
Lecture 24: 
Neural Radiance Fields (NeRFs)

COMP 590/776: Computer Vision
Instructor: Roni Sengupta



Final-exam focus

• Convolution Operator
• Different Filters
• Aliasing
• Image Derivatives
• Fourier Transform
• Canny Edge Detection
• Harris Corner Detector and it’s properties



Final-exam focus

• 2D Transformation: Affine & Homography
• Least Square fitting
• Estimating Homography
• Basic Structures of a CNN
• How to train a CNN for classification
• Different kinds of object detectors (high-

level)

x

x



Final-exam focus

x

• World->camera->image coord.
• Perspective distortion
• Vanishing points, lines and planes
• Essential & Fundamental Matrix and its properties
• Normalized 8 point algorithm
• Depth-disparity relation (stereo)
• Image rectification (stereo)
• SfM: ambiguities and minimal view-points for solving.
• High-level understanding of different 3D reconstruction 

techniques and their relative advantage, disadvantage, 
and used cases.



Stereo Photography

Viewing Devices
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NeRF (Neural Radiance Field) has revolutionized 
Computer Vision & Graphics in past 3 years!

Let’s look at some of the stunning results it 
produced!



NeRF: Representing Scenes 
as Neural Radiance Fields for 
View Synthesis
ECCV 2020
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Given a set of sparse views of an 
object with known camera poses

3D reconstruction viewable 
from any angle

Optimize a NeRF 
model
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, 
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, 
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.
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Block-NeRF: Scalable Large 
Scene Neural View Synthesis, 
CVPR 2022.
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NeRFies: Deformable Neural Radiance Fields, Keunhong Park et al., ICCV 2021.
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Neural 3D Video Synthesis 
from Multi-view Video, 
Li et al., CVPR 2022



Surface Representation: 
Signed Distance Function (SDF)

- implicit representation via level set

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.

SDF(X) = 0, when X is on the surface.
SDF(X) > 0, when X is outside the surface
SDF(X) < 0, when X is inside the surface

Note: SDF is an implicit representation!
Suitable for neural networks but hard to 
import inside existing graphics software.
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Signed Distance Function
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Regression of Continuous SDF

NN



What is Volume Rendering?

• Assume a cloud of tiny colored particles in 3D. Each particle has a RGB 
color and a density.
• Take a pixel on image plane, and shoot a ray from the camera center, 

through the pixel and into the ‘cloud of tiny colored particles’
• What should be the color for that pixel?

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝
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Volumetric formulation for NeRF
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Scene is a cloud of colored fog

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral
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Volumetric formulation for NeRF
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Consider a ray traveling through the scene, and a point 
at distance 𝑡 along this ray. We look up its color 𝐜(𝑡), 
and its opacity (alpha value) Ĺ(𝑡) 

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡
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Volumetric formulation for NeRF
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But 𝑡 may also be blocked by earlier points along the 
ray. 𝑇(𝑡): probability that the ray didn’t hit any particles 
earlier.
𝑇(𝑡) is called “transmittance”

𝑃[no	hits	before	𝑡] = 𝑇(𝑡)

𝑡



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
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Computing the color for 
a set of rays through the 
pixels of an image yields 
a rendered image

Slight modification: 𝛼 is not directly stored in the 
volume, but instead is derived from a stored volume 
density sigma (ļ ) that is multiplied by the distance 
between samples delta (ĺ ):

𝛼! = 1 − exp(−𝜎!𝛿!)



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:
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Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

colors
weights
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color along ray
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How do we store the values of 
𝐜, 𝜎 at each point in space?
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Toy problem: storing 2D image data

29

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

Usually we store an image as a 
2D grid of RGB color values
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Toy problem: storing 2D image data

30

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

What if we train a simple fully-connected 
network (MLP) to do this instead?

𝐹'
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Naive approach fails!

31

Ground truth image Neural network output fit 
with gradient descent
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Problem:
● “Standard” coordinate-based MLPs cannot 

represent high frequency functions.
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Solution:

● Pass input coordinates through a 
high frequency mapping first.
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Example mapping: “positional encoding”



Positional encoding

Raw encoding of a number x “Positional encoding” of a number x
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Problem solved!
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Ground truth image Neural network output without 
high frequency mapping

Neural network output with 
high frequency mapping



NeRF = volume rendering + 
coordinate-based network

3
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How do we store the values 
of 𝐜, 𝜎 at each point in space
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How do we store the values of 𝐜, 𝜎 
at each point in space
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How do we store the values of 𝐜, 𝜎 
at each point in space
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How do we store the values of 𝐜, 𝜎 
at each point in space
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How do we store the values of 𝐜, 𝜎 
at each point in space
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How do we store the values of 𝐜, 𝜎 
at each point in space
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How do we store the values of 𝐜, 𝜎 
at each point in space
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How do we store the values of 𝐜, 𝜎 
at each point in space
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Extension: view-dependent field
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Include the ray direction in 
the input to the MLP à 
allows for capturing and 

rendering view-dependent 
effects (e.g., shiny surfaces)



Modeling view dependent effects



What do we learn in NeRF?



• Coordinate-based modeling of RGB and Densities
Instead of SDFs

50

DeepSDF Extensions: NeRF

Mildenhall et al. 2020



Putting it all together

Training NeRFs



∇∥ 	 − ∥!
Train network using gradient 

descent 
to reproduce all input views of 

scene 
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Volume rendering of 
MLP colors/densities

Ground truth
image





Importance Sampling
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NeRF encodes convincing 
view-dependent effects using 

directional dependence
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NeRF encodes convincing view-dependent 
effects using directional dependence
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NeRF encodes detailed scene 
geometry
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Building 3D models from NeRFs

Apply marching cubes algorithm on NeRF predicted volume density (𝜎)



Summary

• Represent the scene as volumetric colored “fog”
• Store the fog color and density at each point as an MLP 

mapping 3D position (x, y, z) to color c and density σ
• Render image by shooting a ray through the fog for each 

pixel
• Optimize MLP parameters by rendering to a set of known 

viewpoints and comparing to ground truth images



Key limitations of the original NeRF

•Very slow in training and inference
•Requires Ground-Truth poses
•Do not generalize to new scenes



Key limitations of the original NeRF

•Very slow in training and inference
•Requires Ground-Truth poses
•Do not generalize to new scenes



Instant NGP: Superfast training and inference with NeRF using 
multi-resolution hash-table
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Hybrid representation

Features:

• are also parameters that can be updated while training the NeRF. (slight increase in memory, significantly 
faster training & inference)

• are individual NeRFs trained on a small section of a scene (for large city-size scene)

• are priors obtained from ConvNets, e.g. VGG-features (used for generalization)
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Hybrid representation: It’s all about Data Structures!

Why hybrid representation?

- Reduce the size of neural network -> fast inference & rendering.
- Helps in rendering large scale scenes.
- Helps in generalization.
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Uniform Grids
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Hash Grids
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Key limitations of the original NeRF

•Very slow in training and inference
•Requires Ground-Truth poses
•Do not generalize to new scenes







Key limitations of the original NeRF

•Very slow in training and inference
•Requires Ground-Truth poses
•Do not generalize to new scenes
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Slide Credits

• “Introduction to Computer Vision”, Noah Snavely, Cornell Tech, Spring 
2022
• “Understanding and Extending Neural Radiance Field”, Jon Barron MIT 

& Tu Munich Lecture.
• “Neural Fields in Computer Vision”, CVRP 2022 Tutorial.
• Shubham Tulsiani, “Learning for 3D Vision”, Spring 2022, CMU
• Leo Guibas, JJ Park, “Neural Models for 3D geometry”, Spring 2022, 

Stanford.

https://neuralfields.cs.brown.edu/cvpr22

