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Filters

Many Options:

- Mean Filtering

- Gaussian Filtering
- Bilateral Filtering

Blur
Linear Filtering: e
inear Filtering:
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Original

Laplacian Filtering

Sharpening



Mean vs. Gaussian filtering




Sharpen filter
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Edge Aware Smoothing: Gaussian vs Bilateral

Smooths everything nearby Smooths everything nearby
(even edges) with similar intensity
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Aliasing
* Images are Signals in 2D

* Signals contain low frequency (smooth regions) and high frequency
(sharp changes in intensity)

* To accurately downsample a signal/image, # of samples >= 2*highest
frequency in the signal. (Nyquist Rate!)

* |f your task is to downsample by 1/4, you do not have enough
samples, thus the downsampled image is inaccurate especially in
terms of high frequency components.



Solution =
(Gaussian pre-
filtering

e Solution: filter
the image, then
subsample
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Gaussian Pyramids:

- Efficient representation for searching and

sorting through a large (millions) volume of
images.

- Very useful in image retrieval
A powerful generic concept of representing

images with hierarchical features capturing
high-level details to low-level structures.



Today’s Lecture

* Image Derivatives
* Edge Detection
* Fourier Analysis (in 1D)

* Fourier Analysis (in 2D)



Today’s Lecture

* Image Derivatives



Partial derivatives with convolution

Remember:

Approximate:
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Image Gradient

or




Partial Derivatives




Gradient magnitude

V1= D7 + @)




radient Orientation

all the gradients

Source: D. Fouhey



Image gradient

* The gradient of an image: Vf — [gf’ gf]
x’ oy
- b V=[50l T ‘% v
| vi=[o.5]

The gradient points in the direction of most rapid increase
In intensity
How does this direction relate to the direction of the edge?

The edge strength is given by the gradient magnitude
f\2 f\2
1Vl = /D + D)
The gradient direction is given by 6 = tan—1 (%/%)

Source: Steve Seitz




Quiz time ...



Today’s Lecture

* Edge Detection



Edge detection

* Convert a 2D image into a set of curves

— Extracts salient features of the scene
— More compact than pixels



Origin of edges

surface normal discontinuity

. < depth discontinuity
O /—(\|= surface color discontinuity
\____,.// illumination discontinuity

* Edges are caused by a variety of factors




Images as functions...

* Edges look like steep cliffs



Characterizing edges

e An edge is a place of rapid change in the image intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
Source: L. Lazebnik extrema of derivative



Image Gradient & Edges

H — tan_1 (ggj;/gi) Direction of image gradients

Why is there structure at 1 and not at 2?

Source: D. Fouhey



Effects of noise

* Consider a single row or column of the image
* Plotting intensity as a function of position gives a signal

f(x)
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Where is the edge?

Source: S. Seitz



Solution: smooth first

Sigma = 50
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Noise + Smoothing

Smoothed Input

Source: D. Fouhey



How many convolutions here?

Sigma = 50

f*g

d
a(f*g)

Convolution Kernel Signal

Differentiation
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can we reduce this?
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Derivative theorem of convolution

ge(hx f) = (55h) = f

* This saves us one operation:

Kernel

Convolution

Sigma = 50
I

Signal
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Derivative of Gaussian filter
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2D edge detection filters
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Derivative of Gaussian filter
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The Sobel operator
e Common approximation of derivative of Gaussian
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e The standard definition of the Sobel operator omits the 1/8 term
— doesn’t make a difference for edge detection
— the 1/8 term is needed to get the right gradient magnitude



Sobel operator: example

Source: Wikipedia



Image with Edge Edge Location

Derivatives detect Smoothed derivative removes
edge and noise nOise, but blurs edge

Image + Noise



Demo:

original image

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Image credit: Joseph Redmon


http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Finding edges

where is the edge?

smoothed gradient magnitude



Get Orientation at Each Pixel

* Get orientation (below, threshold at minimum gradient magnitude)

theta = atan2(gy, gx)
360

Gradient orientation angle




Non-maximum supression

Differentiation
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* Check if pixel is local maximum along gradient direction

* requires interpolating pixels p and r




Before Non-max Suppression




After Non-max Suppression




iIse exists!

Still no




Thresholding edges

Still some noise

Only want strong edges

2 thresholds, 3 cases
e R>T:strong edge
e R<ThbutR>t: weak edge
e R<t:noedge

Strong edges are edges!
Weak edges are edges
iff they connect to strong
* Look in some neighborhood
(usually 8 closest)



Canny edge
detector

1. Filter image with derivative of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):
* Define two thresholds: low and high

* Use the high threshold to start edge curves and
the low threshold to continue them

Source: D. Lowe, L. Fei-Fei, J. Redmon



Canny edge detector

* Our first computer vision pipeline!
e Still a widely used edge detector in computer vision

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.

* Depends on several parameters:

high threshold
low threshold

() : width of the Gaussian blur


http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Canny edge detector
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Today’s Lecture

* Fourier Analysis (in 1D)



Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 30 meters becomes the portrait

of Abraham Lincoln”, 1976







A nice set of basis

Teases away fast vs. slow changes in the image.

Fourier Series: Any univariate function can be rewritten as a
weighted sum of sines and cosines of different frequencies.

27

This change of basis has a special name...




A sum of sines
* Our building block:

 Asin(ax + @)

* Add enough of them to get any signal
f(x) you want!

* A = Amplitude (strength/intensity)

* w = frequency (how fast or slow)

* ¢ = phase (starting position of the
sinusoid)

f(target)=

f1 + f2+ f3...+ fn+...




Time and Frequency

« example : g(¢r) = sin(2pf't) + (1/3)sin(2p(3f) 1)
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Time and Frequency

« example : g(?) = sin(2pf 1) + (1/3)sin(2p(3f) 1)
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Frequency Spectra

« example : g(?) = sin(2pf 1) + (1/3)sin(2p(3f) 1)
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Frequency Spectra

* Usually, frequency is more interesting than the phase




Frequency Spectra
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Frequency Spectra

M
WoW

.




Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Fourier Transform

*We want to understand the frequency w of our signal. So, let’s
reparametrize the signal by w instead of x:

f(x) — Fourier — F(w)
Transform

For every o from O to inf, F(w) holds the amplitude A

and phase ¢ of the corresponding sine Asin(ax + @)
* How does F hold both?

F(o)=R(w)+il(w)
A=+|R(®) + (@)’ é=tan" ——2

We can always go back:

F(a)) , Inverse Fourier , f(x)
Transform




FT: Just a change of basis
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IFT: Just a change of basis
M * F(aw) = f(x)
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Finally: Scary Math

—+oo
Fourier Transform : F(®) = jf(x)e_lmx dx

—0Q

“+o0
Inverse Fourier Transform : f(x) = % J.F ((D)ei X do
U
e ..notreally scary: " = cos(ax)+isin(ax)
* is hiding our old friend: sin(ax + ¢)

P ' — Asi
phase can be encoded cos(x) +Qsin(x) = Asin(x + @)

by sin/cos pair — A=t P10 ¢=tan1(§j

e So it’s just our signal f(x) times sine at frequency @



Discrete Fourier Transform

+oc0 N—
F(o) = J‘ﬂx)e‘f“’xa/x . X[k = Z z[n)e I2mkn/N,

n=0
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Discrete Fourier Transform in 2D

The discrete Fourier transform (DFT) of an image f of size M x N is an image F' of same size defined

as.



Today’s Lecture

* Fourier Analysis (in 2D)
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Discrete Fourier Transform (DFT) in 2D
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Credits: https://vincmazet.github.io/bip/filtering/fourier.html



Amplitude Spectrum of DFT

Images

tilisiss

Amplitude
spectrum

horizontal change (vertical stripes) in image -> frequency response in x-axis



Amplitude Spectrum of DFT

Amplitude spectrum indicates distribution of edge direction in the images



Filtering & Frequency Domain

Low pass Filtering with Gaussian Filter High pass Filtering with Laplacian Filter



The importance of Phase

Amplitude doesn’t carry the image
information. Infact the phase is one that
contains image information and is very
important for reconstruction.
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Slide: Andrew Zisserman



The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg*h]=F[g]F[A]

* The inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two inverse
Fourier transforms

F'[ghl=F '[g]*F '[A]

e Convolution in spatial domain is equivalent to
multiplication in frequency domain!



2D convolution theorem example

fix,y) [F(sS,)|
h(x,y) [H(ss,)|
g(x,y)

[G(sws,)|




Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

intensity image

Gaussian

filter: gaussian

filtered image

i e

=S

Y_;[V

filter: gaussian

log fit magnitude of filtered image




Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Box Filter

intensity image filter- box filtered image

&= r Figure 4 EJ’ Figure 6
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filter: box log fit magnitude of filtered image

log fit magnitude of image




Fourier Transform pairs

Spatial domain Frequency domain
f(z) F(s) = / f(2)e 27T qy
“bOX(X) A SinC(S)_OO
n X / \ S Causes aliasing!
+ gauss(x; o) A gauss(s; 1/0)
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What is the best low pass filter?

' sinc(s) tbox(x)
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Application: Hybrid Images (in HW)

What you See... From Far Away Up Close

| see an
"V angry guy

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006



Application: Hybrid Images

Gaussian Filter

A. Oliva, A. Torralba, P.G. Schyns,

“Hybrid Images,” SIGGRAPH 2006

Laplacian Filter

1

unit impulse

Gaussian Laplacian of Gaussian


http://cvcl.mit.edu/hybridimage.htm

Fourier and frequency is 18t century stuff!
| wanna learn Deep Learning, train neural nets,
beat the benchmark by 5% and publish in CVPR!

e e v(v) = [cos(27rBV),sin(27er)]T

Three years ago today, the project that eventually
became NeRF started working (positional encoding
was the missing piece that got us from "hmm" to
"wow"). Here's a snippet of that email thread between
Matt Tancik, @ pratul , @BenMildenhall, and me.
Happy birthday NeRF!

. Matthew Tancik 1172020 E
4 .
3 to me, Pratul, BEN v

After you left we did some experiments where we augmente

our inputs with the multiscale sin/cos values that we
discussed, ie. input = [sin(coordinate * 2*i) for i in range(x)].
the 2d toy problem we found a significant boost in
performance (see attached images). We are currently doing
experiments to see if we also see improvements in the 3D
case, or if we run into generalization issues.

Jon Barron 1/17/2020
to Matthew, Pratul, BEN v

holy shit!



Slide Credits

* CS5670, Introduction to Computer Vision, Cornell Tech, by Noah
Snavely.

* CS 194-26/294-26: Intro to Computer Vision and Computational
Photography, UC Berkeley, by Alyosha Efros.

* CS 15-463, 663, 862, CMU, by Computational Photography, loannis
Gkioulekas.



https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://inst.eecs.berkeley.edu/~cs194-26/
http://graphics.cs.cmu.edu/courses/15-463/2018_fall/

Suggested Reading

e Fourier Transform in 5 minutes (video)
* Szeliski, Chapter 3.1, 3.2, 3.3, 3.4, 3.5
* Forsyth & Ponce, Chapter 4, Chapter 5.1, 5.2, 5.3



https://www.youtube.com/watch?v=JciZYrh36LY

