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Instructor: Soumyadip (Roni) Sengupta



Structure from Motion (cont.)



Projective structure from motion
•Given: 𝑚	images of 𝑛 fixed 3D points such that (ignoring visibility):

• 𝒙𝑖𝑗 ≅ 𝑷𝑖	𝑿𝑗	, 𝑖	 = 	1, …	,𝑚, 	 𝑗	 = 	1, …	, 𝑛	

•Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from the 
𝑚𝑛 correspondences 𝒙𝑖𝑗

𝒙1𝑗

𝒙2𝑗
𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3



Bundle adjustment
• Non-linear method for refining structure and motion
• Minimize reprojection error (with lots of bells and whistles):

•∑!"#$ ∑%"#& 𝑤!%𝑑 𝒙!% − proj 𝑷!𝑿%
'

𝒙1𝑗

𝒙2𝑗

𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3

𝑷1𝑿𝑗

𝑷2𝑿𝑗
𝑷3𝑿𝑗

visibility flag: 
is point 𝑗 visible in  view 𝑖?

B. Triggs et al. Bundle adjustment – A modern synthesis. International Workshop on Vision Algorithms, 1999

Bundle Adjustment is highly non-convex and requires 
good initialization – hence we require algebraic 
techniques to solve this (Factorization)

https://hal.inria.fr/inria-00548290/document


Projective structure from motion
•Given: 𝑚	images of 𝑛 fixed 3D points such that (ignoring visibility):

• 𝒙𝑖𝑗 ≅ 𝑷𝑖	𝑿𝑗	, 𝑖	 = 	1, …	,𝑚, 	 𝑗	 = 	1, …	, 𝑛	

•Problem: estimate 𝑚 projection matrices 𝑷𝑖 and 𝑛 3D points 𝑿𝑗 from the 
𝑚𝑛 correspondences 𝒙𝑖𝑗

• With no calibration info, cameras and points can only be recovered up to a 
4×4 projective transformation 𝑸:

• 𝑿	 → 	𝑸𝑿, 𝑷	 → 	𝑷𝑸*𝟏

• We can solve for structure and motion when 2𝑚𝑛 ≥ 11𝑚 + 3𝑛	 − 15
• For two cameras, at least 7 points are needed
• Why is this hard to solve?

• Factorization is hard as perspective projection is only upto a scale and we also need 
to search for a scale.



Affine structure from motion
• Given: 𝑚 images of 𝑛 fixed 3D points such that

•  𝒙𝑖𝑗	 = 	𝑨𝑖	𝑿𝑗	 + 𝒕𝑖	, 	 𝑖	 = 	1, …	,𝑚, 𝑗	 = 	1, …	, 𝑛

•
𝑥
𝑦 =

𝑎$$ 𝑎$% 𝑎$&
𝑎%$ 𝑎%% 𝑎%&

𝑋
𝑌
𝑍

+
𝑡$
𝑡%

= 𝑨𝑿 + 𝒕  

• Problem: use the 𝑚𝑛 correspondences 𝒙𝑖𝑗 to estimate 𝑚 projection 
matrices 𝑨𝑖 and translation vectors 𝒕𝑖, and 𝑛 points 𝑿𝑗 

• The reconstruction is defined up to an arbitrary affine transformation 𝑸 
(12 degrees of freedom):

•𝑨 𝒕
0' 1 → 𝑨 𝒕

0' 1 𝑸($, 𝑿)
1

→ 𝑸 𝑿)
1

• How many knowns and unknowns for 𝑚 images and 𝑛 points? 
• 2𝑚𝑛 knowns and 8𝑚	 + 	3𝑛	unknowns
• To be able to solve this problem, we must have 2𝑚𝑛	 ≥ 	8𝑚 + 3𝑛 − 12 (affine 

ambiguity takes away 12 dof)
• E.g., for two views, we need four point correspondences

Not in homogenous 
coordinate.



Affine structure from motion

• Let’s create a 2𝑚	×	𝑛	data (measurement) matrix:

•𝑫 =

#𝒙!! #𝒙!" ⋯ #𝒙!#
#𝒙"! #𝒙"" ⋯ #𝒙"#
⋮ ⋮ ⋱ ⋮

#𝒙$! #𝒙$" ⋯ #𝒙$#

=

𝑨!
𝑨"
⋮
𝑨$

𝑿! 𝑿" ⋯ 𝑿#

•D is at most rank 3.

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. 
IJCV, 9(2):137-154, November 1992. 

cameras
(2	𝑚	×	3)

points (3	×	𝑛)

𝑴

𝑺

*𝒙!" = 𝒙!" −
1
𝑛.
#$%

&

𝒙!# /𝑿" = 𝑿" −
1
𝑛.
#$%

&

𝑿# Normalize 2D and 3D points

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf


Factorizing the measurement matrix
• Keep top 3 singular values:

×= ×𝑫
2𝑚×𝑛

𝑽9:
3×𝑛

𝑼9
2𝑚×3

𝚺9
3×3

• What to do about 𝚺,?

• One solution: 𝑴 = 𝑼,𝚺,
$
% , 𝑺 = 𝚺,

$
%𝑽,-  

• This is the closest approximation of 𝑫 with a 
rank-3 matrix in terms of Frobenius norm

Further Reading: Factorization methods for structure from motion

https://www.ri.cmu.edu/pub_files/pub3/kanade_takeo_1998_1/kanade_takeo_1998_1.pdf


Global Structure from Motion

SfM for large scale scenes



Feature detection
Detect features using SIFT [Lowe, IJCV 2004]



Feature detection
Detect features using SIFT [Lowe, IJCV 2004]



Feature matching
Match features between each pair of images



Feature matching
Refine matching using RANSAC to estimate fundamental 
matrix between each pair



Correspondence estimation

• Link up pairwise matches to form connected components of matches across 
several images

Image 1 Image 2 Image 3 Image 4



Global SfM
• Given N images, there are NC2 pairs. Many of these pairs will have no 

overlaps in views and/or Fundamental/Essential matrix between 
them can not be reliably estimated using RANSAC.

• Consider we have N0 (N0 < NC2) pairs of images with fundamental matrix 
estimated

• For each N0 pairs of images decompose essential matrix into relative 
rotation and translation between two cameras: Rij and tij.

• Can we solve for global (world coordinate) rotation and translation of 
the cameras, given pairwise measurements, i.e.

• Given Rij and tij  for N0 pairs, find Rk & Tk for N cameras.

• Once we have the cameras we can better initialize the Bundle 
Adjustment problem.



Rotation & Translation Averaging
Given Rij and tij  for N0 pairs, find Rk & Tk for N cameras

Credits: Venu Madhab Govindu



Camera Pose estimation as matrix completion over Fundamental matrices

“A New Rank Constraint on Multi-view Fundamental Matrices”, Sengupta et. al. CVPR 2017.

• Proves a low-rank property of all the cameras capturing different images of a scene.
• Solves a low-rank camera pose recovery algorithm from Structure from Motion.
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Bundle adjustment
• Non-linear method for refining structure and motion
• Minimize reprojection error (with lots of bells and whistles):
• 

•∑!"#$ ∑%"#& 𝑤!%𝑑 𝒙!% − proj 𝑷!𝑿%
'

• Initialize Pi’s by solving global SfM
• Rotation Averaging
• Translation Averaging 

𝒙1𝑗

𝒙2𝑗

𝒙3𝑗

𝑿𝑗

𝑷1

𝑷2

𝑷3

𝑷1𝑿𝑗

𝑷2𝑿𝑗
𝑷3𝑿𝑗

visibility flag: is 
point 𝑗 visible in 

view 𝑖?

B. Triggs et al. Bundle adjustment – A modern synthesis. International Workshop on Vision Algorithms, 1999

https://hal.inria.fr/inria-00548290/document


Incremental SfM

• Automatically select an initial pair of images

Can handle large scale scene, more than Global SfM



1. Picking the initial pair
• We want a pair with many matches, but which has as 

large a baseline as possible

lots of matches
small baseline

very few matches
large baseline

lots of matches
large baseline



Incremental SFM

• Pick a pair of images with lots of inliers (and preferably, good EXIF data)
• Initialize intrinsic parameters (focal length, principal point) from EXIF
• Estimate extrinsic parameters (𝑹 and 𝒕) using five-point algorithm (similar to 8-pt 

algorithm but for essential matrix)
• Use triangulation to initialize model points

• While remaining images exist
• Find an image with many feature matches with images in the model
• Run RANSAC on feature matches to register new image to 3D model points
• Triangulate new points
• Perform bundle adjustment to re-optimize everything
• Optionally, align with GPS from EXIF data or ground control points

https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf


Next Best View Problem

• Choice of next view impacts reconstruction quality
• almost identical view => high uncertainty in triangulation
• very different view => low overlap and high camera uncertainty
• single bad choice may impact the whole reconstruction

• Popular next best view methods:
• choose view with seeing the most triangulated points
• minimize reconstruction uncertainty

• depends on number of observations
• distribution in the image





Challenges: The devil is in the details

• Handling degenerate configurations (e.g., homographies)
• Filtering out incorrect matches
• Dealing with repetitions and symmetries



Repetitive structures cause catastrophic 
failures

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf

https://demuc.de/tutorials/cvpr2017/sparse-modeling.pdf


Repetitive structures cause catastrophic 
failures

R. Kataria et al. Improving Structure from Motion with Reliable Resectioning. 3DV 2020

https://rajbirkataria.com/assets/ImprovingStructurefromMotionwithReliableResectioning.pdf


Challenges: The devil is in the details

• Handling degenerate configurations (e.g., homographies)
• Filtering out incorrect matches
• Dealing with repetitions and symmetries
• Reducing error accumulation and closing loops



Loop Detection/Closure

• Problem:
• Structure from motion is an incremental process
• Drift accumulates

• Mitigation:
• Retrieval of long range connections



Reducing error accumulation and closing 
loops

A. Holynski et al. Reducing Drift in Structure From Motion Using Extended Features. arXiv 2020

https://arxiv.org/pdf/2008.12295.pdf


Reducing error accumulation and closing loops

A. Holynski et al. Reducing Drift in Structure From Motion Using Extended Features. arXiv 2020

https://arxiv.org/pdf/2008.12295.pdf


Loop Closure



Can also compute camera poses from video 
(often called Visual SLAM)



Visual Simultaneous Localization and 
Mapping (V-SLAM)
• Main differences with SfM:

• Continuous visual input from sensor(s) over time
• Gives rise to problems such as loop closure
• Often the goal is to be online / real-time

Video from Daniel Cremer’s Lab



SFM software

• Bundler
• OpenSfM
• OpenMVG
• VisualSFM
• COLMAP (Structure-from-motion revisited, JL Schonberger, JM Frahm, CVPR 2016, from UNC!)

• See also Wikipedia’s list of toolboxes

http://www.cs.cornell.edu/~snavely/bundler/
https://github.com/mapillary/OpenSfM
https://github.com/openMVG/openMVG
http://ccwu.me/vsfm/
https://colmap.github.io/
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=nzz6PQMAAAAJ&citation_for_view=nzz6PQMAAAAJ:vMcOFpnEpxoC
https://en.wikipedia.org/wiki/Structure_from_motion%23Structure_from_motion_software_toolboxes


SfM applications

• 3D modeling
• Surveying
• Robot navigation and mapmaking
• Virtual and augmented reality
• Visual effects (“Match moving”)
–https://www.youtube.com/watch?v=RdYWp70P_kY

https://www.youtube.com/watch?v=RdYWp70P_kY


Applications: Match Moving
Or Motion tracking, solving for camera trajectory
Integral for visual effects (VFX)
Why?



Applications: Visual Reality & Augmented 
Reality 

Hololens
https://www.youtube.com/watch?v=FMtvrTGnP04

Oculus
https://www.youtube.com/watch?v=KOG7yTz1iTA 

https://www.youtube.com/watch?v=FMtvrTGnP04
https://www.youtube.com/watch?v=KOG7yTz1iTA


Scape: Building the ‘AR Cloud’: Part Three —3D Maps, the Digital 
Scaffolding of the 21st Century
https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-
scaffolding-of-the-21st-century-465fa55782dd

Applications: Visual Reality & Augmented 
Reality 

https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-scaffolding-of-the-21st-century-465fa55782dd
https://medium.com/scape-technologies/building-the-ar-cloud-part-three-3d-maps-the-digital-scaffolding-of-the-21st-century-465fa55782dd


Application: AR walking directions

https://www.theverge.com/2019/8/8/20776247/google-maps-live-view-ar-walking-directions-ios-
android-feature 

https://www.theverge.com/2019/8/8/20776247/google-maps-live-view-ar-walking-directions-ios-android-feature
https://www.theverge.com/2019/8/8/20776247/google-maps-live-view-ar-walking-directions-ios-android-feature


Spatial ordering

3D points & camera poses

Dense 3D

images, 2D feature 
correspondences

images, camera poses

Model generation

images, camera poses, 
depth maps

3D model from video 

M
 

40



Photometric Stereo



Can we determine shape from lighting?

• Are these spheres?
• Or just flat discs painted with varying color (albedo)?
• There is ambiguity between shading and reflectance
• But still, as humans we can understand the shapes of these objects



What we know: Stereo

Key Idea: use camera motion to compute shape



Next: Photometric Stereo

Key Idea: use pixel brightness to understand shape



Photometric Stereo

Input
(1 of 12)

Normals (RGB 
colormap)

Normals (vectors) Shaded 3D
rendering

Textured 3D
rendering

What results can you get?



Today’s class

• Measuring Light (recap)
• Image formation with shape, reflectance, and illumination
• Shape from Shading
• Photometric Stereo
• Uncalibrated Photometric Stereo
• Generalized Bas-Relief Ambiguity
• Photometric Stereo in ‘deep learning era’.



Today’s class

• Measuring Light (recap)
• Image formation with shape, reflectance, and illumination
• Shape from Shading
• Photometric Stereo
• Uncalibrated Photometric Stereo
• Generalized Bas-Relief Ambiguity
• Photometric Stereo in ‘deep learning era’.



Radiometry
• What determines the 

brightness of a pixel?
Light source properties

Surface properties

Surface properties



Radiometry

https://www.instagram.com/p/BtgX55ZBhU-/
@robertwestonbreshears

• What determines the 
brightness of a pixel?

https://www.instagram.com/p/BtgX55ZBhU-/
https://www.instagram.com/p/BtgX55ZBhU-/


Radiometry
Light source
properties

Surface 
shape

Surface reflectance
properties

Optics

Sensor characteristics

Slide by L. Fei-Fei

Exposure

• What determines the 
brightness of a pixel?



Visible light
We “see” electromagnetic 
radiation in a range of 
wavelengths



What is light?
Electromagnetic radiation (EMR) moving along rays in space

• R(l) is EMR, measured in units of power (watts)
–  l is wavelength

Light field
• We can describe all of the light in the scene by specifying the radiation (or “radiance” 

along all light rays) arriving at every point in space and from every direction

The plenoptic function describes all of this light: 



Light transport



Light sources

• Basic types
• point source
• directional source

• a point source that is infinitely far away
• area source

• a union of point sources

• More generally
• a light field can describe *any* distribution of light sources
• Environment map

• What happens when light hits an object?



Today’s class

• Measuring Light (recap)
• Image formation with shape, reflectance, and illumination
• Shape from Shading
• Photometric Stereo
• Uncalibrated Photometric Stereo
• Generalized Bas-Relief Ambiguity
• Photometric Stereo in ‘deep learning era’.



Modeling Image Formation
We need to reason about:
• How light interacts with the scene
• How a pixel value is related to light energy in 

the world

Track a “ray” of light all the way from 
light source to the sensor



Directional Lighting
• Key property: all rays are parallel
• Equivalent to an infinitely distant point 

source



Lambertian Reflectance

Image 
intensity

Surface 
normal

Light 
direction

Image 
intensity cos(angle between N and L)



© Kavita Bala, Computer Science, Cornell University

Materials - Three Forms
Ideal diffuse 
(Lambertian)

Ideal
specular

Directional
diffuse



© Kavita Bala, Computer Science, Cornell University

Reflectance—Three Forms

Ideal diffuse 
(Lambertian)

Directional
diffuse

Ideal
specular



© Kavita Bala, Computer Science, Cornell University

Ideal Diffuse Reflection

• Characteristic of multiple scattering materials
• An idealization but reasonable for matte surfaces



Lambertian Reflectance

1. Reflected energy is proportional to cosine of angle between L and N 
(incoming)

2. Measured intensity is viewpoint-independent (outgoing)



Final Lambertian image formation model

1. Diffuse albedo: what fraction of incoming light is reflected?
• Introduce scale factor 

2. Light intensity: how much light is arriving?
• Compensate with camera exposure (global scale factor)

3. Camera response function
• Assume pixel value is linearly proportional to incoming energy (perform 

radiometric calibration if not)



Source: https://en.wikipedia.org/wiki/Albedo

Objects can have varying albedo and 
albedo varies with wavelength

Albedo

https://en.wikipedia.org/wiki/Albedo


Today’s class

• Measuring Light (recap)
• Image formation with shape, reflectance, and illumination
• Shape from Shading
• Photometric Stereo
• Uncalibrated Photometric Stereo
• Generalized Bas-Relief Ambiguity
• Photometric Stereo in ‘deep learning era’.



Human Perception



Examples of the classic bump/dent stimuli used to test lighting assumptions when judging 
shape from shading, with shading orientations (a) 0° and (b) 180° from the vertical.

Thomas R et al. J Vis 2010;10:6



Human Perception

by V. Ramachandran

• Our brain often perceives shape from shading.

• Mostly, it makes many assumptions to do so.

• For example:

Light is coming from above (sun). 

Biased by occluding contours.



A Single Image: Shape from shading
Suppose (for now)  

You can directly measure angle between normal and light source
• Not quite enough information to compute surface shape
• But can be if you add some additional info, for example

– assume a few of the normals are known (e.g., along silhouette)
– constraints on neighboring normals—“integrability” 
– smoothness

• Hard to get it to work well in practice
– plus, how many real objects have constant albedo?
– But, deep learning can help



Deep Learning for Shape from Shading

“SfSNet: Learning Shape, Reflectance and Illuminance of Faces in the Wild”, 
Sengupta, Kanazawa, Castillo, Jacobs, CVPR 2018.



CVPR 2019



Application: Detecting composite photos

Fake photo

Real photo



Today’s class

• Measuring Light (recap)
• Image formation with shape, reflectance, and illumination
• Shape from Shading
• Photometric Stereo
• Uncalibrated Photometric Stereo
• Generalized Bas-Relief Ambiguity
• Photometric Stereo in ‘deep learning era’.



Photometric stereo

N

L1
L2

V

L3

Can write this as a matrix equation:



Solving the equations

Solve one such linear system per pixel to solve for that pixel’s surface normal



More than three lights
Can get better results by using more than 3 lights

Least squares solution:

Solve for N, kd as before

nx3                            nx3               3x1        



Calibrating Lighting Directions

Trick: place a chrome sphere in the scene

• the location of the highlight tells you where the light source is



Example

Recovered albedo Recovered normal field

Forsyth & Ponce, Sec. 5.4

Input views



Depth from normals
• Solving the linear system per-pixel 

gives us an estimated surface 
normal for each pixel

• How can we compute depth from 
normals?

• Normals are like the “derivative” of 
the true depth

Input photo Estimated normals Estimated normals 
(needle diagram)



Depth from normals

Get a similar equation for V2
• Each normal gives us two linear constraints on z
• compute z values by solving a matrix equation

V1
V2

N



Normal Integration

Linear Partial 
Differential Equations

Read Normal Integration: A Survey (if interested)

Integrability Constraint:

The order of taking 2nd order partial 
derivative with u & v (or x& y) 
shouldn’t matter!

https://arxiv.org/pdf/1709.05940.pdf


Results

from Athos Georghiades



Results



Extension

• Photometric Stereo from Colored Lighting

Video Normals from Colored Lights
Gabriel J. Brostow, Carlos Hernández, George Vogiatzis, Björn Stenger, Roberto Cipolla
IEEE TPAMI, Vol. 33, No. 10, pages 2104-2114, October 2011.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5719620&tag=1


Today’s class

• Measuring Light (recap)
• Image formation with shape, reflectance, and illumination
• Shape from Shading
• Photometric Stereo
• Uncalibrated Photometric Stereo
• Generalized Bas-Relief Ambiguity
• Photometric Stereo in ‘deep learning era’.



What if the light directions are unknown?

define “pseudo-normal”

solve linear system 
for pseudo-normal

a = albedo.

Previously kd was 
used for albedo.



define “pseudo-normal”

solve linear system 
for pseudo-normal at 

each image pixel
𝑀

𝑀
𝐵

M: number of pixels

What if the light directions are unknown?
a = albedo.

Previously kd was 
used for albedo.



define “pseudo-normal”

solve linear system 
for pseudo-normal at 

each image pixel
𝑀

𝑀
𝐵

How do we solve this 
system without 
knowing light matrix L?

What if the light directions are unknown?
a = albedo.

Previously kd was 
used for albedo.



Factorizing the measurement matrix

Lights Pseudonormals

What are the dimensions?



• Singular value decomposition:

This 
decomposition  

minimizes
|I-LB|2

Factorizing the measurement matrix



Are the results unique?

We can insert any 3x3 matrix Q in the decomposition and get the same images:

I = L B = (L Q-1) (Q B)

Can we use any assumptions to remove some of these 9 degrees of freedom?



Today’s class

• Measuring Light (recap)
• Image formation with shape, reflectance, and illumination
• Shape from Shading
• Photometric Stereo
• Uncalibrated Photometric Stereo
• Generalized Bas-Relief Ambiguity
• Photometric Stereo in ‘deep learning era’.



We can insert any 3x3 matrix Q in the decomposition and get the same images:

I = L B = (L Q-1) (Q B)

Can we use any assumptions to remove some of these 9 degrees of freedom?

Generalized Bas-Relief ambiguity to rescue!

G has 3 degrees of freedom.

What does G mean?

How do we obtain G? What constraints lead us to G?

Generalized Bas-Relief ambiguity



Generalized Bas-Relief ambiguity

Artists have exploited GBR ambiguity in creating statues!

• On can flatten a surface and yet give an impression of 
full 3D to a viewer

“The Bas-Relief Ambiguity”, Peter N. Belhumeur, David J. Kriegman, Alan L. Yuille, IJCV 99





Generalized Bas-Relief ambiguity



Generalized Bas-Relief ambiguity



We can insert any 3x3 matrix Q in the decomposition and get the same images:

I = L B = (L Q-1) (Q B)

Can we use any assumptions to remove some of these 9 degrees of freedom?

Generalized Bas-Relief ambiguity to rescue!

G has 3 degrees of freedom.

G indicates integrable surface: 
The order of taking 2nd order partial derivative with u & v (or x& y) shouldn’t matter!

Generalized Bas-Relief ambiguity



Enforcing integrability
What does the integrability constraint correspond to?

• Differentiation order should not matter:

𝑑	 𝑑𝑓(𝑥,	𝑦)	=	 𝑑	 𝑑𝑓(𝑥,	𝑦)
𝑑𝑦	 𝑑𝑥	 𝑑𝑥	 𝑑𝑦

If B is integrable, then:
• B’=G-T⋅B is also integrable for all G of the form (𝜆	≠	0)

𝐺	=	 0
1	 0	 0

1	 0
𝜇	 𝜈	 𝜆 

I = L B = (L Q-1) (Q B)



For now, ignore specular reflection

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Refraction…

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Interreflections…

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Subsurface Scattering…

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



What assumptions have we 
made for all this?

•Lambertian BRDF

•Directional lighting

•Distant Lighting

•Orthographic camera

•No interreflections or scattering



Limitations
Bigger problems

• doesn’t work for shiny things, semi-translucent things
• shadows, inter-reflections

Smaller problems
• camera and lights have to be distant
• calibration requirements

• measure light source directions, intensities
• camera response function

Newer work addresses some of these issues
Some pointers for further reading:

• Zickler, Belhumeur, and Kriegman, "Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction." IJCV, Vol. 49 No. 2/3, 
pp 215-227. 

• Hertzmann & Seitz, “Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs.” IEEE Trans. PAMI 
2005

http://www.eecs.harvard.edu/~zickler/helmholtz.html
http://grail.cs.washington.edu/projects/sam/


Today’s class

• Measuring Light (recap)
• Image formation with shape, reflectance, and illumination
• Shape from Shading
• Photometric Stereo
• Uncalibrated Photometric Stereo
• Generalized Bas-Relief Ambiguity
• Photometric Stereo in ‘deep learning era’.



Photometric Stereo now … in Deep Learning era!

• Exploiting High-quality CG rendering for training data
• Designing deep neural network architectures
• Designing loss functions

• GBR ambiguity is still a problem! -> Flattened objects reconstructed.



Using lighting as a cue for 3D reconstruction 
(Photometric Stereo)

“Shape & Material Capture at Home”, Lichy, Wu, Sengupta, Jacobs, CVPR 2021

“Real-Time Light-Weight Near-Field Photometric Stereo”,  
Lichy, Sengupta, Jacobs, CVPR 2022
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Photometric Stereo + SLAM for colon reconstruction in colonoscopy

SLAM only Photometric Stereo + 
SLAM (Ours)

“A Surface-normal Based Neural Framework for Colonoscopy Reconstruction”, Sherry Wang, Yubo Zhang, 
Sarah McGill, Julian Rosenman, Jan-Michael Frahm, Soumyadip Sengupta, Steve Pizer, IPMI 2023.
 



Photometric Stereo + Multi-view Stereo for fast 3D reconstruction

“MVPSNet: Fast Generalizable Multi-view Photometric Stereo”, Dongxu Zhao, Daniel 
Lichy, Pierre-Nicolas Perrin, Jan-Michael Frahm, Soumyadip Sengupta, in submission.
 

Sample Image PS-NeRF MVS (only) MVS+PS (Ours) GT

12 hours 22 seconds 105 secondsRecon. time



Johnson and Adelson, 2009



Johnson and Adelson, 2009















https://www.youtube.com/watch?v=S7gXih4XS7A

https://www.youtube.com/watch?v=S7gXih4XS7A

