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Many Options:
- Mean Filtering
- Gaussian Filtering
- Bilateral Filtering

Laplacian Filtering

Filters



Mean vs. Gaussian filtering



Sharpen filter
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Edge Aware Smoothing: Gaussian vs Bilateral

Smooths everything nearby 
with similar intensity

Smooths everything nearby 
(even edges)



Aliasing
• Images are Signals in 2D
• Signals contain low frequency (smooth regions) and high frequency 

(sharp changes in intensity)
• To accurately downsample a signal/image, # of samples >= 2*highest 

frequency in the signal. (Nyquist Rate!)
• If your task is to downsample by 1/4, you do not have enough 

samples, thus the downsampled image is inaccurate especially in 
terms of high frequency components.



Solution = 
Gaussian pre-
filtering

• Solution: filter 
the image, then 
subsample blur

F0   H*

subsample blur subsample …
F1

F1   H*

F2F0



Gaussian Pyramids:

- Efficient representation for searching and 
sorting through a large (millions) volume of 
images.

- Very useful in image retrieval

- A powerful generic concept of representing 
images with hierarchical features capturing 
high-level details to low-level structures.
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Partial derivatives with convolution

𝜕	𝑓(𝑥, 𝑦)
𝜕𝑥

= lim
!→#

𝑓 𝑥 + 𝜖, 𝑦 − 𝑓(𝑥, 𝑦)
𝜖

Remember:

Image is function f(x,y)

Approximate: 𝜕	𝑓(𝑥, 𝑦)
𝜕𝑥

≈
𝑓 𝑥 + 1, 𝑦 − 𝑓(𝑥, 𝑦)

1

Another one: 𝜕	𝑓(𝑥, 𝑦)
𝜕𝑥

≈
𝑓 𝑥 + 1, 𝑦 − 𝑓(𝑥 − 1, 𝑦)
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Partial Derivatives
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Gradient magnitude 



Gradient Orientation

all the gradients
Source: D. Fouhey



The gradient points in the direction of most rapid increase 
in intensity

Image gradient
• The gradient of an image: 

•  

The gradient direction is given by
Source: Steve Seitz

The edge strength is given by the gradient magnitude
• How does this direction relate to the direction of the edge?



Quiz time …
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Edge detection

• Convert a 2D image into a set of curves
– Extracts salient features of the scene
– More compact than pixels



Origin of edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity



Images as functions…

• Edges look like steep cliffs



Characterizing edges
• An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivativeSource: L. Lazebnik



Image Gradient & Edges

Why is there structure at 1 and not at 2?

1
2

Source: D. Fouhey

Direction of image gradients



Effects of noise
• Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz



Solution: smooth first

• To find edges, look for peaks in )( gf
dx
d

*

f

g

f * g

)( gf
dx
d

*

Source: S. Seitz



Noise in 2D

Noisy Input Ix via [-1,0,1] Zoom

Source: D. Fouhey



Noise + Smoothing

Smoothed Input Ix via [-1,0,1] Zoom

Source: D. Fouhey



How many convolutions here? 

f

g

f * g

)( gf
dx
d

*

can we reduce this?



Derivative theorem of convolution

• This saves us one operation:



Derivative of Gaussian filter

* [1 -1]    = 



2D edge detection filters

Gaussian
derivative of Gaussian (x)



Derivative of Gaussian filter

x-direction y-direction



The Sobel operator
• Common approximation of derivative of Gaussian

-1 0 1

-2 0 2
-1 0 1

1 2 1

0 0 0
-1 -2 -1

• The standard definition of the Sobel operator omits the 1/8 term
– doesn’t make a difference for edge detection
– the 1/8 term is needed to get the right gradient magnitude



Sobel operator: example

Source: Wikipedia





Example

original image

Demo:  http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/ Image credit: Joseph Redmon

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/


Finding edges

where is the edge?

smoothed gradient magnitude



Get Orientation at Each Pixel
• Get orientation (below, threshold at minimum gradient magnitude)

theta = atan2(gy, gx)

0

360

Gradient orientation angle



• Check if pixel is local maximum along gradient direction
• requires interpolating pixels p and r

Non-maximum supression



Before Non-max Suppression



After Non-max Suppression



Still noise exists!



Thresholding edges
• Still some noise
• Only want strong edges
• 2 thresholds, 3 cases

• R > T: strong edge
• R < T but R > t: weak edge
• R < t: no edge

• Strong edges are edges!
• Weak edges are edges 

iff they connect to strong
• Look in some neighborhood

(usually 8 closest)



Canny edge 
detector

1. Filter image with derivative of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):
• Define two thresholds: low and high
• Use the high threshold to start edge curves and 

the low threshold to continue them

Source: D. Lowe, L. Fei-Fei, J. Redmon



Canny edge detector

• Our first computer vision pipeline!
• Still a widely used edge detector in computer vision

• Depends on several parameters:

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 8:679-714, 1986. 

: width of the Gaussian blur

high threshold
low threshold

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Canny edge detector

Canny with Canny with original 

• The choice of         depends on desired behavior
– large       detects “large-scale” edges
– small       detects fine edges

Source: S. Seitz
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Salvador Dali
“Gala Contemplating the Mediterranean Sea, 
which at 30 meters becomes the portrait 
of Abraham Lincoln”, 1976





A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.

Fourier Series: Any univariate function can be rewritten as a 
weighted sum of sines and cosines of different frequencies. 



A sum of sines
• Our building block:
• 

• Add enough of them to get any signal 
f(x) you want!

•  A = Amplitude (strength/intensity)
• ω = frequency (how fast or slow)
• φ = phase (starting position of the 
sinusoid)

)+fwxAsin(



Time and Frequency

• !"#$%&!'('g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)



Time and Frequency

• !"#$%&!'('g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +



Frequency Spectra

• !"#$%&!'('g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +



Frequency Spectra

• Usually, frequency is more interesting than the phase
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Frequency Spectra



Fourier Transform
•We want to understand the frequency w of our signal.  So, let’s 
reparametrize the signal by w instead of x:

)+fwxAsin(

f(x) F(w)Fourier 
Transform

F(w) f(x)Inverse Fourier 
Transform

For every w from 0 to inf, F(w) holds the amplitude A 
and phase f of the corresponding sine  

• How does F hold both? 

)()()( www iIRF +=
22 )()( ww IRA +±=

)(
)(tan 1

w
wf

R
I-=

We can always go back:



FT: Just a change of basis

.

.

.

* =

M * f(x) = F(w)

F x N N x 1 F x 1



IFT: Just a change of basis

.

.

.

* =

M-1 * F(w) = f(x)

N x F F x 1 N x 1



Finally: Scary Math

• …not really scary:
• is hiding our old friend:

• So it’s just our signal f(x) times sine at frequency w
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)+fwxsin(
phase can be encoded

by sin/cos pair



Discrete Fourier Transform in 2D

Discrete Fourier Transform
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Discrete Fourier Transform (DFT) in 2D

Credits: https://vincmazet.github.io/bip/filtering/fourier.html



Amplitude Spectrum of DFT

Images

Amplitude 
spectrum

horizontal change (vertical stripes) in image -> frequency response in x-axis 



Amplitude Spectrum of DFT

Amplitude spectrum indicates distribution of edge direction in the images



Filtering & Frequency Domain

Low pass Filtering with Gaussian Filter High pass Filtering with Laplacian Filter



The importance of Phase

Slide: Andrew Zisserman

Amplitude doesn’t carry the image 
information. Infact the phase is one that 
contains image information and is very 
important for reconstruction.



The Convolution Theorem
• The Fourier transform of the convolution of two 

functions is the product of their Fourier transforms

• The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two inverse 
Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg =*

][F][F][F 111 hggh --- *=



2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|



Gaussian

Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?



Box Filter

Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?



Fourier Transform pairs

What is the best low pass filter?

Causes aliasing!



Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Application: Hybrid Images (in HW)



Application: Hybrid Images
Gaussian Filter

Laplacian Filter

•  A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

Gaussianunit impulse Laplacian of Gaussian

http://cvcl.mit.edu/hybridimage.htm


Fourier and frequency is 18th century stuff! 
I wanna learn Deep Learning, train neural nets, 

beat the benchmark by 5% and publish in CVPR!



Slide Credits

• CS5670, Introduction to Computer Vision, Cornell Tech, by Noah 
Snavely.

• CS 194-26/294-26: Intro to Computer Vision and Computational 
Photography, UC Berkeley, by Alyosha Efros.

• CS 15-463, 663, 862, CMU, by Computational Photography, Ioannis 
Gkioulekas.

https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://inst.eecs.berkeley.edu/~cs194-26/
http://graphics.cs.cmu.edu/courses/15-463/2018_fall/


Suggested Reading

• Fourier Transform in 5 minutes (video)
• Szeliski, Chapter 3.1, 3.2, 3.3, 3.4, 3.5
• Forsyth & Ponce, Chapter 4, Chapter 5.1, 5.2, 5.3

https://www.youtube.com/watch?v=JciZYrh36LY

