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Overview

* Linear Algebra Review
* Very important for 3D vision
* Also important for Deep Neural networks
* My fav book: “Introduction to Linear Algebra” by Gilbert Strang

* Multivariate Calculus Review
* Important for image processing
* Also for designing loss functions in deep neural networks

* Probability Review
* Forms the core of Machine Learning



Overview

* Linear Algebra Review



Vector and Matrix Products
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Vector and Matrix Products

(l{bl

(l:'zrbl

(ZT bl

m

(l{bg

(lgbg

aT bQ

m

T
a%bp
ay b,

T
abp

m




Transpose

The transpose of a matrix results from “flipping” the rows and columns. Given a matrix
A € R™*" its transpose, written AT € R™¥™_ is the n X m matrix whose entries are given

by
(AT = Ay
° (AT)T = A
° (AB)T — BT AT
° (A—I—B)T:AT—l—BT



Symmetric Matrix

A square matrix A € R™" is symmetric if A = A", It is anti-symmetric if A = —A”.

It is easy to show that for any matrix A € R™*", the matrix A + AT is symmetric and the

matrix A — A’ is anti-symmetric. From this it follows that any square matrix A € R™ " can
be represented as a sum of a symmetric matrix and an anti-symmetric matrix, since

IR P DU
A= (A4 AT)+(A— AT)
101 1) 0 1 -2
1 2 0/ 7? 1.0 3|7




Trace

The trace of a square matrix A € R™", denoted tr(A) (or just trA if the parentheses are
obviously implied), is the sum of diagonal elements in the matrix:

trA = Zn: A
i=1

o For A c R™™ trA =trAl.

e For A, Be R tr(A+ B) = trA + trB.

o For A e R™™" t e R, tr(tA) =t trA.

e For A, B such that AB is square, trAB = trBA.

e For A, B,C such that ABC' is square, trABC = trBC' A = trC AB, and so on for the
product of more matrices.



Norm

A norm of a vector ||z|| is informally a measure of the “length” of the vector. For example,
we have the commonly-used Euclidean or ¢ norm,

n

lzllo = \ >t

Note that ||z|]3 = 2’ x.

More formally, a norm is any function f : R" — R that satisfies 4 properties:
1. For all x € R", f(x) > 0 (non-negativity).

2. f(xz) =0 if and only if x = 0 (definiteness).

3. For all x € R™, t € R, f(tx) = |t|f(z) (homogeneity).

4. For all z,y € R, f(z+vy) < f(x) + f(y) (triangle inequality).



Norm

Other examples of norms are the /1 norm,

n
lzll =) lail
i=1

and the /., norm,
2] = max; |2;].

In fact, all three norms presented so far are examples of the family of ¢, norms, which are
parameterized by a real number p > 1, and defined as

n 1/p
el = (zmlp) |
1=1

Norms can also be defined for matrices, such as the Frobenius norm,

m

\ Z ZAgj — /tr(AT A).

1AllF =




Orthogonality

Two vectors z,y € R™ are orthogonal if 2Ty = 0. A vector x € R" is normalized if
|z|l2 = 1. A square matrix U € R"*" is orthogonal (note the different meanings when
talking about vectors versus matrices) if all its columns are orthogonal to each other and are
normalized (the columns are then referred to as being orthonormal).

U'U=1=UU"



Linear Independence

A set of vectors {x1, 29, ...2,} CR™ issaid to be (linearly) independent if no vector can
be represented as a linear combination of the remaining vectors. Conversely, if one vector
belonging to the set can be represented as a linear combination of the remaining vectors,
then the vectors are said to be (linearly) dependent. That is, if

n—1
Tp = § ;T4
i=1
for some scalar values aq,...,a,_1 € R, then we say that the vectors xq, ..., z, are linearly

dependent; otherwise, the vectors are linearly independent.



Rank of a matrix

Rank of a matrix A is the maximal number of linearly independent columns or rows.

A matrix is full ranked, if all of its columns/rows are linearly independent.

e For A € R™" rank(A) < min(m,n). If rank(A) = min(m,n), then A is said to be
full rank.

e For A € R™" rank(A) = rank(A7").
e For Ac R™" B e R" rank(AB) < min(rank(A), rank(B)).
e For A, B € R"™" rank(A+ B) < rank(A) + rank(B).



Inverse
ATA=T=AA"",

In order for a square matrix A to have an inverse A=!, then A must be full rank. We will
soon see that there are many alternative sufficient and necessary conditions, in addition to
full rank, for invertibility.

The following are properties of the inverse; all assume that A, B € R"*™ are non-singular:

o (A H =4
e (AB)"'=B"1A"1

o (A™HT = (AT)~L. For this reason this matrix is often denoted A7

As an example of how the inverse is used, consider the linear system of equations, Ax = b
where A € R™", and x,b € R™. If A is nonsingular (i.e., invertible), then 2 = A~'b. (What
if A€ R™ ™ is not a square matrix? Does this work?)



Determinant

How do we find determinant
of a nxn matrix?

See Leibniz formula for
determinants
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Determinant of 2x2 matrix is the area of
the parallelogram formed by the column
vectors of the matrix.

A11A92033 + A12023031 + Q1302132
—(a11023032 — Q120210433 — A13022031

ri+r3

Determinant of 3x3 matrix is the volume of
a parallelopiped formed by the 3 column
vectors of the matrix
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Sign indicates whether the transformation
preserves or reverse orientation.
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https://en.wikipedia.org/wiki/Leibniz_formula_for_determinants
https://en.wikipedia.org/wiki/Leibniz_formula_for_determinants

Eigenvalue and Eigenvectors

Given a square matrix A € R™*", we say that A € C is an etgenvalue of A and x € C" is
the corresponding eigenvector? if

= Ay @l

(M —-A)x=0, x#0.

(AL — A)| =0. e (X1 —X)(A2 —A)--- (A —A),  Characteristic polynomial

AKX = XN )  c RV = i Fo = En : A:dlag()\l,,)\n)

If the eigenvectors of A are linearly independent, then the matrix X will be invertible, so
A= XAX"!. A matrix that can be written in this form is called diagonalizable.



Eigenvalue and Eigenvectors

e The trace of a A is equal to the sum of its eigenvalues,

=l

e The determinant of A is equal to the product of its eigenvalues,

Al =]
=



Eigenvalue and Eigenvectors

Given a square matrix A € R™*", we say that A € C is an etgenvalue of A and x € C" is
the corresponding etgenvector if
Al = Ny =l (I M)

0 I

In this shear mapping the red arrow changes

direction, but the blue arrow does not. The blue

; W TmE AP r arrow is an eigenvector of this shear mapping
” because it does not change direction, and since
its length is unchanged, its eigenvalue is 1.

()06 N)6)

[a,0] is an eigenvector for any value of a.



https://en.wikipedia.org/wiki/Shear_mapping

Singular Value Decomposition

nXd

T

/i

A= E oU;V; .
i=1

U and V are orthonormal matrices,
i.e. UTU=Il and VTV=/

A=UDV?
D 724
TXTr r X d
U
nxr

D is a diagonal matrix, where each
diagonal element is known as singular
values. D;=0;

r is the rank of the matrix
r <= min (n,d)



Consuption (liters)

Singular Value Decomposition A=UDVT A=) ouv].
g=1

n X d __IlnXxr

10 A

D | 728
rXTr rxd

Consider matrix A as collection of ‘'n’ d-dimensional vectors a..
Let us consider v as unit vector in d-dimensional space.

Then |a,.v| is the magnitude of project of each data point a;onto v.
|A.v|?is the sum of the squared distances of all the data points to the line v.

Vi = arg max |AV|. Finding v, indicajces the d.irecti.on ir\ which the data is most
lv[=1 spread. -> Most informative direction of the data

-15 -10 -5 0 5
Maximal temperature (°C)

0 15
https://towardsdatascience.com/simple-svd-algorithms-13291ad2eef2



Singular Value Decomposition

Ax = USVT x Change of basis
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(rotation)

(scale)

(rotation)

Applying A to any vector x can be visualized as...

https://jonathan-hui.medium.com/machine-learning-singular-value-
decomposition-svd-principal-component-analysis-pca-1d45e885e491




Eigen-decomposition vs SVD
A = P.D.P1 A=U.DVT

* The vectors in the eigen-decomposition matrix P are not necessarily orthogonal, so the change of basis isn't a simple
rotation. On the other hand, the vectors in the matrices U and I/ in the SVD are orthonormal, so they do represent
rotations (and possibly flips).

* In the SVD, the nondiagonal matrices U and V are not necessarily the inverse of one another. They are usually not
related to each other at all. In the eigen decomposition the nondiagonal matrices P and P~! are inverses of each other.

* The SVD always exists for any sort of rectangular or square matrix, whereas the eigen decomposition can only exists
for square matrices, and even among square matrices sometimes it doesn't exist (eigen vectors need to be linearly
independent).

They are same when A is positive semi-definite matrix, i.e.

An n X n symmetric real matrix M is said to be positive-semidefinite or non-negative-definite if x' Mx > 0 for all x in R". Formally,

M positive semi-definite <=  x' Mx > 0for all x € R"




Overview
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Gradient

Suppose that f: R™*" — R is a function that takes as input a matrix A of size m x n and
returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of

partial derivatives, defined as:

Af(A) af(4) . 9f(A)
dA11 OA1a dA1,
of(A) of(A)  of(A)
VAf(A> c R™xn — 0A21 0A22 0Aan,
f(A) of(A)  of(A)
25 0Am1 OAm2 OAmn o]
i.e., an m X n matrix with
of(A)
(VAf(A)>w =



Gradient

Oy y is scalar _ _ .
et =  What is the dimension?
ox x is a nx1 dim vector
Types of matrix derivative
Types Scalar Vector Matrix
0 oY
Scalar 99 B_Y -
or ox oz
0 0
Vector 9% b
ox ox
0
Matrix 99
0X

0 tr(X)

—p  \Nhat is the result?

0X
Otr (XT AX)
0X

—  =———p \Nhat is the result?




Hesslan

Suppose that f: R" — R is a function that takes a vector in R" and returns a real number.
Then the Hesstan matrix with respect to o, written V2 f(z) or simply as H is the n x n

matrix of partial derivatives,

Vif(a) € RN =

Ff@) 8 f@)
8x% 0x10x9
Pflx) 9f(x)
Oxro0x1 8m%
Ffla) i)
0xrn0x1 0 0x9

Note that the Hessian is always symmetric, since

0*f(z)
(91177;(9333' N &Eﬁxz

0*f ()

& f(x) 7

0x10x,
9% f(x)

0001y,
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Conditional Probability

Chain Rule

Let B be an event with non-zero probability. The conditional probability of any

event A given B is defined as

P(AN B)
P(A|B) = .
P(B)
Let Sy,..., Sk be events, P(S;) > 0. Then the chain rule states that:

P(SlﬂSQQ"'ﬂSk)
— P(SI)P(SZ|S1)P(S3,|SQ M Sl) s P(Sk|51 NSeN---N Sk—l)

Inde pPeN dence  Two events are called independent if P(A N B) = P(A)P(B), or equivalently,
P(A | B) = P(A). Intuitively, A and B are independent means that observing B does

not have any effect on the probability of A.

Bayes Rule P(A| B)

P(B| A)P(A)

P(B)




Random Variables

Consider an experiment in which we flip 10 coins, and we want to know the
number of coins that come up heads. Here, the elements of the sample space (2 are
10-length sequences of heads and tails. For example, we might have
wo=(H,H,T,H,T,H,H,T,T,T) € Q. However, in practice, we usually do not
care about the probability of obtaining any particular sequence of heads and tails.
Instead we usually care about real-valued functions of outcomes, such as the number
of heads that appear among our 10 tosses, or the length of the longest run of tails.

These functions, under some technical conditions, are known as random variables.



Random Variables

Example: In our experiment above, suppose that X (w) is the number of heads which
occur in the sequence of tosses w. Given that only 10 coins are tossed, X (w) can take
only a finite number of values, so it is known as a discrete random variable. Here, the
probability of the set associated with a random variable X taking on some specific
value kis P(X = k) i= P{w s X{w) =&}



Probability Distribution Function (PDF) &
Cumulative Distribution function (CDF)

By using this function, one can calculate the probability that X takes on a value

between any two real constants a and b (where a < b).

Properties:

e ( = Fx(CU) < I
® limx%_oo FX(m) — 0-
® 11m$_>+oo FX(ZE) — ]_.

o x <y = Fx(z) < Fx(y).




Discrete random variables

e X ~ Bernoulli(p) (where 0 < p < 1): the outcome of a coin flip (H = 1,T = 0)
for a coin that comes up heads with probability p.
D if = 1
p(m)_{l—p, ife =10

e X ~ Binomial(n, p) (where 0 < p < 1): the number of heads in n independent
flips of a coin with heads probability p.

Zr

p(z) = (n> -p*(L—p)""

e X ~ Geometric(p) (where p > 0): the number of flips of a coin until the first
heads, for a coin that comes up heads with probability p.

p(x) =p(1l—p)""
e X ~ Poisson(\) (where A > 0): a probability distribution over the nonnegative

integers used for modeling the frequency of rare events.

AT
:e/\—

p(z) i



Continuous random variables

e X ~ Uniform(a,b) (where a < b): equal probability density to every value

between a and b on the real line.

b—a

(U otherwise

f(x):{L ifa<z<b

e X ~ Exponential(A) (where A > 0): decaying probability density over the

nonnegative reals.

Ae ™ ifz >0
f(@) = {O, otherwise

e X ~ Normal(u,o?): also known as the Gaussian distribution

i) (z—p)?

fl@) = ——e w2




Expectation

Suppose that X is a discrete random variable with PMF px(z) and g: R — R is an
arbitrary function. In this case, g(X) can be considered a random variable, and we

define the expectation or expected value of g(X) as

Elg(X)= ) g(=)px().

zeVal(X)

If X is a continuous random variable with PDF fx(z), then the expected value of
g(X) is defined as

Elo(x)] = [ (e

(0.@)



Variance

The variance of a random variable X is a measure of how concentrated the

distribution of a random variable X is around its mean. Formally, the variance of a
random variable X is defined as Var[X] = E[(X — E[X])?].

E[(X — E[X])*]

= E[X? - 2E[X|X + E[X]?]

= E[X?] — 2E[X|E[X] + E[X]?
= E[X?] - E[X]?




Covariance

We can use the concept of expectation to study the relationship of two random

variables with each other. In particular, the covariance of two random variables X
and Y is defined as

Cov[X,Y] = E[(X - E[X])(Y — E[Y])]
Using an argument similar to that for variance, we can rewrite this as

CovX, Y] = E[(X — E[X])(Y - E[Y])]

e Var| X +Y] =Var(X| + Var[Y] +2Cov[X,Y].
o If X and Y are independent, then Cov[X,Y] = 0.
e If X and Y are independent, then E[f(X)g(Y)] = E[f(X)]|E[g(Y)].



Slide Credits

e Stanford CS 229, Linear Algebra Review, Zico Kolter.
e Stanford CS 229, Probability Review, Maleki & Do.



https://cs229.stanford.edu/section/cs229-linalg.pdf
https://cs229.stanford.edu/section/cs229-prob.pdf

