Lecture 24:
Neural Radiance Fields (NeRFs)

COMP 590/776: Computer Vision

Instructor: Roni Sengupta



Final-exam focus

Schedule
Date Topic Details Special Dates
Intro & Review
Tues Aug 22 :Entthrlza:: %S:cn;;:::er Vision & Lecture Slide
Thrs Aug 24 I;A;t;:b?lei;/;?\lcva(ltilniz; Algebra, Lecture Slide [pdf] HW1: Maths review (assigned)
Colors & Imaging
Thrs Aug 31 Color & Color Spaces Lecture Slide [pdf]
Tues Sept 5 _ HW1: Maths review (due)
Thrs Sept 7 In-Camera Imaging Pipeline Lecture Slide [pdf]

Image Processing

Tues Sept 12

Filtering - Convolution,
Gradients, & Edges

Lecture Slide [pdf]

e Convolution Operator
* Different Filters

Thrs Sept 14

Frequency domain - Fourier
Analysis

Lecture Slide [pdf]

e Aliasing

Features

* Image Derivatives
* Fourier Transform

Tues Sept 19

Feature Detection (Corner &
Blob)

Lecture Slide [pdf]

e Canny Edge Detection

Thrs Sept 21

Feature Descriptor & Matching
(SIFT)

Lecture Slide [pdf]

e Harris Corner Detector and it’s properties
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Final-exam focus

2D Transformation

2D Transformation: Affine & Homography
Least Square fitting

Estimating Homography

Basic Structures of a CNN

How to train a CNN for classification
Different kinds of object detectors (high-
level)

HW3: Panorama (due Friday Oct
13)
HW4: Deep Learning (assigned)

Tues Sept 26 | 2D Transformations & Fitting Lecture Slide [pdf]
Thrs Sept 28 | RANSAC + Image Blending Lecture Slide [pdf]
Learning & Perception
Tues Oct 3 Recognition Lecture Slide [pdf]
Thrs Oct 5 Detection Lecture Slide [pdf]
Tues Oct 10 Segmentation & Matting Lecture Slide [pdf]
Thrs Oct 12
Tues Oct 17 Generative Models in Computer Lecture Slide [pdf]

Thrs Oct 19

Vision

Online Lecture




Final-exam focL

World->camera->image coord.

Tues Oct 24 | Camera Models + Calibration - 1 Perspective distortion

Thrs Oct 26 Camera Models + Calibration - 2 VaniShing points, lines and planes
Essential & Fundamental Matrix and its properties

Tues Oct 31 Two-view Geometry-1 Normalized 8 point algorithm

ThrsNov2 | Two-view Geometry-2 Depth-disparity relation (stereo)

TuesNov7 | Stereo Image rectification (stereo)

Thrs Nov9 | Multi-view Stereo SfM: ambiguities and minimal view-points for solving.
High-level understanding of different 3D reconstruction

Tues Nov 14 | Structure from Motion techniques and their relative advantage, disadvantage,

Thrs Nov 16 Light & Photometric Stereo and used cases.

Tues Nov 21 Deep Learning for MVS, SfM, PS

Tues Nov 28 NeRFs HW&6: 3D Vision 2 (due)

Thrs Nov 30 Mid-term Review

Tues Dec 5 _ Syllabus: Whole course
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NeRF (Neural Radiance Field) has revolutionized
Computer Vision & Graphics in past 3 years!

Let’s look at some of the stunning results it
produced!



NeRF: Representing Scenes
as Neural Radiance Fields for
View Synthesis
ECCV 2020
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Optimize a NeRF
model

Given a set of sparse views of an 3D reconstruction viewable
object with known camera poses from any angle



NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.







Block-NeRF: Scalable Large
Scene Neural View Synthesis,
CVPR 2022.
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(a) Capture Process (b) Input (c) Nerfie (d) Nerfie Depth

NeRFies: Deformable Neural Radiance Fields, Keunhong Park et al., ICCV 2021.
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Neural 3D Video Synthesis
from Multi-view Video,
Li et al., CVPR 2022




Surface Representation:
Signed Distance Function (SDF)
- implicit representation via level set

° o ¢ Decision
s boundary
e ofimplict

surface
.

e SDF >0
..

SDF(X) = 0, when X is on the surface.
SDF(X) > 0, when X is outside the surface | « - ~——
SDF(X) < 0, when X is inside the surface @& SPF<0

Note: SDF is an implicit representation!
Suitable for neural networks but hard to
import inside existing graphics software.

{c)

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.



Signed Distance Function




Regression of Continuous SDF

N / 117 sor

(X,Y,2)




What is Volume Rendering?

* Assume a cloud of tiny colored particles in 3D. Each particle has a RGB
color and a density.

* Take a pixel on image plane, and shoot a ray from the camera center,
through the pixel and into the ‘cloud of tiny colored particles’

* What should be the color for that pixel?

Ray r(t) =0+ td

Camera



Volumetric formulation for NeRF

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral

Scene is a cloud of colored fog
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Volumetric formulation for NeRF

Ray r(t) = o0+ td

Camera Consider a ray traveling through the scene, and a point
at distance t along this ray. We look up its color ¢(t),
and its opacity (alpha value) L(t)

23
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Volumetric formulation for NeRF

P[no hits before t] = T(t)

But t may also be blocked by earlier points along the
ray. T (t): probability that the ray didn’t hit any particles
earlier.

T (t) is called “transmittance”

24
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Volume rendering estimation: integrating color along a

ray Ray
Rendering model for ray r(t) = o + td. /
n Ly
iy
c = ) Tiac;
/ i=1 \ N
final rendered colors

color along ray weights 3D volume

How much light is blocked earlier along ray:
i—1

a; =1 —exp(—0;0;)

Sight modification: a is not directly stored in the
volume, but instead is derived from a stored volume
density sigma (| ) that is multiplied by the distance

7

between samples delta (I ):

Computing the color for
a set of rays through the
pixels of an image yields
arendered image




Volume rendering estimation: integrating color along a
ray

Rendering model for ray r(t) = o + td.

c~ ) Tiac; S/
final rendered colors tn
color along ray weights

3D volume

How much light is blocked earlier along ray:
i—1
T; = 'H1(1 — a;)
]:

a; =1 —exp(—0;9;)



Volume rendering estimation: integrating color along a
ray

Rendering model for ray r(t) = o + td.

n

c =~ ) Tia;c; /
/ i=1 \ N

final rendered

color along ray weights

colors

How do we store the values of
c, o at each point in space?

How much light is blocked earlier along ray:
i—1 ‘
T; = 'H1(1 —a;)

]:

a; =1 —exp(—0;0;)






Toy problem: storing 2D image data

(x,Y)

Usually we store an image as a
2D grid of RGB color values

29

(r,9,b)
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Toy problem: storing 2D image data

(x,7) -»Iil-» (r,g.b)

What if we train a simple fully-connected
network (MLP) to do thisinstead?

30
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Naive approach fails!

Ground truth image

Neural network output fit
with gradient descent

31
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Problem:

. “Standard” coordinate-based MLPs cannot
represent high frequency functions.

Solution:

. Pass input coordinates through a
high frequency mapping first.

32



Example mapping: “positional encoding”

Sl
sin(v), cos(Vv)

sin(2v), cos(2v)
sin(4v), cos(4v) *III * y
sin(2°1v), cos(2¥ v

33



Positional encoding

Raw encoding of a number x

“Positional encoding” of a number x



Problem solved!

Ground truth image

Neural network output without
high frequency mapping

35

Neural network output with
high frequency mapping
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NeRF = volume rendering +
coordinate-based network
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Include the ray direction in
the input to the MLP -
allows for capturing and

rendering view-dependent

effects (e.g., shiny surfaces)




Modeling view dependent effects

(c) Radiance Distributions

(2,9, 2,0, ) —>III—>(7~, g,b,0)
o e e ——

Spatial Viewing Output Output
location direction F 9 color density
Fully-connected
neural network
9 layers,
256 channels



What do we learn in NeRF?

(CB,y,Z,O ¢ »III_’ T g7b U)
e e/

Spatial Vlewmg Output Output
location direction color density

Fully-connected
neural network
9 layers,
256 channels



DeepSDF Extensions: NeRF

e Coordinate-based modeling of RGB and Densities
Instead of SDFs

v(x)
60

-+ g
v(x)
o > 256 —> 256 —> 256 —> 256 —> 256 —> 256 —> 256 —> 256 256 —> 128 ---» RGB
+
v(d)

24

Mildenhall et al. 2020



Training NeRFs

Ray Distance
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Importance Sampling

Ray

treat weights as probability 3D volume

distribution for new samples
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NeRF encodes convincing view-dependent
effects using directional dependence




Building 3D models from NeRFs

Apply marching cubes algorithm on NeRF predicted volume density (o)




Summary

* Represent the scene as volumetric colored “fog”

* Store the fog color and density at each point as an MLP
mapping 3D position (X, vy, z) to color c and density o

* Render image by shooting a ray through the fog for each
pixel

* Optimize MLP parameters by rendering to a set of known
viewpoints and comparing to ground truth images



Key limitations of the original NeRF

* Very slow in training and inference
* Requires Ground-Truth poses
* Do not generalize to new scenes



Key limitations of the original NeRF

* Very slow in training and inference
* Requires Ground-Truth poses
* Do not generalize to new scenes



Instant NGP: Superfast training and inference with NeRF using
multi-resolution hash-table




/” \\\'47; 4\\\ II/A\\ ll/;
C 41/

'I/ 'I/

,\» 9, /“\ W 4// \» 4//

4\\ AN 4\‘ \/ '/; 4\‘ N/ '/;

\0 ‘9 Ki7 ‘9 ’o' N
.; 00»<00 00><00
/'v& A'/ \‘L A'/ \‘L A'/ \‘L

V[' 7\ ‘\V V[' A\ ‘\V V[‘ 4 ‘\ ‘\V

A

A ‘ ‘\\ "Ir §\‘\\ Ir «\ \ Ir «\ \
Ray Query Point \ ‘/, A\\ 'A AN ‘/'A \\'
’ \‘\ ‘\\\ /I,‘\\\

Huge Neural Network &



Hybrid representation

Ray Query Point Feature Grid Interpolation Tiny Neural Network @
Features:

e are also parameters that can be updated while training the NeRF. (slight increase in memory, significantly
faster training & inference)

« areindividual NeRFs trained on a small section of a scene (for large city-size scene)

e are priors obtained from ConvNets, e.g. VGG-features (used for generalization)

64



Hybrid representation: It’s all about Data Structures!

; -

Ray Query Point Feature Grid Interpolation Tiny Neural Network @

Why hybrid representation?
- Reduce the size of neural network -> fast inference & rendering.

- Helps in rendering large scale scenes.
- Helps in generalization.

65



Uniform Grids

Pros:

Easy to implement

Algorithmically fast access [O(1)]
Established operations like convolutions
Simple topology

Cons:

e Expensive in memory and bandwidth
e Limited by Nyquist

[PIFu (Saito et al.), Neural Volumes (Lombardi et al.), etc]
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Hash Grids

Pros:

e Densely supported

o Disaggregate resolution from
memory cost

e No complex data structures

o Performant memory access if
codebook is small enough

\

Cons:

Codebook o Multiresolution and large codebooks

needed for collision resolution
e Features not spatially local

[Instant-NGP (Muller et al.)]

67



1 MB 10 MB 100 MB 1000 MB

Feature-Grid Zone = o e e =
P

(Fast!L =
P

’

)
V4
Quality 7’
7 Non-Neural Zone
7 (Fast!)

Size / Bitrate
(Log-Scale)



Key limitations of the original NeRF

* Very slow in training and inference
* Requires Ground-Truth poses
* Do not generalize to new scenes

BARF @: Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin©  Wei-ChiuMa®  Antonio Torralba®  Simon Lucey = @
&

@Carnegie Mellon University “Massachusetts Institute of Technology “The University of Adelaide

IEEE International Conference on Computer Vision (ICCV), 2021
oral presentation
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falx) = fi(x) +c fg , SOLUTION @ :
WA A make it coarse-to-fine!

Resolve large pose misalignment &

(X) gets stuck in suboptimal solutions coarse scene representation

\o\ Gradually activate higher-
®—0

| frequency components in
\\ i ’ positional encoding
O 3
- : Refine granular pose misalignment &
) smooth signals = coherent updates high-fidelity scene representation

V2020



Key limitations of the original NeRF

* Very slow in training and inference
* Requires Ground-Truth poses
* Do not generalize to new scenes



pixelNeRF

Neural Radiance Fields from One or Few Images
CVPR 2021

Alex Yu Vickie Ye Matthew Tancik  Angjoo Kanazawa

UC Berkeley

f Volume Rendering

— (RGBo) /_\‘/\/\

Ray Distance

Input View

@ V() ’oo

\\/ :‘j\x | ” ._g.t'

CNN Encoder Target View Rendering Loss



NeRF

PixeINeRF

Input Images




Slide Credits

* “Introduction to Computer Vision”, Noah Snavely, Cornell Tech, Spring
2022

* “Understanding and Extending Neural Radiance Field”, Jon Barron MIT
& Tu Munich Lecture.

e “Neural Fields in Computer Vision”, CVRP 2022 Tutorial.
e Shubham Tulsiani, “Learning for 3D Vision”, Spring 2022, CMU

* Leo Guibas, JJ Park, “Neural Models for 3D geometry”, Spring 2022,
Stanford.



https://neuralfields.cs.brown.edu/cvpr22

