and n 3D points \boldsymbol{X}_{j} from the $m n$ correspondences $x_{i j}$
- With no calibration info, cameras and points can only be recovered up to a 4×4 projective transformation \boldsymbol{Q} :

$$
\text { - } X \rightarrow Q X, P \rightarrow P Q^{-1}
$$

- We can solve for structure and motion when $2 m n \geq 11 m+3 n-15$
- For two cameras, at least 7 points are needed
- You can solve it similar to Affine SfM with matrix factorization.
- Algebraic methods are good for initializing a non-linear optimization problem.

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimize reprojection error (with lots of bells and whistles):
$\cdot \sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} d\left(x_{i j}-\operatorname{proj}\left(P_{i} X_{j}\right)\right)^{2}$

visibility flag:
is point j visible in view i ?

Factorization based SfM works well for very small scenes with limited number of images, even then it produces poor result for most practical purposes.

Global Structure from Motion

SfM for large scale scenes

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

Correspondence estimation

- Link up pairwise matches to form connected components of matches across several images

Global SfM

- Given N images, there are ${ }^{\mathrm{N}} \mathrm{C}_{2}$ pairs. Many of these pairs will have no overlaps in views and/or Fundamental/Essential matrix between them can not be reliably estimated using RANSAC.
- Consider we have $\mathrm{NO}\left(\mathrm{NO}<{ }^{\mathrm{N}} \mathrm{C}_{2}\right)$ pairs of images with fundamental matrix estimated
- For each NO pairs of images decompose essential matrix into relative rotation and translation between two cameras: R_{ij} and t_{ij}.
- Can we solve for global (world coordinate) rotation and translation of the cameras, given pairwise measurements, i.e.
- Given $R_{i j}$ and $t_{i j}$ for $N 0$ pairs, find $R_{k} \& T_{k}$ for N cameras.
- Once we have the cameras we can better initialize the Bundle Adjustment problem.

Rotation \& Translation Averaging

Given $R_{i j}$ and $t_{i j}$ for $N 0$ pairs, find $R_{k} \& T_{k}$ for N cameras

Input unit translation directions
Output: absolute camera positions

Camera Pose estimation as matrix completion over Fundamental matrices

- Proves a low-rank property of all the cameras capturing different images of a scene.
- Solves a low-rank camera pose recovery algorithm from Structure from Motion.

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimize reprojection error (with lots of bells and whistles):
- $\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} d\left(\boldsymbol{x}_{i j}-\operatorname{proj}\left(\boldsymbol{P}_{i} \boldsymbol{X}_{j}\right)\right)^{2}$

B. Triggs et al. Bundle adjustment - A modern synthesis. International Workshop on Vision Algorithms, 1999

Incremental SfM

- Automatically select an initial pair of images

1. Picking the initial pair

- We want a pair with many matches, but which has as large a baseline as possible

lots of matches
Σ small baseline

\checkmark large baseline
3 very few matches

\checkmark large baseline

lots of matches

Incremental SFM

- Pick a pair of images with lots of inliers (and preferably, good EXIF data)
- Initialize intrinsic parameters (focal length, principal point) from EXIF
- Estimate extrinsic parameters (R and t) using five-point algorithm (similar to 8-pt algorithm but for essential matrix)
- Use triangulation to initialize model points
- While remaining images exist
- Find an image with many feature matches with images in the model
- Run RANSAC on feature matches to register new image to 3D model points
- Triangulate new points
- Perform bundle adjustment to re-optimize everything
- Optionally, align with GPS from EXIF data or ground control points

Next Best View Problem

- Choice of next view impacts reconstruction quality
- almost identical view $=>$ high uncertainty in triangulation
- very different view => low overlap and high camera uncertainty
- single bad choice may impact the whole reconstruction
- Popular next best view methods:
- choose view with seeing the most triangulated points
- minimize reconstruction uncertainty
- depends on number of observations
- distribution in the image

Today's Class

- Ambiguities in SfM
- Δ ffine SfM
- Projective SfM
- Global SfM
- Incremental Sf
- Challenges and Applications

The devil is in the details

- Handling degenerate configurations (e.g., homographies)
- Filtering out incorrect matches
- Dealing with repetitions and symmetries

Repetitive structures cause catastrophic

 failures

Repetitive structures cause catastrophic

 failures

The devil is in the details

- Handling degenerate configurations (e.g., homographies)
- Filtering out incorrect matches
- Dealing with repetitions and symmetries
- Reducing error accumulation and closing loops

Loop Detection/Closure

- Problem:
- Structure from motion is an incremental process
- Drift accumulates
- Mitigation:
- Retrieval of long range connections

Reducing error accumulation and closing loops

Reducing error accumulation and closing loops

Loop Closure

Can also compute camera poses from video (often called Visual SLAM)

Visual Simultaneous Localization and Mapping (V-SLAM)

- Main differences with SfM:
- Continuous visual input from sensor(s) over time
- Gives rise to problems such as loop closure
- Often the goal is to be online / real-time

SFM software

- Bundler
- OpenSfM
- OpenMVG
- VisualSFM
- COLMAP (Structure-from-motion revisited, JL Schonberger, JM Frahm, CVPR 2016, from UNC!)
- See also Wikipedia's list of toolboxes

SfM applications

-3D modeling

- Surveying
- Robot navigation and mapmaking
- Virtual and augmented reality
- Visual effects ("Match moving")
-https://www.youtube.com/watch?v=RdYWp70P kY

Applications: Match Moving

Or Motion tracking, solving for camera trajectory Integral for visual effects (VFX) Why?

Applications: Visual Reality \& Augmented Reality

https://www.youtube.com/watch?v=KOG7yTz1iTA

Hololens
https://www.youtube.com/watch?v=FMtvrTGnP04

Applications: Visual Reality \& Augmented Reality

Scape: Building the 'AR Cloud': Part Three -3D Maps, the Digital Scaffolding of the 21st Century
https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-scaffolding-of-the-21st-century-465fa55782dd

Application: AR walking directions

https://www.theverge.com/2019/8/8/20776247/google-maps-live-view-ar-walking-directions-ios-android-feature

3D model from video

Summary: 3D geometric vision

- Fundamentals:
- Camera Models: Intrinsic \& Extrinsics
- 3D to 2D projections, perspective distortions
- Vanishing Points \& Lines
- Epipolar Geometry
- Essential \& Fundamental Matrices
- Core problems:
- Camera calibration: single camera + two camera (estimate E/F matrix)
- Stereo: depth from two calibrated cameras
- Reconstruction Techniques:
- Active Stereo
- Multi-view Stereo
- Structure from Motion
- Photometric Stereo (next class)

Slide Credits

- CS5670, Introduction to Computer Vision, Cornell Tech, by Noah Snavely.
- CS 194-26/294-26: Intro to Computer Vision and Computational Photography, UC Berkeley, by Angjoo Kanazawa.
- CS 543 Computer Vision, by Stevlana Lazebnik, UIUC.
- COMP 776, by Jan-Michael Frahm, UNC

