Lecture 22:
 Structure from Motion (cont.)
 $+$
 Photometric Stereo

COMP 590/776: Computer Vision
Instructor: Soumyadip (Roni) Sengupta

Structure from Motion (cont.)

Projective structure from motion

- Given: m images of n fixed 3D points such that (ignoring visibility):

$$
\text { - } \boldsymbol{x}_{i j} \cong \boldsymbol{P}_{i} \boldsymbol{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \boldsymbol{P}_{i} and n 3D points \boldsymbol{X}_{j} from the mn correspondences $\boldsymbol{x}_{i j}$

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimize reprojection error (with lots of bells and whistles):

Projective structure from motion

- Given: m images of n fixed 3D points such that (ignoring visibility):

$$
\text { - } \boldsymbol{x}_{i j} \cong \boldsymbol{P}_{i} \boldsymbol{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- Problem: estimate m projection matrices \boldsymbol{P}_{i} and n 3D points \boldsymbol{X}_{j} from the $m n$ correspondences $x_{i j}$
- With no calibration info, cameras and points can only be recovered up to a 4×4 projective transformation \boldsymbol{Q} :

$$
\text { - } X \rightarrow Q X, P \rightarrow P Q^{-1}
$$

- We can solve for structure and motion when $2 m n \geq 11 m+3 n-15$
- For two cameras, at least 7 points are needed
- Why is this hard to solve?
- Factorization is hard as perspective projection is only upto a scale and we also need to search for a scale.

Affine structure from motion

- Given: m images of n fixed 3D points such that

Not in homogenous coordinate.

- $\boldsymbol{x}_{i j}=\boldsymbol{A}_{i} \boldsymbol{X}_{j}+\boldsymbol{t}_{i}, \quad i=1, \ldots, m, j=1, \ldots, n$

$$
\binom{x}{y}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)+\binom{t_{1}}{t_{2}}=\boldsymbol{A X}+\boldsymbol{t}
$$

- Problem: use the $m n$ correspondences $\boldsymbol{x}_{i j}$ to estimate m projection matrices \boldsymbol{A}_{i} and translation vectors \boldsymbol{t}_{i}, and n points \boldsymbol{X}_{j}
- The reconstruction is defined up to an arbitrary affine transformation \boldsymbol{Q} (12 degrees of freedom):

$$
\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
\boldsymbol{A} & \boldsymbol{t} \\
0^{T} & 1
\end{array}\right] \boldsymbol{Q}^{-1}, \quad\binom{\boldsymbol{X}_{j}}{1} \rightarrow \boldsymbol{Q}\binom{\boldsymbol{X}_{j}}{1}
$$

- How many knowns and unknowns for m images and n points?
- $2 m n$ knowns and $8 m+3 n$ unknowns
- To be able to solve this problem, we must have $2 m n \geq 8 m+3 n-12$ (affine ambiguity takes away 12 dof)
- E.g., for two views, we need four point correspondences

Affine structure from motion

$$
\widehat{\boldsymbol{x}}_{i j}=x_{i j}-\frac{1}{n} \sum_{k=1}^{n} x_{i k} \quad \widehat{X}_{j}=X_{j}-\frac{1}{n} \sum_{k=1}^{n} X_{k} \quad \text { Normalize 2D and 3D points }
$$

- Let's create a $2 m \times n$ data (measurement) matrix:
• $\boldsymbol{D}=\left[\begin{array}{cccc}\hat{\boldsymbol{x}}_{11} & \widehat{\boldsymbol{x}}_{12} & \cdots & \widehat{\boldsymbol{x}}_{1 n} \\ \widehat{\boldsymbol{x}}_{21} & \widehat{\boldsymbol{x}}_{22} & \cdots & \widehat{\boldsymbol{x}}_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{\boldsymbol{x}}_{m 1} & \widehat{\boldsymbol{x}}_{m 2} & \cdots & \widehat{\boldsymbol{x}}_{m n}\end{array}\right]$
- D is at most rank 3. $\underset{\substack{\boldsymbol{M} \\ \text { cameras } \\(2 m \times 3)}}{\left[\begin{array}{c}\boldsymbol{A}_{1} \\ \boldsymbol{A}_{2} \\ \vdots \\ \boldsymbol{A}_{m}\end{array}\right]\left[\begin{array}{llll}\boldsymbol{X}_{1} & \boldsymbol{X}_{2} & \cdots & \boldsymbol{X}_{n}\end{array}\right]} \begin{aligned} & \boldsymbol{S} \\ & \text { points }(3 \times n)\end{aligned}$
C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method.

Factorizing the measurement matrix

- Keep top 3 singular values:
- This is the closest approximation of D with a rank-3 matrix in terms of Frobenius norm

- What to do about Σ_{3} ?
- One solution: $M=U_{3} \Sigma^{\frac{1}{2}}, S=\Sigma_{3}^{\frac{1}{2}} V_{3}^{T}$

Global Structure from Motion

SfM for large scale scenes

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature detection

Detect features using SIFT [Lowe, IJCV 2004]

Feature matching

Match features between each pair of images

Feature matching

Refine matching using RANSAC to estimate fundamental matrix between each pair

Correspondence estimation

- Link up pairwise matches to form connected components of matches across several images

Global SfM

- Given N images, there are ${ }^{\mathrm{N}} \mathrm{C}_{2}$ pairs. Many of these pairs will have no overlaps in views and/or Fundamental/Essential matrix between them can not be reliably estimated using RANSAC.
- Consider we have $\mathrm{NO}\left(\mathrm{NO}<{ }^{\mathrm{N}} \mathrm{C}_{2}\right)$ pairs of images with fundamental matrix estimated
- For each NO pairs of images decompose essential matrix into relative rotation and translation between two cameras: R_{ij} and t_{ij}.
- Can we solve for global (world coordinate) rotation and translation of the cameras, given pairwise measurements, i.e.
- Given $R_{i j}$ and $t_{i j}$ for $N 0$ pairs, find $R_{k} \& T_{k}$ for N cameras.
- Once we have the cameras we can better initialize the Bundle Adjustment problem.

Rotation \& Translation Averaging

Given $R_{i j}$ and $t_{i j}$ for $N 0$ pairs, find $R_{k} \& T_{k}$ for N cameras

Input unit translation directions
Output: absolute camera positions

Camera Pose estimation as matrix completion over Fundamental matrices

- Proves a low-rank property of all the cameras capturing different images of a scene.
- Solves a low-rank camera pose recovery algorithm from Structure from Motion.

Bundle adjustment

- Non-linear method for refining structure and motion
- Minimize reprojection error (with lots of bells and whistles):
- $\sum_{i=1}^{m} \sum_{j=1}^{n} w_{i j} d\left(\boldsymbol{x}_{i j}-\operatorname{proj}\left(\boldsymbol{P}_{i} \boldsymbol{X}_{j}\right)\right)^{2}$

B. Triggs et al. Bundle adjustment - A modern synthesis. International Workshop on Vision Algorithms, 1999

Incremental SfM

- Automatically select an initial pair of images

1. Picking the initial pair

- We want a pair with many matches, but which has as large a baseline as possible

lots of matches
Σ small baseline

\checkmark large baseline
3 very few matches

\checkmark large baseline

lots of matches

Incremental SFM

- Pick a pair of images with lots of inliers (and preferably, good EXIF data)
- Initialize intrinsic parameters (focal length, principal point) from EXIF
- Estimate extrinsic parameters (R and t) using five-point algorithm (similar to 8-pt algorithm but for essential matrix)
- Use triangulation to initialize model points
- While remaining images exist
- Find an image with many feature matches with images in the model
- Run RANSAC on feature matches to register new image to 3D model points
- Triangulate new points
- Perform bundle adjustment to re-optimize everything
- Optionally, align with GPS from EXIF data or ground control points

Next Best View Problem

- Choice of next view impacts reconstruction quality
- almost identical view $=>$ high uncertainty in triangulation
- very different view => low overlap and high camera uncertainty
- single bad choice may impact the whole reconstruction
- Popular next best view methods:
- choose view with seeing the most triangulated points
- minimize reconstruction uncertainty
- depends on number of observations
- distribution in the image

Challenges: The devil is in the details

- Handling degenerate configurations (e.g., homographies)
- Filtering out incorrect matches
- Dealing with repetitions and symmetries

Repetitive structures cause catastrophic

 failures

Repetitive structures cause catastrophic

 failures

Challenges: The devil is in the details

- Handling degenerate configurations (e.g., homographies)
- Filtering out incorrect matches
- Dealing with repetitions and symmetries
- Reducing error accumulation and closing loops

Loop Detection/Closure

- Problem:
- Structure from motion is an incremental process
- Drift accumulates
- Mitigation:
- Retrieval of long range connections

Reducing error accumulation and closing loops

Reducing error accumulation and closing loops

Loop Closure

Can also compute camera poses from video (often called Visual SLAM)

Visual Simultaneous Localization and Mapping (V-SLAM)

- Main differences with SfM:
- Continuous visual input from sensor(s) over time
- Gives rise to problems such as loop closure
- Often the goal is to be online / real-time

SFM software

- Bundler
- OpenSfM
- OpenMVG
- VisualSFM
- COLMAP (Structure-from-motion revisited, JL Schonberger, JM Frahm, CVPR 2016, from UNC!)
- See also Wikipedia's list of toolboxes

SfM applications

-3D modeling

- Surveying
- Robot navigation and mapmaking
- Virtual and augmented reality
- Visual effects ("Match moving")
-https://www.youtube.com/watch?v=RdYWp70P kY

Applications: Match Moving

Or Motion tracking, solving for camera trajectory Integral for visual effects (VFX) Why?

Applications: Visual Reality \& Augmented Reality

https://www.youtube.com/watch?v=KOG7yTz1iTA

Hololens
https://www.youtube.com/watch?v=FMtvrTGnP04

Applications: Visual Reality \& Augmented Reality

Scape: Building the 'AR Cloud': Part Three -3D Maps, the Digital Scaffolding of the 21st Century
https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-scaffolding-of-the-21st-century-465fa55782dd

Application: AR walking directions

https://www.theverge.com/2019/8/8/20776247/google-maps-live-view-ar-walking-directions-ios-android-feature

3D model from video

Photometric Stereo

Can we determine shape from lighting?

- Are these spheres?
- Or just flat discs painted with varying color (albedo)?
- There is ambiguity between shading and reflectance
- But still, as humans we can understand the shapes of these objects

What we know: Stereo

Key Idea: use camera motion to compute shape

Next: Photometric Stereo

Key Idea: use pixel brightness to understand shape

Photometric Stereo

What results can you get?

Today's class

- Measuring Light (recap)
- Image formation with shape, reflectance, and illumination
- Shape from Shading
- Photometric Stereo
- Uncalibrated Photometric Stereo
- Generalized Bas-Relief Ambiguity
- Photometric Stereo in 'deep learning era'.

Today's class

- Measuring Light (recap)
- Image formation with shape, reflectance, and illumination
- Shape from Shading
- Photometric Steren
- Uncalibrated Photometric Stereo
- Generalized Bas-Relief Ambiguity
- Photometric Steren in 'deen learning era'

Radiometry

- What determines the brightness of a pixel?

Radiometry

- What determines the brightness of a pixel?

@robertwestonbreshears

Radiometry

- What determines the brightness of a pixel?

Sensor characteristics

Visible light

We "see" electromagnetic radiation in a range of wavelengths

What is light?

Electromagnetic radiation (EMR) moving along rays in space

- $R(\lambda)$ is EMR, measured in units of power (watts)
- λ is wavelength

Light field

- We can describe all of the light in the scene by specifying the radiation (or "radiance" along all light rays) arriving at every point in space and from every direction

The plenoptic function describes all of this light: $\quad R(X, Y, Z, \theta, \phi, \lambda, t)$

Light transport

Light sources

- Basic types
- point source
- directional source
- a point source that is infinitely far away
- area source
- a union of point sources
- More generally
- a light field can describe *any* distribution of light sources
- Environment map
- What happens when light hits an object?

Today's class

- Measuring Light (recap)
- Image formation with shape, reflectance, and illumination
- Shape from Shading
- Photometric Stereo
- Uncalihrated Dhotometric Stereo
- Generalized Bas-Relief Ambiguity
- Photometric Stereo in 'deep learning era'

Modeling Image Formation

We need to reason about:

- How light interacts with the scene
- How a pixel value is related to light energy in the world

Track a "ray" of light all the way from light source to the sensor

Directional Lighting

- Key property: all rays are parallel
- Equivalent to an infinitely distant point source

Lambertian Reflectance

$$
\begin{aligned}
& I=N \cdot L \\
& \text { Image }=\text { Surface } \bullet \text { Light } \\
& \text { intensity normal direction } \\
& \text { Image } \\
& \text { intensity } \propto \quad \cos (\text { angle between } N \text { and } \mathrm{L})
\end{aligned}
$$

Materials - Three Forms

Ideal diffuse (Lambertian)

Ideall specular

Directional diffifuse

Ideal Diffuse Reflection

- Characteristic of multiple scattering materials
- An idealization but reasonable for matte surfaces

Lambertian Reflectance

$$
I=N \cdot L
$$

1. Reflected energy is proportional to cosine of angle between L and N (incoming)
2. Measured intensity is viewpoint-independent (outgoing)

Final Lambertian image formation model

1. Diffuse albedo: what fraction of incoming light is reflected?

- Introduce scale factor k_{d}

2. Light intensity: how much light is arriving?

- Compensate with camera exposure (global scale factor)

3. Camera response function

- Assume pixel value is linearly proportional to incoming energy (perform radiometric calibration if not)

Albedo

Sample albedos

Surface	Typical albedo
Fresh asphalt	$0.04^{[4]}$
Open ocean	$0.06^{[5]}$
Worn asphalt	$0.12^{[4]}$
Conifer forest (Summer)	$0.08,^{[6]} 0.09$ to $0.15\left[^{[7]}\right.$
Deciduous trees	0.15 to $0.18^{[7]}$
Bare soil	$0.17^{[8]}$
Green grass	$0.25^{[8]}$
Desert sand	$0.40^{[9]}$
New concrete	$0.55^{[8]}$
Ocean ice	$0.5-0.7^{[8]}$
Fresh snow	$0.80-0.90^{[8]}$

Objects can have varying albedo and albedo varies with wavelength

Source: https://en.wikipedia.org/wiki/Albedo

Today's class

- Measuring Light (recap)
- Image formation with shape, reflectance, and illumination
- Shape from Shading
- Photometric Stereo
- Uncalibrated Photometric Stereo
- Generalized Bas-Relief Ambiguity
- Photometric Stereo in 'deep learning era'

Human Perception

Examples of the classic bump/dent stimuli used to test lighting assumptions when judging shape from shading, with shading orientations (a) 0° and (b) 180° from the vertical.
a

b

Thomas R et al. J Vis 2010;10:6

Human Perception

- Our brain often perceives shape from shading.
- Mostly, it makes many assumptions to do so.
- For example:

Light is coming from above (sun).
Biased by occluding contours.
by V. Ramachandran

A Single Image: Shape from shading

$$
\begin{aligned}
& \text { Suppose (for now) } \quad k_{d}=1 \\
& \qquad \begin{array}{c}
I=k_{d} \mathbf{N} \cdot \mathbf{L} \\
=\mathbf{N} \cdot \mathbf{L} \\
=\cos \theta_{i}
\end{array}
\end{aligned}
$$

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape
- But can be if you add some additional info, for example
- assume a few of the normals are known (e.g., along silhouette)
- constraints on neighboring normals-"integrability"
- smoothness
- Hard to get it to work well in practice
- plus, how many real objects have constant albedo?
- But, deep learning can help

Deep Learning for Shape from Shading

"SfSNet: Learning Shape, Reflectance and Illuminance of Faces in the Wild", Sengupta, Kanazawa, Castillo, Jacobs, CVPR 2018.

Ye Yu and William A. P. Smith
Department of Computer Science, University of York, UK
\{yy1571,william.smith\}@york.ac.uk

Figure 1: From a single image (col. 1), we estimate albedo and normal maps and illumination (col. 2-4); comparison multiview stereo result from several hundred images (col. 5); re-rendering of our shape with frontal/estimated lighting (col. 6-7).

Application: Detecting composite photos

Real photo

Fake photo

Today's class

- Measuring Light (recap)
- Image formation with shape, reflectance, and illumination
- Shape from Shading
- Photometric Stereo
- Uncalibrated Photometric Stereo
- Generalized Bas-Relief Ambiguity
- Photometric Stereo in 'deen learning era'

Photometric stereo

Can write this as a matrix equation:

$$
\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=k_{d}\left[\begin{array}{l}
\mathbf{L}_{1}{ }_{1}^{T} \\
\mathbf{L}_{2}^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right] \mathbf{N}
$$

Solving the equations

Solve one such linear system per pixel to solve for that pixel's surface normal

More than three lights

Can get better results by using more than 3 lights

$$
\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{n}
\end{array}\right]=\underset{\mathrm{n} \times 3}{\left[\begin{array}{c}
\mathbf{L}_{\mathbf{1}} \\
\vdots \\
\mathbf{L}_{\mathbf{n}}
\end{array}\right]_{3 \times 1}{ }_{3}{ }_{k} \mathbf{N} .}
$$

Least squares solution:

$$
\begin{aligned}
\mathbf{I} & =\mathbf{L G} \\
\mathbf{L}^{\mathrm{T}} \mathbf{I} & =\mathbf{L}^{\mathrm{T}} \mathbf{L G} \\
\mathbf{G} & =\left(\mathbf{L}^{\mathrm{T}} \mathbf{L}\right)^{-1}\left(\mathbf{L}^{\mathrm{T}} \mathbf{I}\right)
\end{aligned}
$$

Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before

Calibrating Lighting Directions

Trick: place a chrome sphere in the scene

- the location of the highlight tells you where the light source is

Example

Depth from normals

- Solving the linear system per-pixel gives us an estimated surface normal for each pixel
- How can we compute depth from normals?
- Normals are like the "derivative" of the true depth

Input photo

Estimated normals

Estimated normals (needle diagram)

Depth from normals

Get a similar equation for $\mathbf{V}_{\mathbf{2}}$

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

Normal Integration

$$
\nabla z=[p, q]^{\top}
$$

where:
\longrightarrow Linear Partial

$$
\left\{\begin{array}{l}
p=-\frac{n_{1}}{n_{3}} \\
q=-\frac{n_{2}}{n_{3}}
\end{array}\right.
$$

Differential Equations

Integrability Constraint:
$\partial_{v} p=\partial_{u} q \quad$ The order of taking $2^{\text {nd }}$ order partial derivative with $u \& v$ (or $x \& y$) shouldn't matter!

$$
z(u, v)=z\left(u_{0}, v_{0}\right)+\int_{(r, s)=\left(u_{0}, v_{0}\right)}^{(u, v)}[p(r, s) \mathrm{d} r+q(r, s) \mathrm{d} s]
$$

Results

from Athos Georghiades

Results

Extension

- Photometric Stereo from Colored Lighting

Fig. 2. Applying the original algorithm to a face with white makeup. Top: example input frames from video of an actor smiling and grimacing. Bottom: the resulting integrated surfaces.

Video Normals from Colored Lights

Gabriel J. Brostow, Carlos Hernández, George Vogiatzis, Björn Stenger, Roberto Cipolla IEEE TPAMI, Vol. 33, No. 10, pages 2104-2114, October 2011.

Today's class

- Measuring Light (recap)
- Image formation with shape, reflectance, and illumination
- Shape from Shading
- Photometric Stereo
- Uncalibrated Photometric Stereo
- Generalized Bas-Relief Ambiguity
- Photometric Stereo in 'deep learning era'

What if the light directions are unknown?

a = albedo.

Previously k_{d} was used for albedo.

define "pseudo-normal" $\overrightarrow{\boldsymbol{b}} \triangleq a \hat{\boldsymbol{n}}$

$$
\begin{gathered}
\text { solve linear system } \\
\text { for pseudo-normal }
\end{gathered}\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right]_{N \times 1}=\left[\begin{array}{c}
\overrightarrow{\boldsymbol{\ell}}_{1}^{\top} \\
\overrightarrow{\boldsymbol{\ell}}_{2}^{\top} \\
\vdots \\
\overrightarrow{\boldsymbol{\ell}}_{N}^{\top}
\end{array}\right]_{N \times 3}[\overrightarrow{\boldsymbol{b}}]_{3 \times 1}
$$

What if the light directions are unknown?

a = albedo.

Previously k_{d} was used for albedo.

$$
\begin{gathered}
\begin{array}{c}
\text { solve linear system } \\
\text { for pseudo-normal at } \\
\text { each image pixel }
\end{array}\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right]_{N \times M}=\left[\begin{array}{c}
\vec{\ell}_{1}^{\top} \\
\overrightarrow{\boldsymbol{\ell}}_{2}^{\top} \\
\vdots \\
\vec{\ell}_{N}^{\top}
\end{array}\right]_{N \times 3}[B]_{3 \times M} \quad \mathrm{M} \text { : number of pixels }
\end{gathered}
$$

What if the light directions are unknown?

a = albedo.

Previously k_{d} was used for albedo.

$$
\begin{gathered}
I_{1}=a \hat{\boldsymbol{n}}^{\top} \overrightarrow{\boldsymbol{\ell}}_{1} \\
I_{2}=a \hat{\boldsymbol{n}}^{\top} \overrightarrow{\boldsymbol{\ell}}_{2} \\
\vdots \\
I_{N}=a \hat{\boldsymbol{n}}^{\top} \overrightarrow{\boldsymbol{\ell}}_{N}
\end{gathered}
$$

define "pseudo-normal" $\overrightarrow{\boldsymbol{b}} \triangleq a \hat{\boldsymbol{n}}$

$$
\begin{gathered}
\begin{array}{c}
\text { solve linear system } \\
\text { for pseudo-normal at } \\
\text { each image pixel }
\end{array}
\end{gathered}\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{N}
\end{array}\right]_{N \times M}=\left[\begin{array}{c}
\vec{\ell}_{1}^{\top} \\
\overrightarrow{\boldsymbol{\ell}}_{2}^{\top} \\
\vdots \\
\overrightarrow{\boldsymbol{\ell}}_{N}^{\top}
\end{array}\right]_{N \times 3}[B]_{3 \times M} \begin{aligned}
& \text { How do we solve this } \\
& \text { system without } \\
& \text { knowing light matrix } L \text { ? }
\end{aligned}
$$

Factorizing the measurement matrix

Factorizing the measurement matrix

- Singular value decomposition:

This
decomposition minimizes
$|\mathbf{I}-\mathrm{LB}|^{2}$

Are the results unique?

We can insert any 3×3 matrix Q in the decomposition and get the same images:

$$
\mathbf{I}=\mathbf{L} \mathbf{B}=\left(\mathbf{L} \mathbf{Q}^{-1}\right)(\mathbf{Q} \mathbf{B})
$$

Can we use any assumptions to remove some of these 9 degrees of freedom?

Today's class

- Measuring Light (recap)
- Image formation with shape, reflectance, and illumination
- Shape from Shading
- Photometric Stereo
- Uncalihrated Dhotometric Stereo
- Generalized Bas-Relief Ambiguity

Generalized Bas-Relief ambiguity

We can insert any 3×3 matrix Q in the decomposition and get the same images:

$$
\mathbf{I}=\mathbf{L} \mathbf{B}=\left(\mathbf{L} \mathbf{Q}^{-1}\right)(\mathbf{Q} \mathbf{B})
$$

Can we use any assumptions to remove some of these 9 degrees of freedom?

Generalized Bas-Relief ambiguity to rescue!

G has 3 degrees of freedom.

$$
G=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\mu & \nu & \lambda
\end{array}\right]
$$

What does G mean?

How do we obtain G? What constraints lead us to G?

Generalized Bas-Relief ambiguity

Artists have exploited GBR ambiguity in creating statues!

- On can flatten a surface and yet give an impression of full 3D to a viewer

Generalized Bas-Relief ambiguity

Generalized Bas-Relief ambiguity

Note that if $\mathbf{p}=(x, y, f(x, y))$ and $\overline{\mathbf{p}}=(x, y, \bar{f}(x, y))$, then $\overline{\mathbf{p}}=G \mathbf{p}$ where

$$
G=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\mu & \nu & \lambda
\end{array}\right]
$$

$$
\overline{\mathbf{n}}=G^{-T} \mathbf{n}
$$

$$
G^{-1}=\frac{1}{\lambda}\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
-\mu & -\nu & 1
\end{array}\right]
$$

Generalized Bas-Relief ambiguity

We can insert any 3×3 matrix Q in the decomposition and get the same images:

$$
\mathbf{I}=\mathbf{L} \mathbf{B}=\left(\mathbf{L} \mathbf{Q}^{-1}\right)(\mathbf{Q} \mathbf{B})
$$

Can we use any assumptions to remove some of these 9 degrees of freedom?

Generalized Bas-Relief ambiguity to rescue!
G has 3 degrees of freedom.

$$
G=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\mu & \nu & \lambda
\end{array}\right]
$$

G indicates integrable surface:
The order of taking $2^{\text {nd }}$ order partial derivative with $u \& v(o r x \& y)$ shouldn't matter!

Enforcing integrability

What does the integrability constraint correspond to?

- Differentiation order should not matter:

$$
\begin{gathered}
\frac{d}{d y} \frac{d f(x, y)}{d x}=\frac{d}{d x} \frac{d f(x, y)}{d y} \\
\mathbf{I}=\mathbf{L} \mathbf{B}=\left(\mathbf{L} \mathbf{Q}^{-1}\right)(\mathbf{Q} \mathbf{B})
\end{gathered}
$$

If B is integrable, then:

- $B^{\prime}=G^{-T} \cdot B$ is also integrable for all G of the form $(\lambda \neq 0)$

$$
G=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\mu & v & \lambda
\end{array}\right]
$$

For now, ignore specular reflection

And Refraction...

And Interreflections...

And Subsurface Scattering...

What assumptions have we made for all this?

-Lambertian BRDF

-Directional lighting
-Distant Lighting

- Orthographic camera
- No interreflections or scattering

Limitations

Bigger problems

- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections

Smaller problems

- camera and lights have to be distant
- calibration requirements
- measure light source directions, intensities
- camera response function

Newer work addresses some of these issues

Some pointers for further reading:

- Zickler, Belhumeur, and Kriegman, "Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction." IJCV, Vol. 49 No. 2/3, pp 215-227.
- Hertzmann \& Seitz, "Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs." IEEE Trans. PAMI 2005

Today's class

- Measuring Light (recap)
- Image formation with shape, reflectance, and illumination
- Shape from Shading
- nhotometric Stereo
- Uncalibrated Photometric Stereo
- Generalized' Bas-Relief Ambiguity
- Photometric Stereo in 'deep learning era'.

Photometric Stereo now ... in Deep Learning era!

- Exploiting High-quality CG rendering for training data
- Designing deep neural network architectures
- Designing loss functions
- GBR ambiguity is still a problem! -> Flattened objects reconstructed.

Using lighting as a cue for 3D reconstruction (Photometric Stereo)

"Shape \& Material Capture at Home", Lichy, Wu, Sengupta, Jacobs, CVPR 2021

"Real-Time Light-Weight Near-Field Photometric Stereo", Lichy, Sengupta, Jacobs, CVPR 2022

Captured Images: Right

Single iPhone Image with Built-In Flash

Image 1/1

Photometric Stereo + SLAM for colon reconstruction in colonoscopy

SLAM only

Photometric Stereo + SLAM (Ours)
"A Surface-normal Based Neural Framework for Colonoscopy Reconstruction", Sherry Wang, Yubo Zhang, Sarah McGill, Julian Rosenman, Jan-Michael Frahm, Soumyadip Sengupta, Steve Pizer, IPMI 2023.

Photometric Stereo + Multi-view Stereo for fast 3D reconstruction

12 hours

105 seconds
"MVPSNet: Fast Generalizable Multi-view Photometric Stereo", Dongxu Zhao, Daniel Lichy, Pierre-Nicolas Perrin, Jan-Michael Frahm, Soumyadip Sengupta, in submission.

Johnson and Adelson, 2009

Johnson and Adelson, 2009

Lights, camera, action

(a) bench configuration

(d) portable configuration

Figure 7: Comparison with the high-resolution result from the original retrographic sensor. (a) Rendering of the high-resolution $\$ 20$ bill example from the original retrographic sensor with a closeup view. (b) Rendering of the captured geometry using our method.

Figure 9: Example geometry measured with the bench and portable configurations. Outer image: rendering under direct lighting. Inset. macro photograph of original sample. Scale shown in upper left. Color images are shown for context and are to similar, but not exact scale.

Sensing Surfaces with GelSight

