Lecture 24: Neural Radiance Fields (NeRFs)

COMP 590/776: Computer Vision

Instructor: Roni Sengupta

Final-exam focus

Schedule

Date	Торіс	Details	Special Dates	
	1	Intro & Review		
Tues Aug 22	Intro. to Computer Vision & Ethical Concerns	Lecture Slide		
Thrs Aug 24	Maths Review (Linear Algebra, Probability, Calculus)	Lecture Slide [pdf]	HW1: Maths review (assigned)	
		Colors & Imaging		
Tues Aug 29	No Class			
Thrs Aug 31	Color & Color Spaces	Lecture Slide [pdf]		
Tues Sept 5	No Class (Well-being day)		HW1: Maths review (due)	
Thrs Sept 7	In-Camera Imaging Pipeline	Lecture Slide [pdf]		
	•	Image Processing	Convolution Operator	
Tues Sept 12	Filtering - Convolution, Gradients, & Edges	Lecture Slide [pdf]	 Different Filters Aliasing Image Derivatives 	
Thrs Sept 14	Frequency domain - Fourier Analysis	Lecture Slide [pdf]		
		Features	Fourier Transform	
Tues Sept 19	Feature Detection (Corner & Blob)	Lecture Slide [pdf]	 Canny Edge Detection Harris Corner Detector and it's pro 	
Thrs Sept 21	Feature Descriptor & Matching (SIFT)	Lecture Slide [pdf]		

Final-exam focus

		2D Transformation		2D Transformation: Affine & Homography	
Tues Sept 26	2D Transformations & Fitting	Lecture Slide [pdf]	•	Least Square fittingEstimating Homography	
Thrs Sept 28	RANSAC + Image Blending	Lecture Slide [pdf]	•		
		Learning & Perception	•	Basic Structures of a CNN	
Tues Oct 3	Recognition	Lecture Slide [pdf]	•	 How to train a CNN for classification Different kinds of object detectors (high- level) 	
Thrs Oct 5	Detection	Lecture Slide [pdf]	•		
Tues Oct 10	Segmentation & Matting	Lecture Slide [pdf]			
Thrs Oct 12	No Class (University Day)			HW3: Panorama (due Friday Oct 13) HW4: Deep Learning (assigned)	
Tues Oct 17	Generative Models in Computer Vision	Lecture Slide [pdf]		Online Lecture	
Thrs Oct 19	No Class (Fall Break)				

Final-exam focus

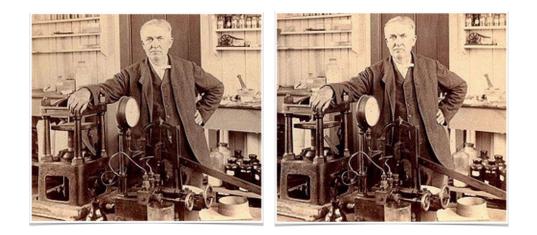
			• Wo
Tues Oct 24	Camera Models + Calibration - 1		• Per
Thrs Oct 26	Camera Models + Calibration - 2		VarEss
Tues Oct 31	Two-view Geometry-1		• Noi
Thrs Nov 2	Two-view Geometry-2		• Dep
Tues Nov 7	Stereo		• Ima
Thrs Nov 9	hrs Nov 9 Multi-view Stereo		• Sf№ • Hig
Tues Nov 14	Structure from Motion		tec
Thrs Nov 16	Light & Photometric Stereo		and
Tues Nov 21	Deep Learning for MVS, SfM, PS	_	
Thrs Nov 23	No Class (Thanksgiving)		
Tues Nov 28	Tues Nov 28 NeRFs		
Thrs Nov 30	Mid-term Review		
Tues Dec 5	Final Exam (in-class and/or take home)		

- World->camera->image coord.
- Perspective distortion
- Vanishing points, lines and planes
- Essential & Fundamental Matrix and its properties
- Normalized 8 point algorithm
- Depth-disparity relation (stereo)
- Image rectification (stereo)
- SfM: ambiguities and minimal view-points for solving.
- High-level understanding of different 3D reconstruction techniques and their relative advantage, disadvantage, and used cases.

HW6: 3D Vision 2 (due)

Syllabus: Whole course

Stereo Photography



Viewing Devices

NeRF (Neural Radiance Field) has revolutionized Computer Vision & Graphics in past 3 years!

Let's look at some of the stunning results it produced!

NeRF: Representing Scenes as Neural Radiance Fields for **View Synthesis** ECCV 2020

Ben Mildenhall'

UC Berkeley



UC Berkeley

Matt Tancik*

UC Berkeley

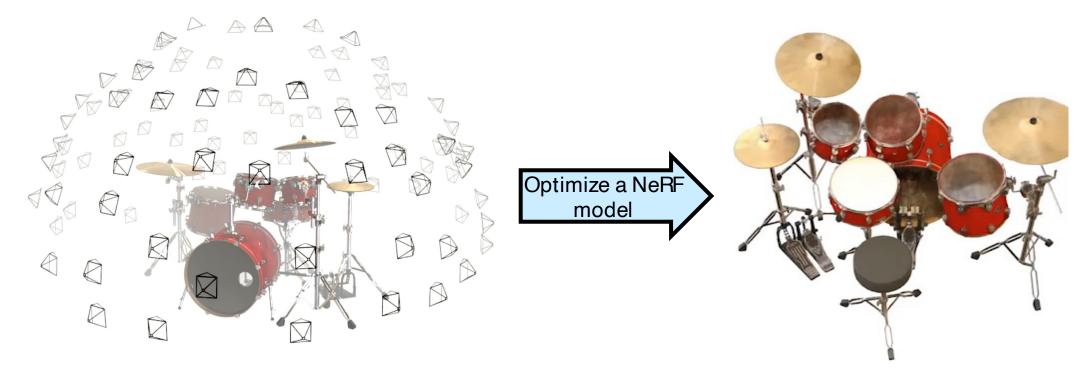
Jon Barron

Google Research

Ravi Ramamoorthi

UC San Diego

UC Berkeley



Given a set of sparse views of an object with known camera poses

3D reconstruction viewable from any angle

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,

Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,

Ben Mildenhall, *Pratul Srinivasan*, Matthew Tancik^{*}, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.

Block-NeRF: Scalable Large Scene Neural View Synthesis, CVPR 2022.

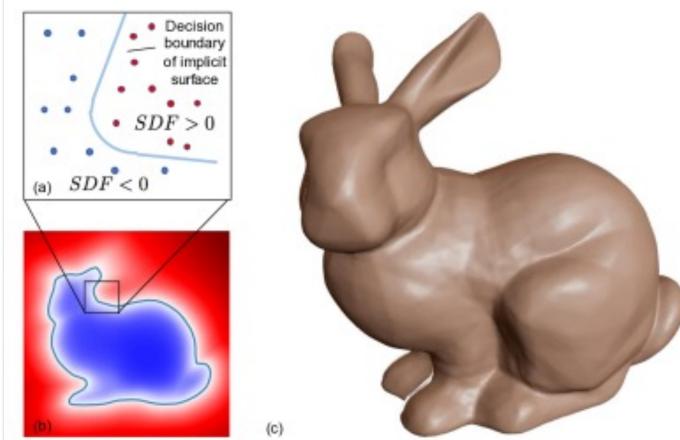
(a) Capture Process (b) Input (c) Nerfie (d) Nerfie Depth

NeRFies: Deformable Neural Radiance Fields, Keunhong Park et al., ICCV 2021.

Neural 3D Video Synthesis from Multi-view Video, Li et al., CVPR 2022 Surface Representation: Signed Distance Function (SDF) - implicit representation via level set

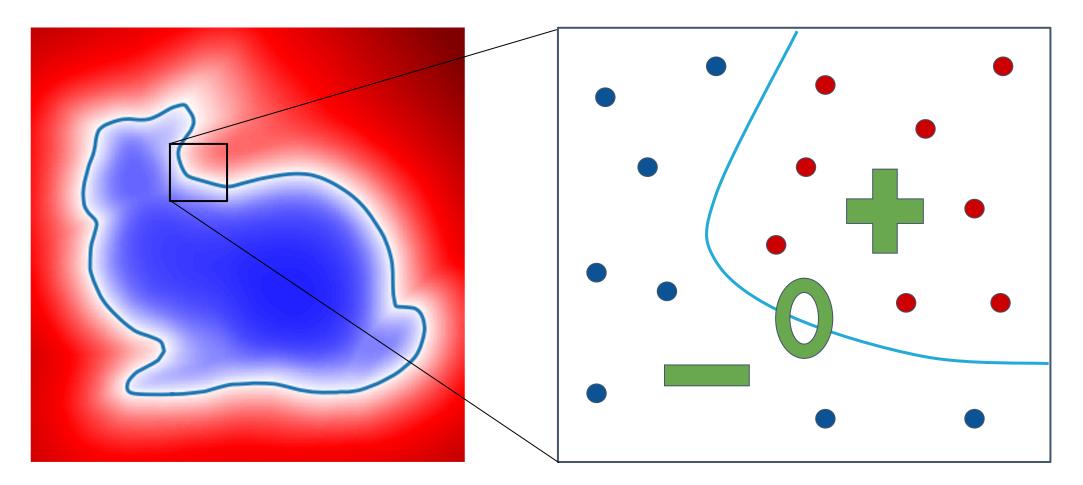
SDF(X) = 0, when X is on the surface. SDF(X) > 0, when X is outside the surface SDF(X) < 0, when X is inside the surface

Note: SDF is an implicit representation! Suitable for neural networks but hard to import inside existing graphics software.

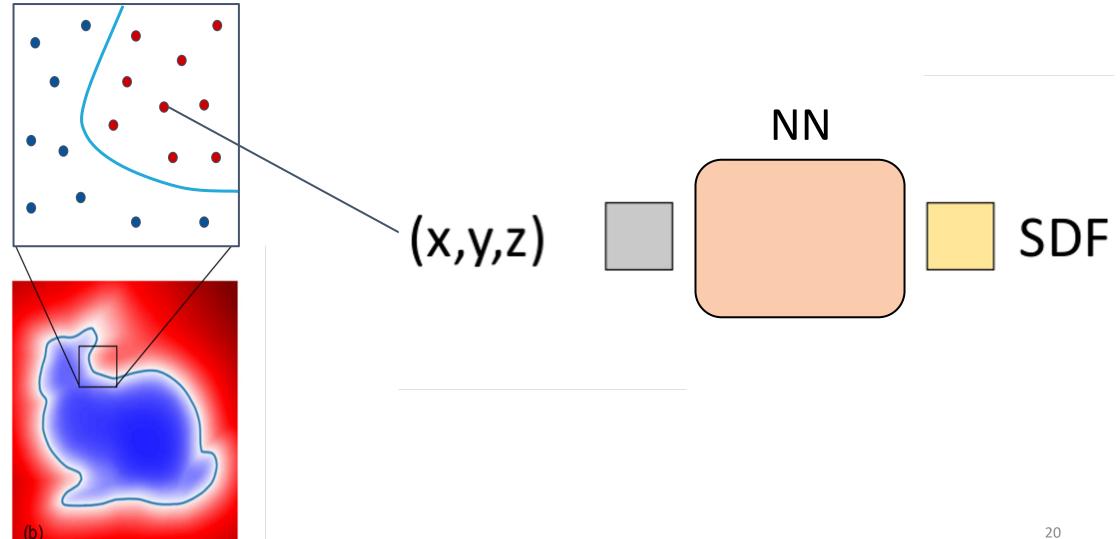


Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.

Signed Distance Function

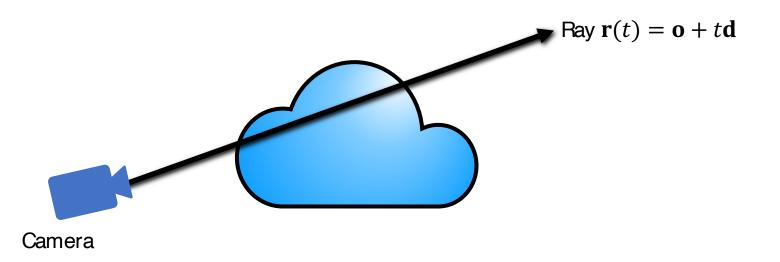


Regression of Continuous SDF



What is Volume Rendering?

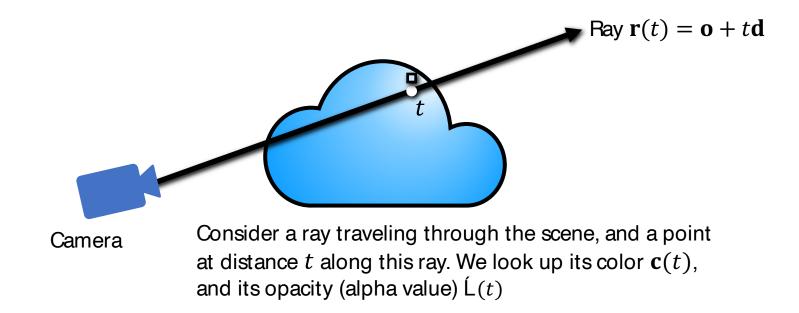
- Assume a cloud of tiny colored particles in 3D. Each particle has a RGB color and a density.
- Take a pixel on image plane, and shoot a ray from the camera center, through the pixel and into the 'cloud of tiny colored particles'
- What should be the color for that pixel?



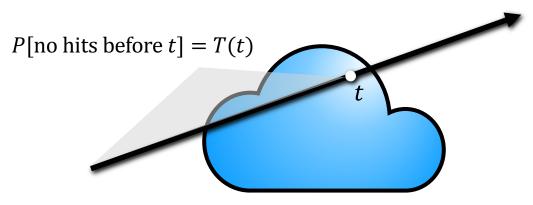
Volumetric formulation for NeRF

Scene is a cloud of colored fog

Volumetric formulation for NeRF



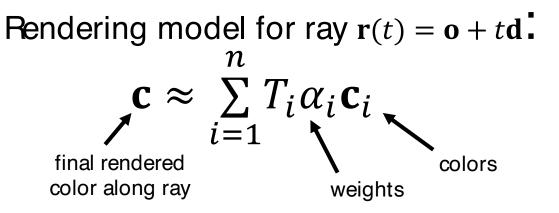
Volumetric formulation for NeRF



But t may also be blocked by earlier points along the ray. T(t): probability that the ray didn't hit any particles earlier.

T(t) is called "transmittance"

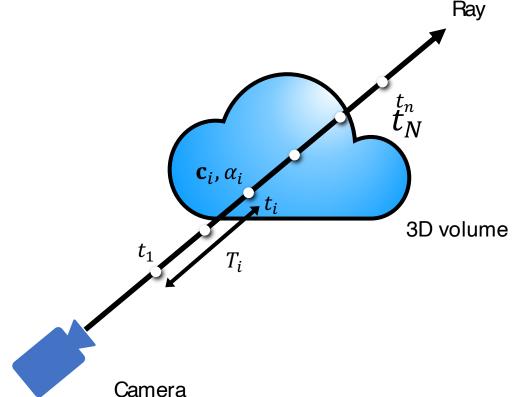
Volume rendering estimation: integrating color along a ray



How much light is blocked earlier along ray: i-1

 $T_i = \prod_{j=1} (1 - \alpha_j)$

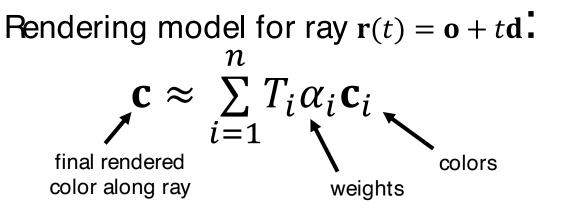
Computing the color for a set of rays through the pixels of an image yields a rendered image



$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

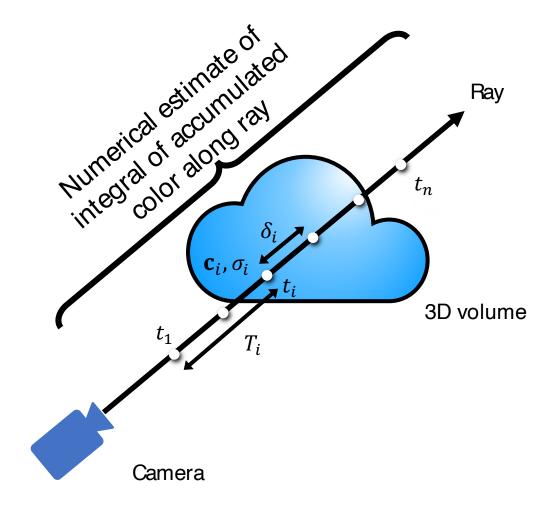
Slight modification: α is not directly stored in the volume, but instead is derived from a stored volume density sigma ([) that is multiplied by the distance between samples delta (\hat{I}):

Volume rendering estimation: integrating color along a ray



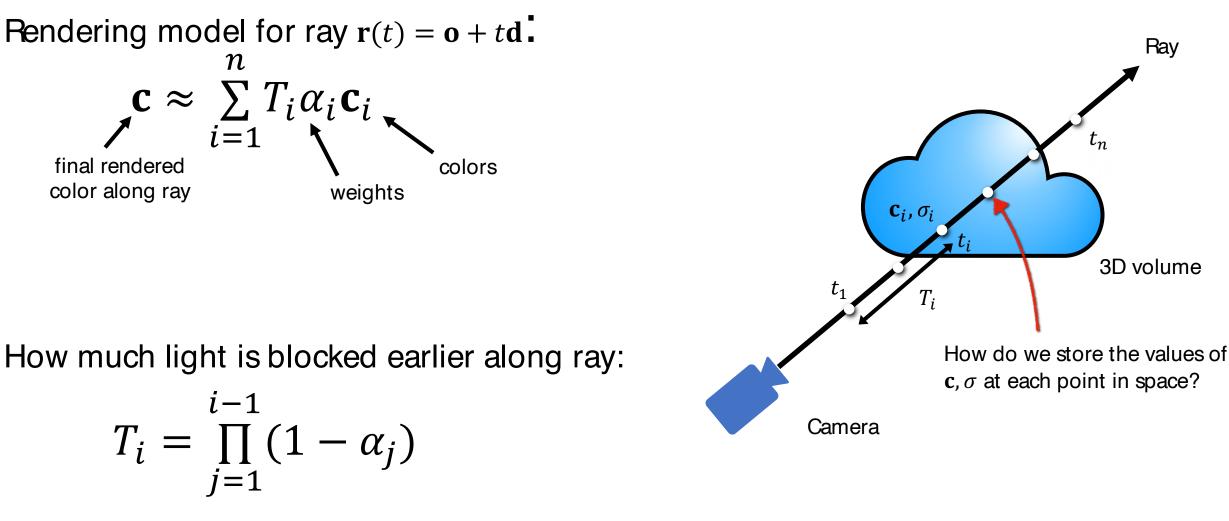
How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$
$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

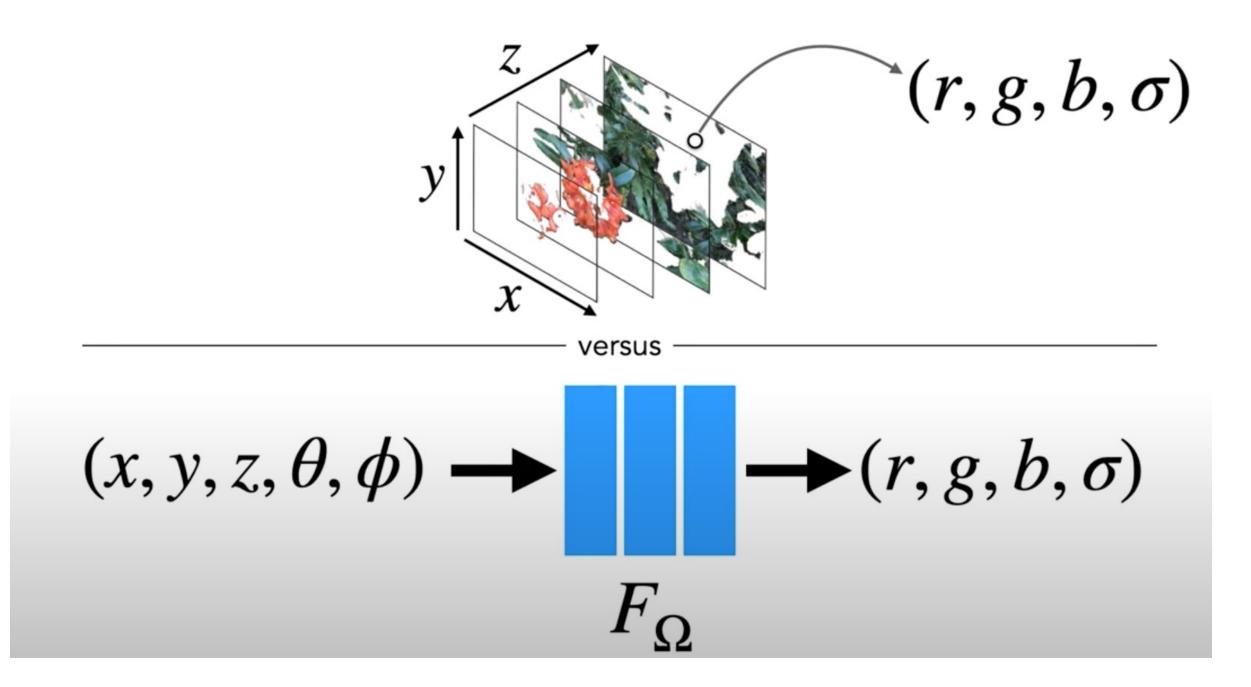


Volume rendering estimation: integrating color along a ray

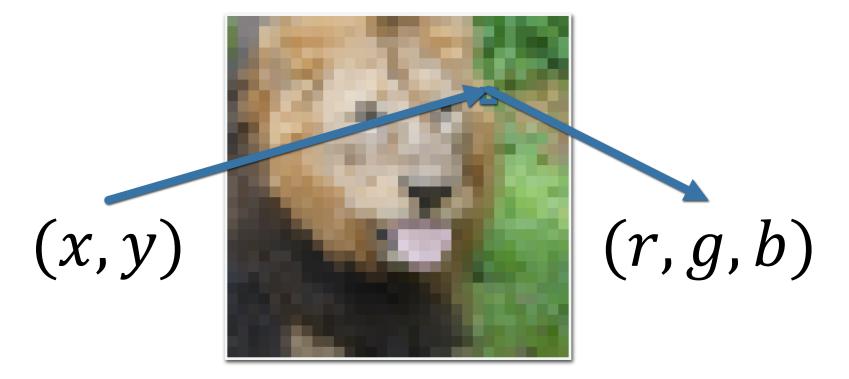
Ray



$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

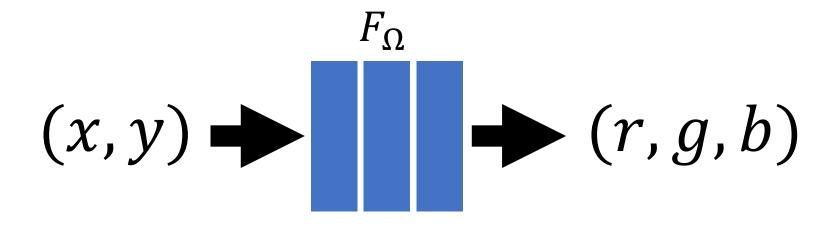


Toy problem: storing 2D image data



Usually we store an image as a 2D grid of RGB color values

Toy problem: storing 2D image data



What if we train a simple fully-connected network (MLP) to do this instead?

Naive approach fails!

Ground truth image

Neural network output fit with gradient descent

Problem:

"Standard" coordinate-based MLPs cannot represent high frequency functions.

Solution:

 Pass input coordinates through a high frequency mapping first. Example mapping: "positional encoding"

$$\mathbf{v} \not \rightarrow \mathbf{v} \not \rightarrow \mathbf{v}$$

$$\sin(\mathbf{v}), \cos(\mathbf{v})$$

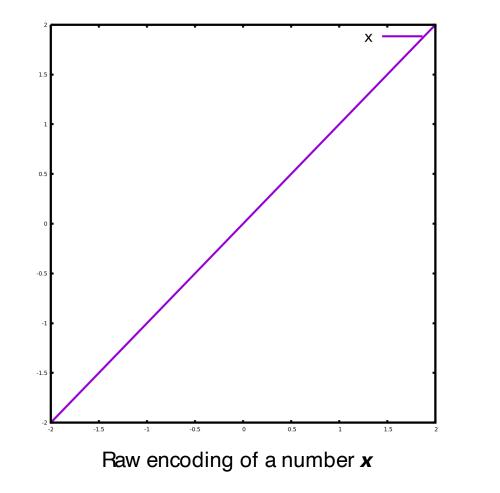
$$\sin(2\mathbf{v}), \cos(2\mathbf{v})$$

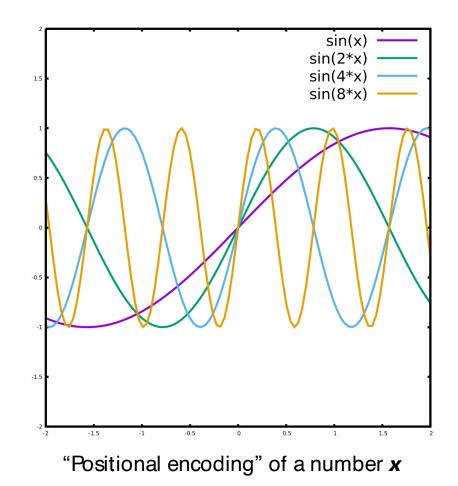
$$\sin(4\mathbf{v}), \cos(4\mathbf{v})$$

$$\dots$$

$$\sin(2^{L-1}\mathbf{v}), \cos(2^{L-1}\mathbf{v})$$

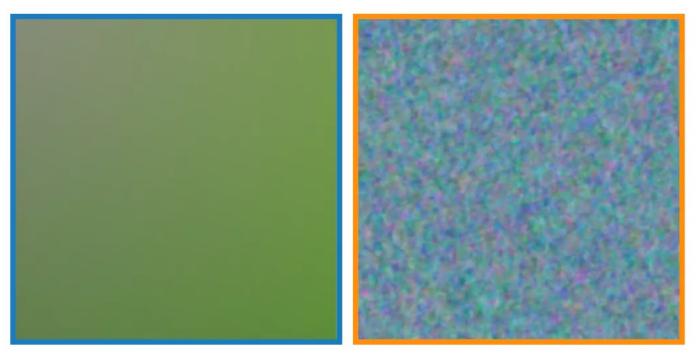
Positional encoding





Problem solved!

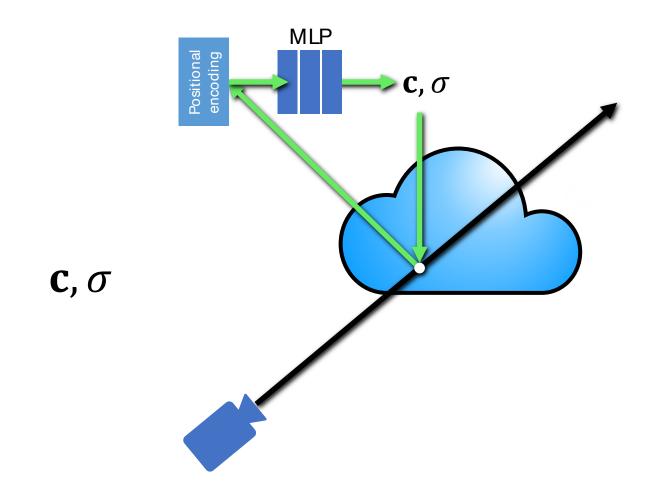
Ground truth image

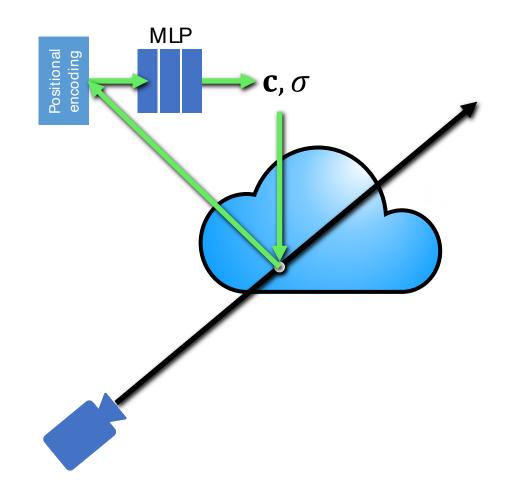


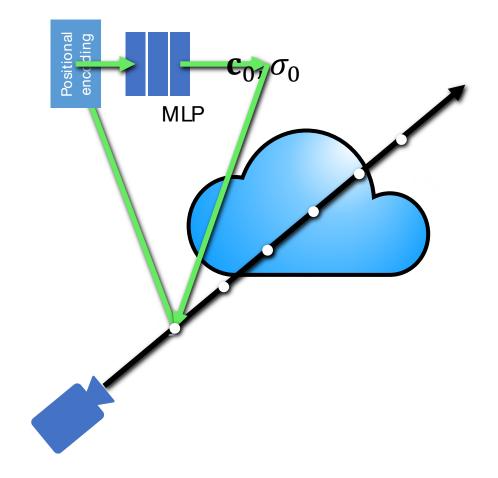
Neural network output without high frequency mapping

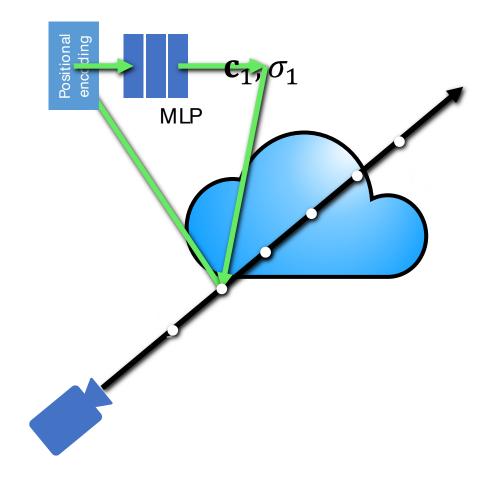
Neural network output with high frequency mapping

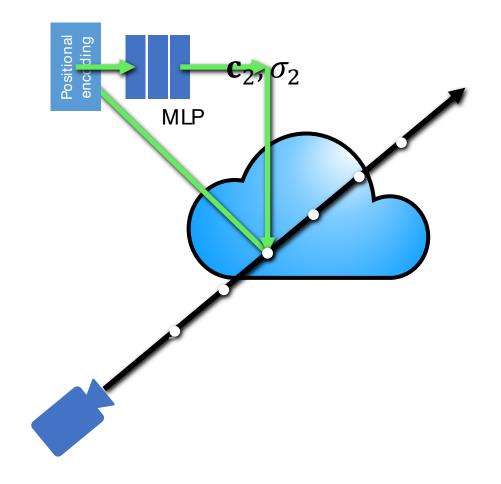
NeRF = volume rendering + coordinate-based network

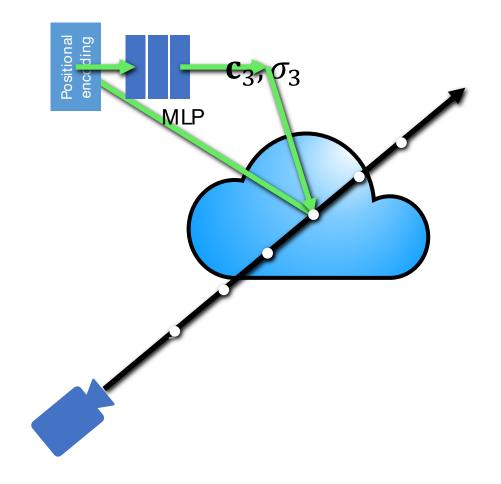


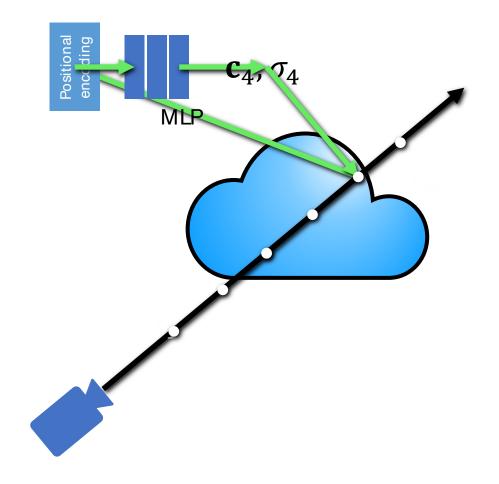


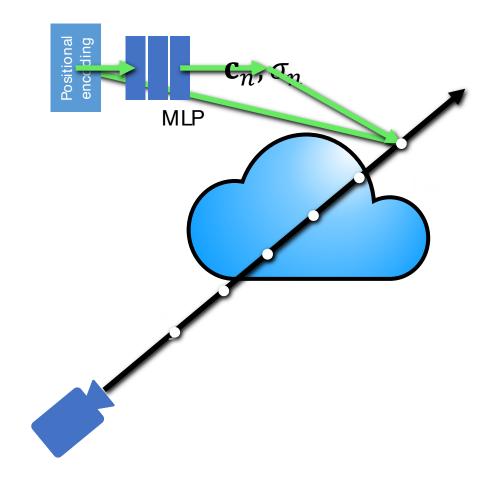


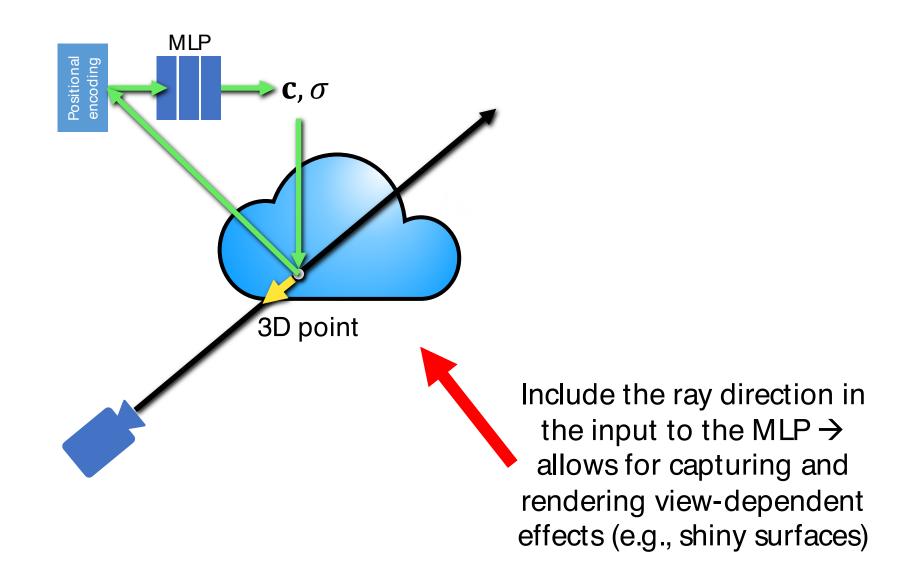




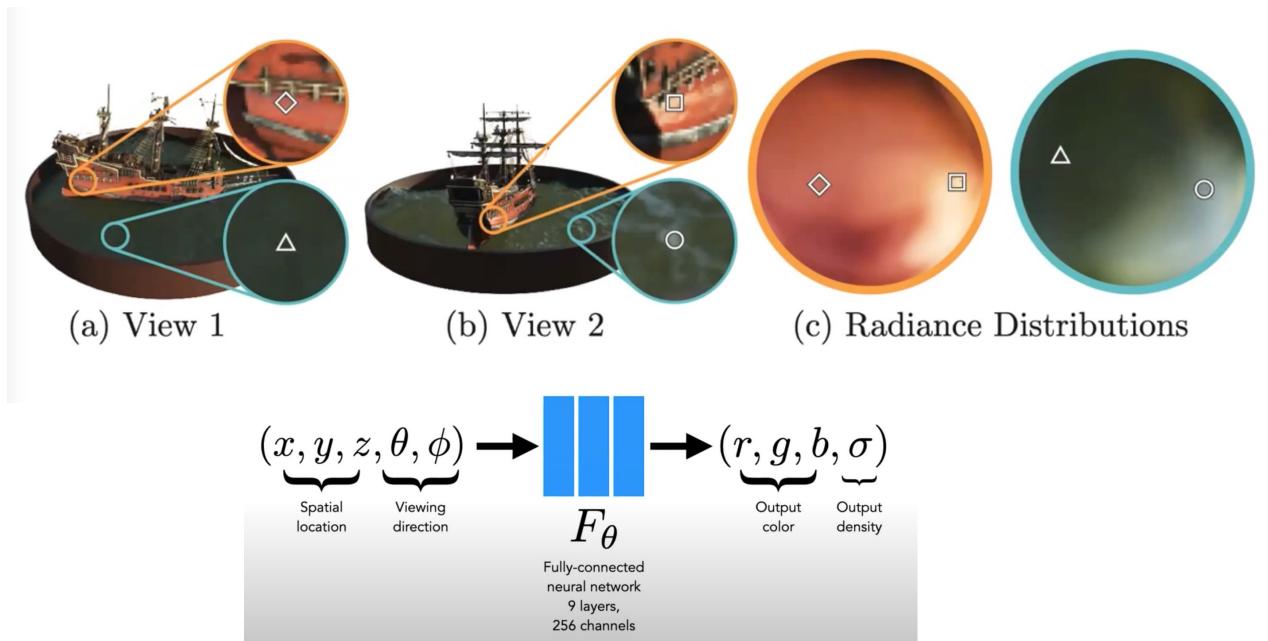




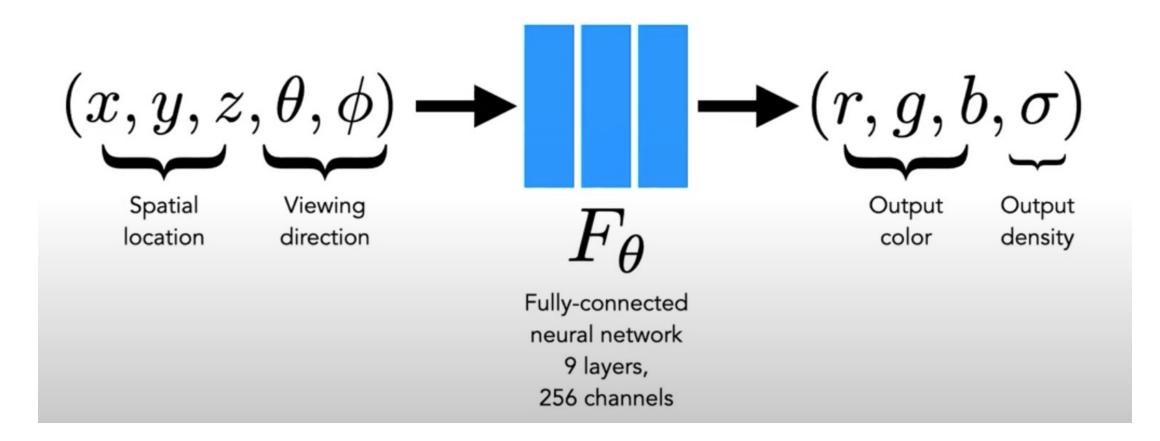




Modeling view dependent effects

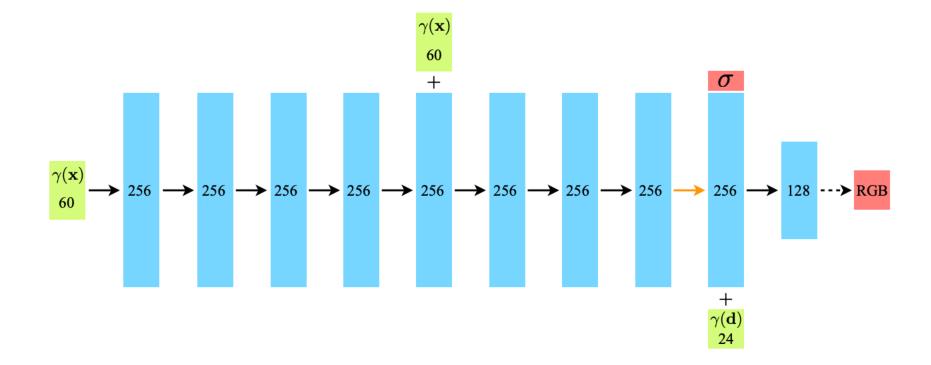


What do we learn in NeRF?

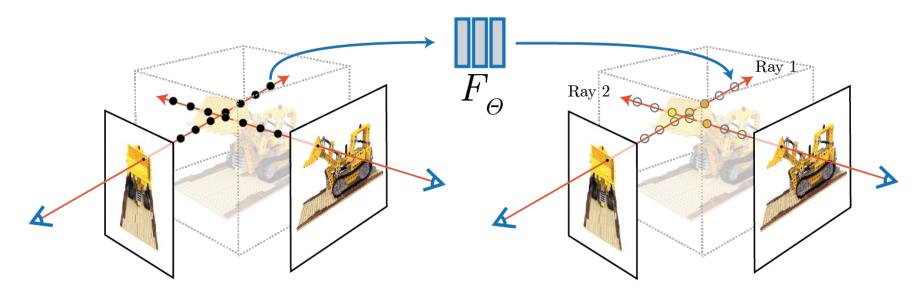


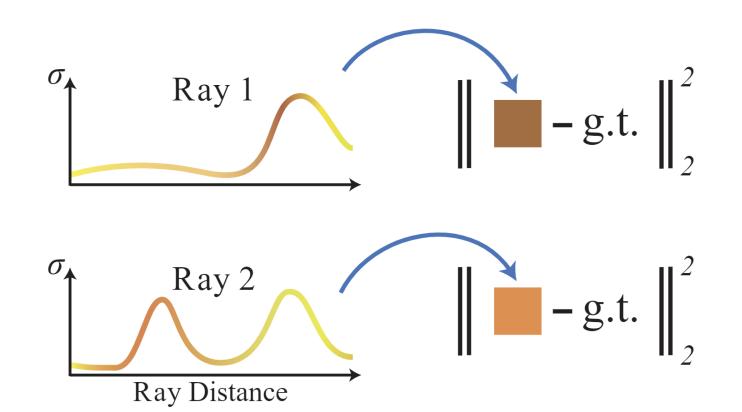
DeepSDF Extensions: NeRF

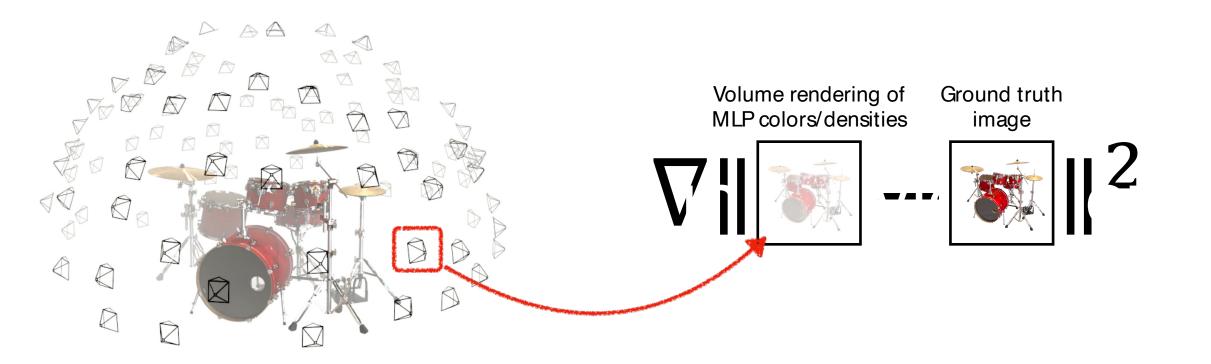
 Coordinate-based modeling of RGB and Densities Instead of SDFs

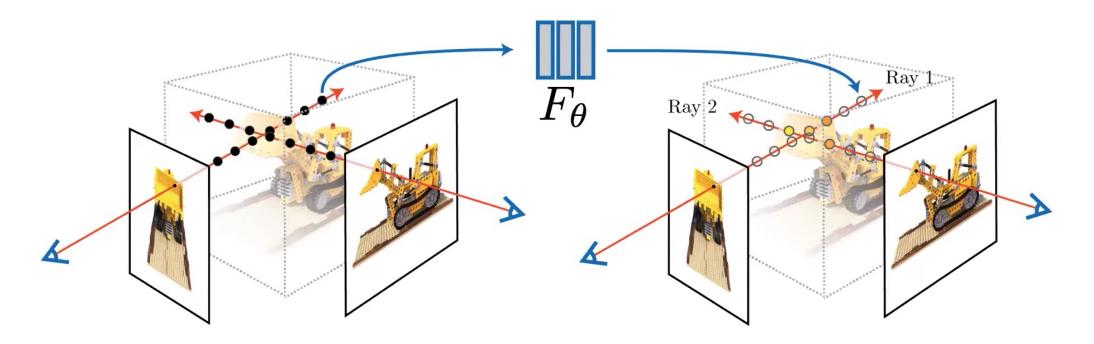


Training NeRFs



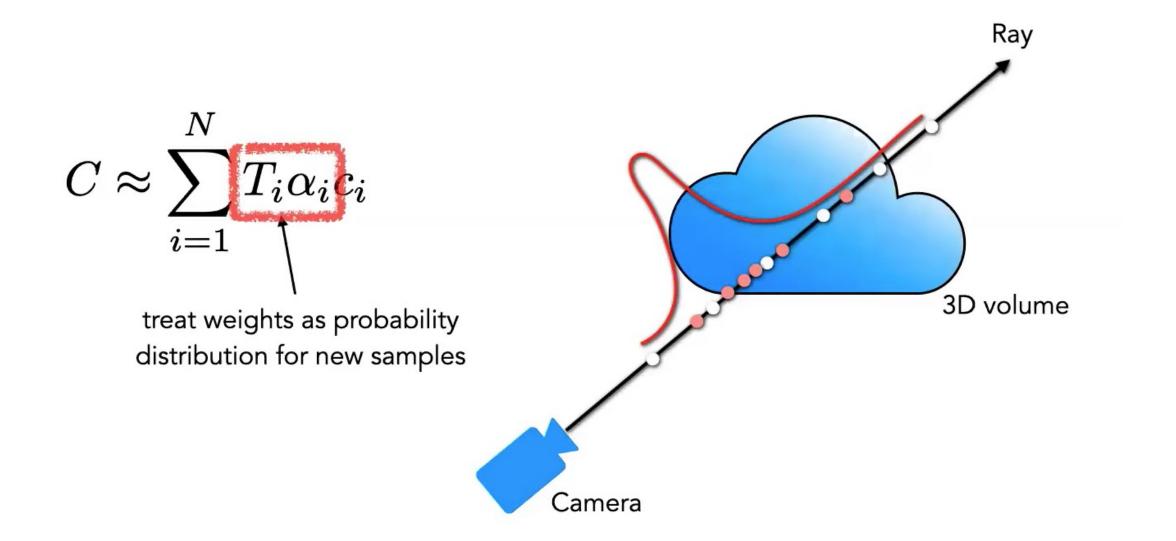


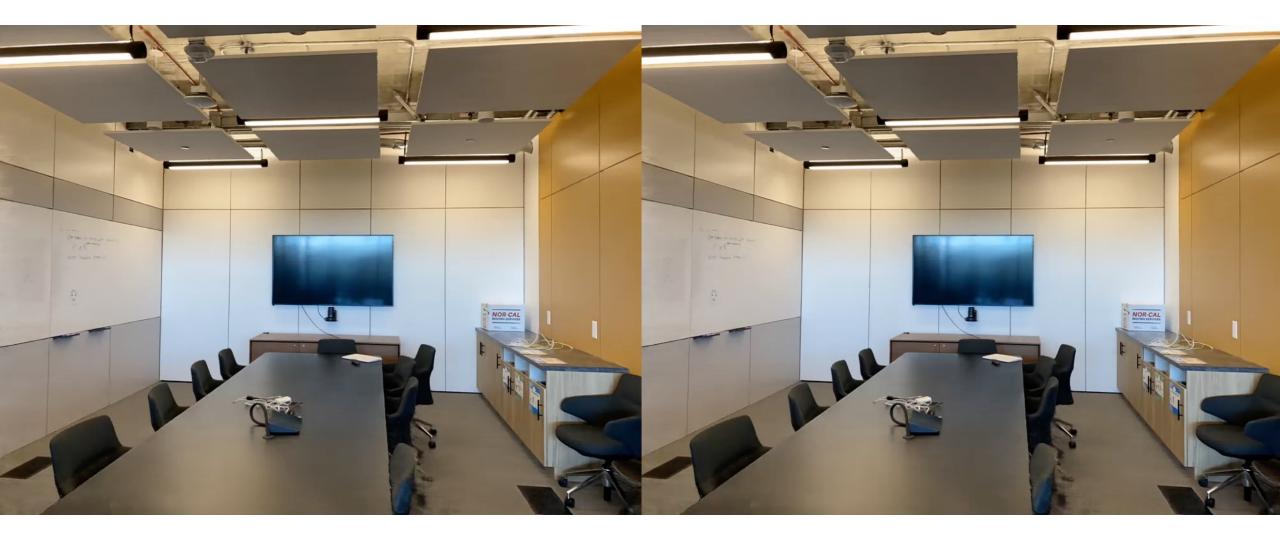




$$\min_{\theta} \sum_{i} || \operatorname{render}_{i}(F_{\theta}) - I_{i} ||^{2}$$

Importance Sampling

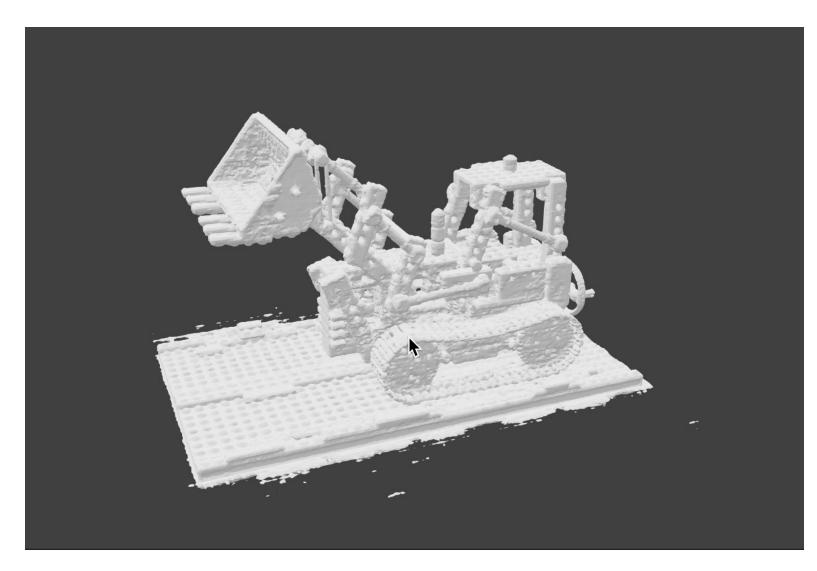




NeRF encodes convincing view-dependent effects using directional dependence

Building 3D models from NeRFs

Apply marching cubes algorithm on NeRF predicted volume density (σ)



Summary

- Represent the scene as volumetric colored "fog"
- Store the fog color and density at each point as an MLP mapping 3D position (x, y, z) to color c and density σ
- Render image by shooting a ray through the fog for each pixel
- Optimize MLP parameters by rendering to a set of known viewpoints and comparing to ground truth images

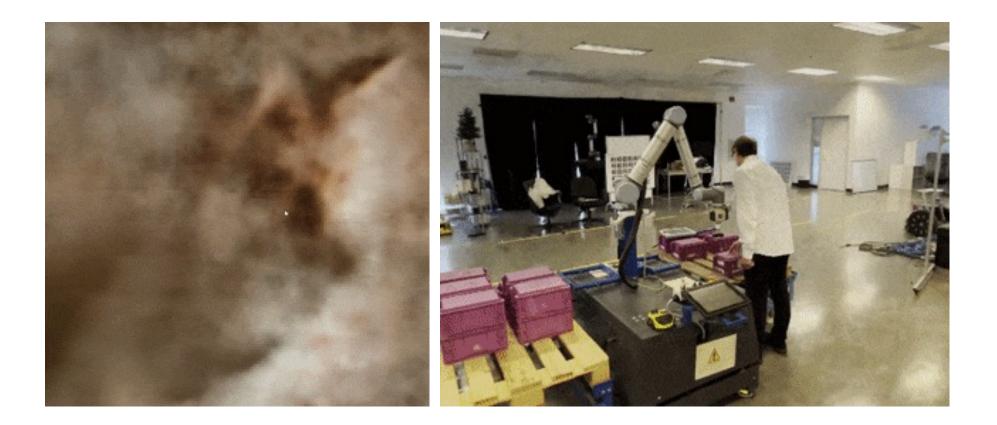
Key limitations of the original NeRF

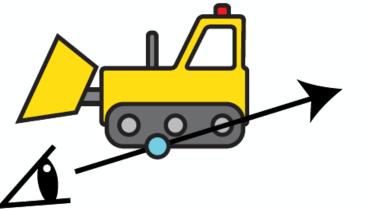
- Very slow in training and inference
- Requires Ground-Truth poses
- Do not generalize to new scenes

Key limitations of the original NeRF

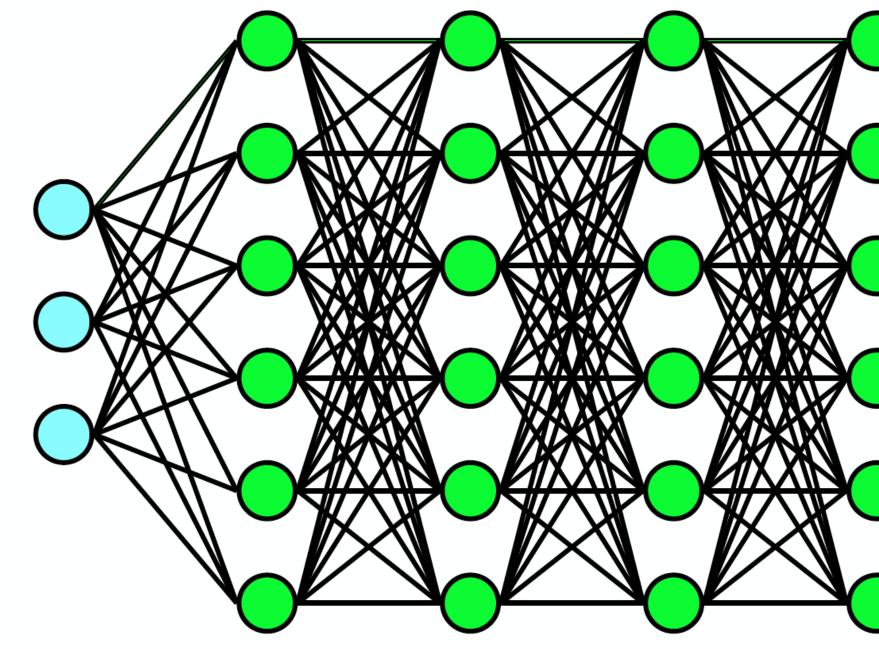
- Very slow in training and inference
- Requires Ground-Truth poses
- Do not generalize to new scenes

Instant NGP: Superfast training and inference with NeRF using multi-resolution hash-table



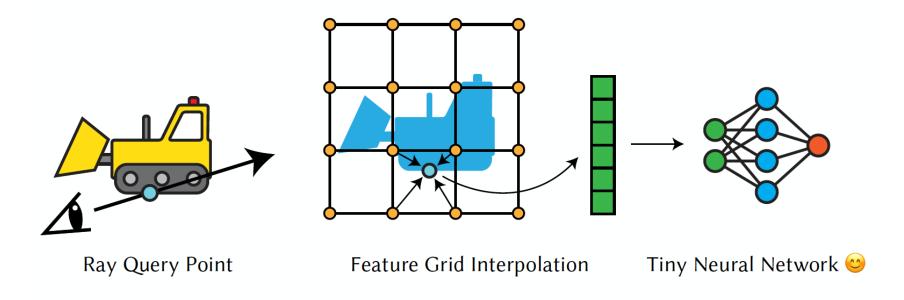


Ray Query Point



Huge Neural Network 😕

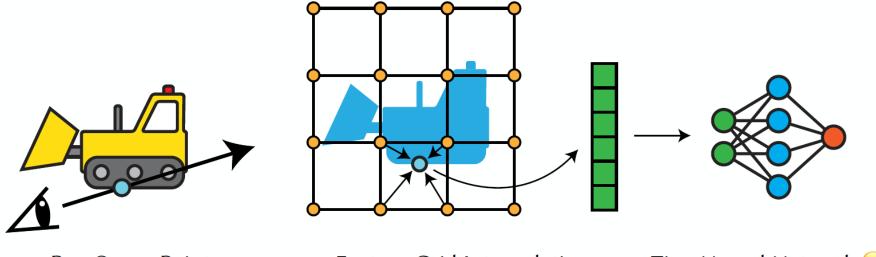
Hybrid representation



Features:

- are also parameters that can be updated while training the NeRF. (slight increase in memory, significantly faster training & inference)
- are individual NeRFs trained on a small section of a scene (for large city-size scene)
- are priors obtained from ConvNets, e.g. VGG-features (used for generalization)

Hybrid representation: It's all about Data Structures!



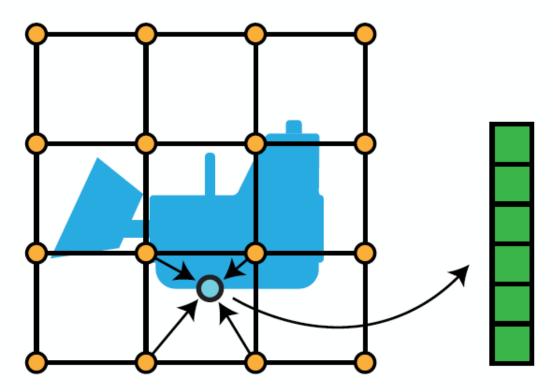
Ray Query Point

Feature Grid Interpolation

Why hybrid representation?

- Reduce the size of neural network -> fast inference & rendering.
- Helps in rendering large scale scenes.
- Helps in generalization.

Uniform Grids



[PIFu (Saito et al.), Neural Volumes (Lombardi et al.), etc]

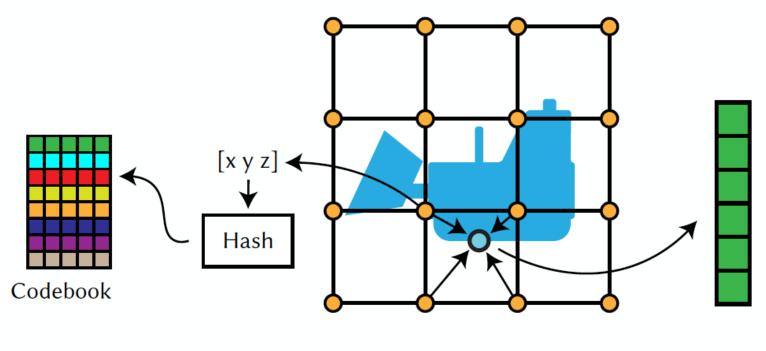
Pros:

- Easy to implement
- Algorithmically fast access [O(1)]
- Established operations like convolutions
- Simple topology

Cons:

- Expensive in memory and bandwidth
- Limited by Nyquist

Hash Grids



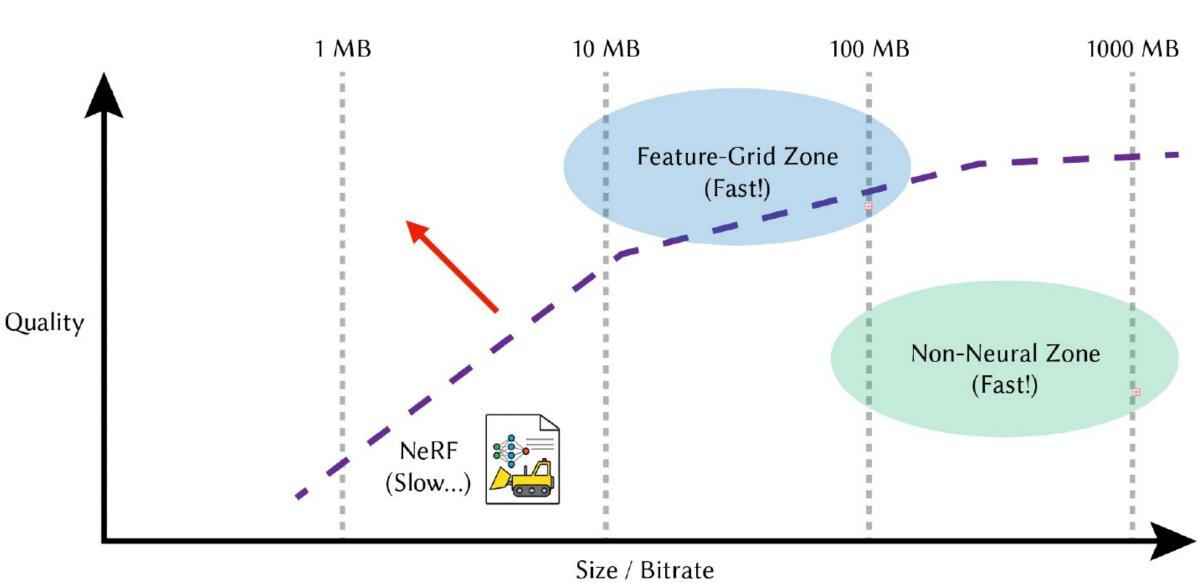
[Instant-NGP (Muller et al.)]

Pros:

- Densely supported
- Disaggregate resolution from memory cost
- No complex data structures
- Performant memory access if codebook is small enough

Cons:

- Multiresolution and large codebooks needed for collision resolution
- Features not spatially local



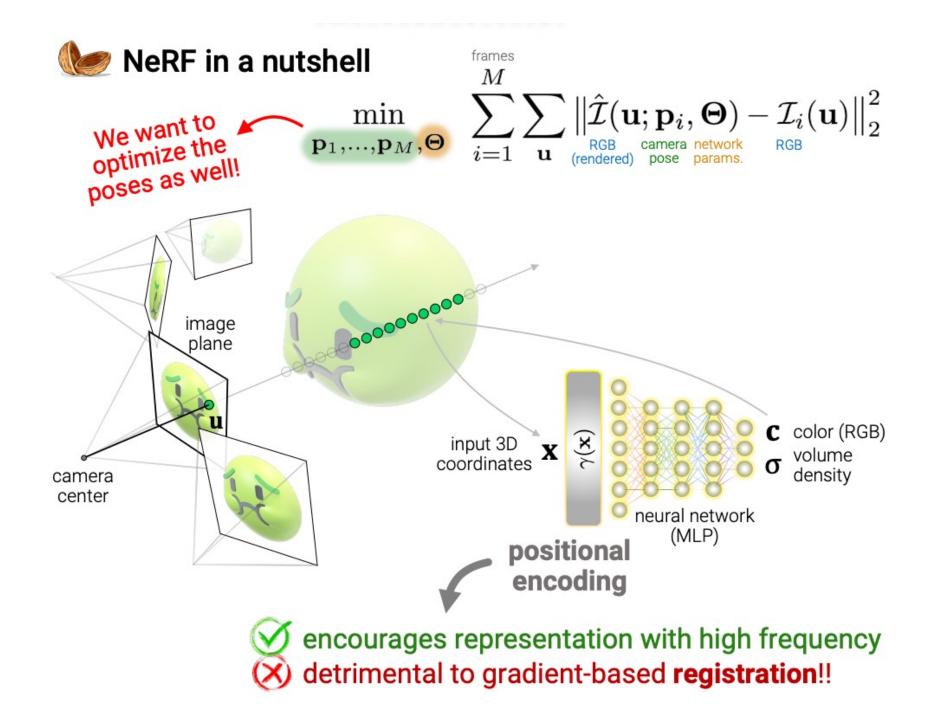
(Log-Scale)

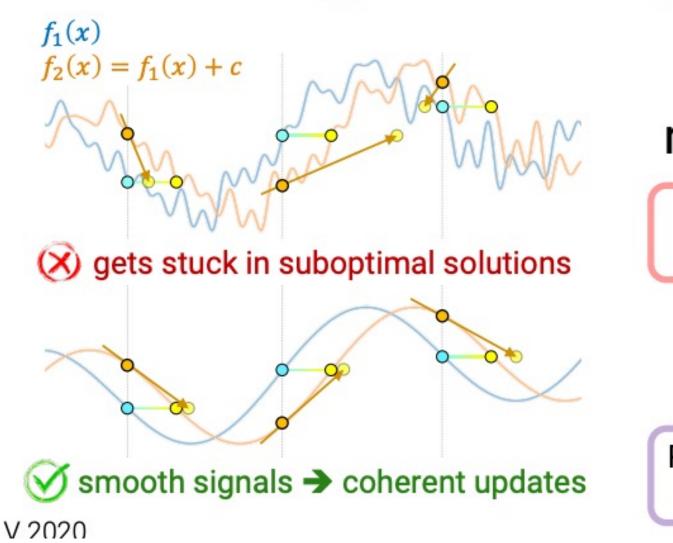
Key limitations of the original NeRF

- Very slow in training and inference
- Requires Ground-Truth poses
- Do not generalize to new scenes

BARF 🗟: Bundle-Adjusting Neural Radiance Fields

IEEE International Conference on Computer Vision (ICCV), 2021 oral presentation





SOLUTION 🕹 : make it <u>coarse-to-fine</u>!

Resolve large pose misalignment & coarse scene representation

> Gradually activate higherfrequency components in positional encoding

Refine granular pose misalignment & high-fidelity scene representation

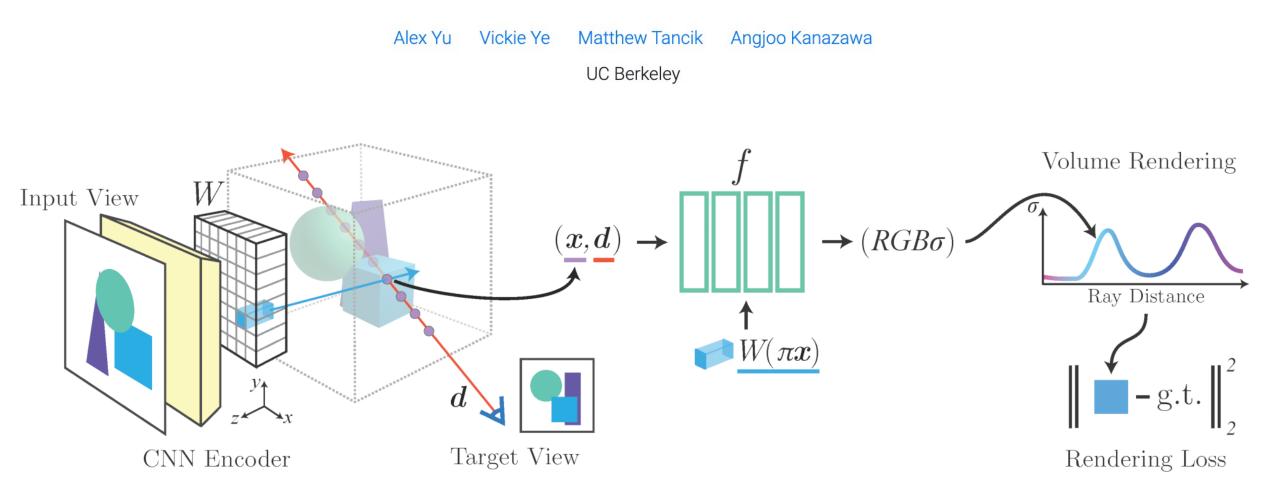
Key limitations of the original NeRF

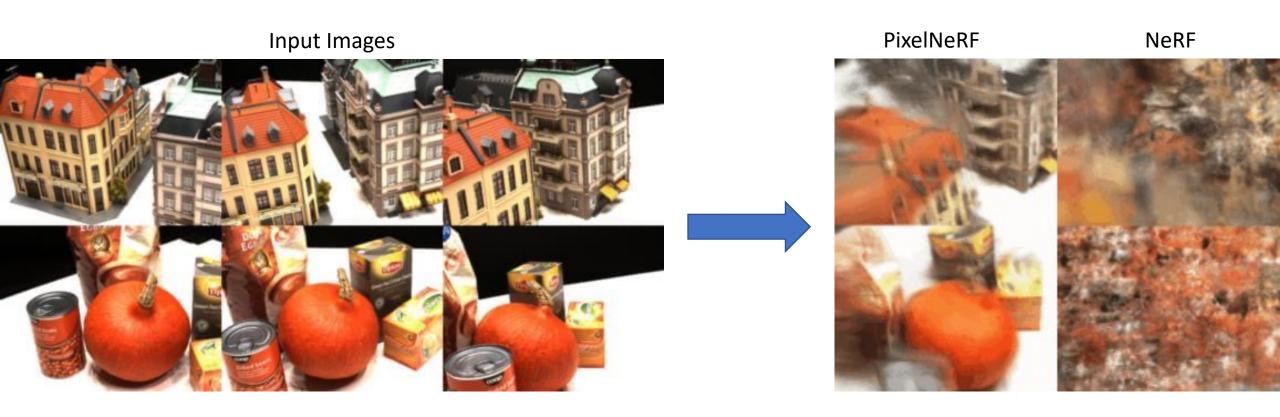
- Very slow in training and inference
- Requires Ground-Truth poses
- Do not generalize to new scenes

pixelNeRF

Neural Radiance Fields from One or Few Images

CVPR 2021





Slide Credits

- "Introduction to Computer Vision", Noah Snavely, Cornell Tech, Spring 2022
- "Understanding and Extending Neural Radiance Field", Jon Barron MIT & Tu Munich Lecture.
- "<u>Neural Fields in Computer Vision</u>", CVRP 2022 Tutorial.
- Shubham Tulsiani, "Learning for 3D Vision", Spring 2022, CMU
- Leo Guibas, JJ Park, "Neural Models for 3D geometry", Spring 2022, Stanford.