Lecture &: Features 2

COMP 590/776: Computer Vision rree " :33:':;,?;::.

L] [L
..........
.....................

Instructor: Soumyadip (Roni) Sengupta il i ¢ i
TA: Mykhailo (Misha) Shvets tone ot by

Course Website:
Scan Me!

Recap

Why extract features?

e Motivation: panorama stitching
* We have two images — how do we combine them?

Step 1: extract features } This Week
Step 2: match features

Step 3: align images
Step 4: blending images Next Week

Local features: main components

1) Detection: Identify the interest
points e.g. corners

2) Description: Extract vector feature
descriptor surrounding each interest
point

3) Matching: Determine |
correspondence between descriptors
IN TWO VIEWS

How do we measure corner?

* Take a window W, and shift it in all directions by (u,v) pixels

* Corner = where shifting window in all directions causes
significant change.

~ o~

v 4 X
“flat” region: “edge”: “corner”:
no change in all no change along the significant change in
directions edge direction all directions

Credit: S. Seitz, D. Frolova, D. Simakov

Harris Corner Recap

2" moment matrix H characterizes how intensities change in the neighborhood of a point.

Max eigenvector (x,,.,)-> minor axis of ellipse; Min eigenvector (x,,,) -> major axis of ellipse.
Max eigenvalue (A, .,)-> length of minor axis; Min eigenvector (A,;,)-> length of major axis.
(From ellipse equation)

Max eigenvector (X,,,,) -> direction of max change; Min eigenvector -> direction of min
change. (What eigenvectors of image gradient’s 2" moment matrix means)

For an edge, Major axis of the ellipse -> parallel to the direction of the edge; Minor axis of
the ellipse -> perpendicular to the edge.
* Note: major axis of ellipse means direction of slowest change!

For corner, both major and minor eigenvalues are large, indicating roughly equal change in
any direction, and the ellipse becomes more like a circle.

Interpreting the eigenvalues of H

Classification of image points using eigenvalues of M:

Ay

Harris Corner detector: Steps

Compute Gaussian derivatives at each pixel

Compute second moment matrix H in a Gaussian

window around each pixel
ALA2

. f —
Compute corner response function f or R T
R=X — k- (A + \o)? = det(M) — k- tr(M)?2 _ determinant(H)
trace(H)

Threshold for R

Find local maxima of response function
(nonmaximum suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Properties of Harris: Invariance and equivariance

e \We want corner locations to be invariant to
photometric transformations and equivariant to
geometric transformations

* Invariance: image is transformed and corner
locations do not change

e Equivariance: if we have two transformed
versions of the same image, features should be
detected in corresponding locations

* Harris detector is equivariant to translation and rotation.
* Harris detector is somewhat invariant to intensity change (I" =a*| +b).
* Harris detector is NOT equivariant to scaling.

Scale-invariant response
function

Keypoint detection with scale selection

Lo T

L sy S
L L ol

L L e, S
Z Z 7

47 T
2.0

Characteristic scale = scale at which the Harris operator f/R is maximum.

11

L4 T T T
2.

4

z “scale space’

Scale T

L L s
=)

yd A i
L s v
()

e
o7

b
LA A A

Approach: compute a scale-invariant response function over neighborhoods
centered at each location (x, y) and a range of scales (o), find scale-space
locations (x,y, o) where this function reaches a local maximum.

Today’s class

* SIFT detector
* SIFT descriptor
* Feature Matching

* Evaluating Results

Today’s class

e SIFT detector

Laplacian of Gaussian

Gaussian g

Source: J. Johnson and D. Fouhey

https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx

Scale-normalized Laplacian

* You need to multiply the LoG by ¢ to make responses comparable
across scales

Scale selection: Characteristic Scale

* We can find the characteristic scale of the blob by convolving it with
scale-normalized Laplacians at several scales (o) and looking for the
maximum response

EElEnn

maximum

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Example

Scale-space blob detector

‘Q
. 'e s i «© "
7 ». ° ,«0< .
“,‘.‘ T g —.

- ...‘\' * . Yy

O h'll'

g . .4\
N l‘

- .,.
.~.." .‘ . »

'\ @ A
.®
w®e
. :‘“ﬂ.

, \Q .
’Al .

.y.\'k.lll.1 ‘. N -~
i‘o‘ﬂo’a. 5

()

Find local maxima in 3D position-scale space

A L L L L L S S
VAV A). sy
S oS
L L S

e | [
Scale T I
V=7
[AT

ST
..‘7‘ 7@'
[TS
VAT A, =Y o A

¥

= List of
(x, y,s)

K. Grauman, B. Leibe

Approximating Laplacian of Gaussian

* Functions for determining scale | f = Kernel = Image

Kernels:
L=0(G.(x,5,0)+G,,(x.,0))

(Laplacian)

DoG = G(x,y,k()')—G(x,y,O')

(Difference of Gaussians)

where Gaussian

1 a?2+y
2

G(x,y,0) =

T T T T T T T T
01} ﬂ m i
0

- |aplacian

Note: The LoG and DoG operators
are both rotation equivariant

SIFT detector

Approximate LoG with a difference of

Gaussians (DoG) Aﬁ =

* Laplacian: Scale ﬁ///’i’; > ===
(next %

o 0-2 (Gxx (x’ Y, O—) + ny (x, v, O')) octave) /;’@ ﬁ

* DoG:
e G(x,y,ko)—G(x,y,0)

Compute DoG via an image pyramid

Scale
(first

octave)

In each Octave you progressively blur the image
To go to next Octave you downsample the image by x2

BV ctsr o e i i s o o i v e g

PP oo o o o e e
P e e o e i

s i i e e e oy s e e
WP s oo i s i o o e e

e
IIIIIIIIII
//////
D e e e e e e

P e o o e e e e e i

A i e e S A

e = e e

e e e i e e
e e e e e e D

P corr e v S L A i s e s
o A T S S T AT e e e
> s s e i S A A i S i

o e o e e e e e e

- i e e e =
e s e i i e A e e e

P o o oo - e e e =

e

W= = o o 2 o e i s

W e o s i i e

W o o e e e e o e i e
= = T e o i e
T o e i
o L

A e i i e

Gaussian

e

Difference of
Gaussian (DOG)

SIFT: Scale-invariant feature transform

D. Lowe. Object recognition from local scale-invariant features. ICCV 1999
D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf

<

David Lowe

Distinctive image features from scale-invariant keypoints

Authors
Publication date
Journal

Volume

Issue

Pages
Publisher

Description

Total citations

David G Lowe

2004/11/1

International journal of computer vision
60

2

91-110

Springer Netherlands

This paper presents a method for extracting distinctive invariant features from images
that can be used to perform reliable matching between different views of an object or
scene. The features are invariant to image scale and rotation, and are shown to provide
robust matching across a substantial range of affine distortion, change in 3D viewpoint,
addition of noise, and change in illumination. The features are highly distinctive, in the
sense that a single feature can be correctly matched with high probability against a large
database of features from many images. This paper also describes an approach to using
these features for object recognition. The recognition proceeds by matching individual
features to a database of features from known objects using a fast nearest-neighbor
algorithm, followed by a Hough transform to identify clusters belonging to a single object,
and finally performing verification through ...

Cited by 71971

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Deep Residual Learning for Image Recognition

Authors
Publication date
Conference

Description

Total citations

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
2016
Computer Vision and Pattern Recognition (CVPR), 2016

Deeper neural networks are more difficult to train. We present a residual learning
framework to ease the training of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learning residual functions with
reference to the layer inputs, instead of learning unreferenced functions. We provide
comprehensive empirical evidence showing that these residual networks are easier to
optimize, and can gain accuracy from considerably increased depth. On the ImageNet
dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG
nets but still having lower complexity. An ensemble of these residual nets achieves
3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015
classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The
depth of representations is of central importance for many visual recognition tasks.
Solely due to our extremely deep representations, we obtain a 28% relative improvement
on the COCO object detection dataset. Deep residual nets are foundations of our
submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places
on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO
segmentation.

Cited by 185084

2016 2017 2018 2019 2020 2021 2022 2023

Today’s class

* SIFT descriptor

SIFT for matching

e The main goal of SIFT is to enable image matching in the presence of
significant transformations

To recognize the same keypoint in multiple images, we need to match
appearance descriptors or “signatures” in their neighborhoods

Descriptors that are locally invariant w.r.t. scale and rotation can handle a
wide range of global transformations

—— @l ﬁ

T
N
\ %**a

1 B 4l e

" I Q\%&
i 1
S0 o ?

Invariant descriptors

* We looked at invariant / equivariant detectors

* Most feature descriptors are also designed to be invariant to:
* Translation, 2D rotation, scale

* They can usually also handle
 Limited 3D rotations (SIFT works up to about 60 degrees)
 Limited affine transforms (some are fully affine invariant)
* Limited illumination/contrast changes

Scale Invariant Feature Transform

Basic idea:

Take 16x16 square window around detected feature point

Compute edge orientation (angle of the gradient - 90°) for each pixel
Throw out weak edges (threshold gradient magnitude)

Create histogram of surviving edge orientations

0 27

angle histogram

Image gradients

Adapted from slide by David Lowe

SIFT descriptor

Full version
e Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
e Compute an orientation histogram for each cell
e 16 cells * 8 orientations = 128 dimensional descriptor

X

Image gradients Keypoint descriptor

Inspiration: complex neurons in the primary visual cortex Adapted from slide by David Lowe

SIFT detector: Example outputs

 Detected keypoints with characteristic scales and orientations:

1l
e I

Wil 1 } |

SIFT for matching

* Extraordinarily robust detection and description technique
e Can handle changes in viewpoint
* Up to about 60 degree out-of-plane rotation
* Can handle significant changes in illumination
* Sometimes even day vs. night
* Fast and efficient—can run in real time
* Lots of code available

Sl <>

Source: N. Snavely

Other descriptors

 HOG: Histogram of Gradients (HOG)

* Simply calculate histogram of gradients for every pixel
 Dalal/Triggs

* Sliding window, pedestrian detection

* Good for object detection/classification

* FREAK: Fast Retina Keypoint

* Perceptually motivated
e Can run in real-time; used in Visual SLAM on-device

e LIFT: Learned Invariant Feature Transform

* Learned via deep learning — along with many other recent features
https://arxiv.org/abs/1603.09114

https://arxiv.org/abs/1603.09114

Summary

» Keypoint detection: repeatable and
distinctive

* Corners, blobs, stable regions
* Harris, SIFT

* Descriptors: robust and selective
* spatial histograms of orientation

* SIFT and variants are typically good for
stitching and recognition

Keypoint descriptor

Today’s class

* Feature Matching

Which features match?

4
e

=gy A - B
”w ,

Feature matching

Given a feature in I;, how to find the best match in I,?

1. Define distance function that compares two descriptors

* Any distance metric, d(f1,f2), would work: L2, L1 loss are
commonly used

2. Test all the features in I,, find the one with min distance
(OR)
2. Test all the features in I,, find top k matches

Feature distance: Ratio Test

» Often matches can be ambiguous. f1 can have similar distance to both f2 and 2’
* Ratio Test:
e Keep top 2 match: f2, f2’
e |fd(f1,f2) <0.75 * d(f1,f2’), then: match f1 with f2 and keep the point.
* Else reject the match as ambiguous
e |f d(f1,f2) < Threshold, then: keep this as ‘strong’ match, else: ‘reject’

Image Matching in OpenCV

import numpy as np
import cv2
from matplotlib import pyplot as plt

imgl = cv2.imread('box.png',@) # querylImage
img2 = cv2.imread('box_in_scene.png',@) # trainImage

cv2.drawMatchesKnn expects list of lists as matches.
img3 = cv2.drawMatchesKnn(imgl, kpl,img2 ,kp2,good, flags=2)

plt.imshow(img3) ., ,plt.show()

Read Image

Compute SIFT

Feature matching

Ratio Test

Visualization

We'll deal with
outliers later

Feature matching example § rsacex week

STORYTELUNG 75 OF COM

7
&
v

FROM INE AUTNOR OF UNOFRCTANTING &AL s
e " i P ——
-
Fad § g r wEanr
SCOii rmnc_1 U0

51 matches (thresholded by ratio score)

Today’s class

* Evaluating Results

Evaluating the results

How can we measure the performance of a feature matcher?

feature distance = d(f1,f2)

True/false positives

How can we measure the performance of a feature matcher?

feature distance

We can choose distance threshold to decide if the match is ‘good’ or not.

The distance threshold affects performance
* True positives = # of detected matches that survive the threshold that are correct
* False positives = # of detected matches that survive the threshold that are incorrect

Example

e Suppose our matcher computes 1,000 matches between two images.

e 800 are correct matches, 200 are incorrect (according to an oracle that gives us ground
truth matches)

* A given threshold (e.g., ratio distance = 0.6) gives us 600 correct matches and 100
incorrect matches that survive the threshold

* True positives = # of detected matches that survive the threshold that are correct

* False positives = # of detected matches that survive the threshold that are incorrect
* True positive rate = 600 / 800 = %

* False positive rate =100/ 200 =%

True/false positives

How can we measure the performance of a feature matcher?

feature distance

True positives = # of detected matches that survive the threshold that are correct
False positives = # of detected matches that survive the threshold that are incorrect

Suppose we want to maximize true positives. How do we set the threshold? (We keep all
matches with distance below the threshold.)

True/false positives

How can we measure the performance of a feature matcher?

feature distance

True positives = # of detected matches that survive the threshold that are correct
False positives = # of detected matches that survive the threshold that are incorrect

Suppose we want to minimize false positives. How do we set the threshold? (We keep all
matches with distance below the threshold.)

Evaluating the results

How can we measure the performance of a feature matcher?

1
0.7 —--
. . true
true positives surviving threshold .
— positive
total correct matches (positives)
rate
recall
|
| .
0 01 false positive rate 1

false positives surviving threshold
total incorrect matches (negatives)

1 - specificity

Evaluating the results

How can we measure the performance of a feature matcher?

1
Generated by choosing
different threshold value
0.7 —+ @
t Single number: Area Under
true positives surviving threshold pog/gtfve the Curve (AUC)
total correct matches (positives) rate E.g. AUC = 0.87
recall 1is the best
|
0 01 false positive rate 1

false positives surviving threshold
total incorrect matches (negatives)

1 - specificity

ROC curves — summary

* By thresholding the match distances at different thresholds, we can
generate sets of matches with different true/false positive rates

* ROC curve is generated by computing rates at a set of threshold
values swept through the full range of possible threshold

* Area under the ROC curve (AUC) summarizes the performance of a
feature pipeline (higher AUC is better)

* We will come back to this in binary classification, face verification,
object detection, image retrieval, etc.

Local features & matching in Deep Learning era

Image

image

features
pair /
o * '
® o
]
[] Q.
L]

L ?
/f
Detector & Descriptor

Deep Front-End

front-end

ConvNet

t-

Keypoint
Descriptors

local

o

)

Keypoint 2D
Locations

Graph Neural Network

o

.

SuperGlue

i

strong
matches

Deep Middle-End Matcher

Local Features = SuperPoint
Train first on synthetic data
Self-supervised learning on real data.

Feature Matching = SuperGlue

Performance of SuperPoint

Performance of SuperGlue

SuperPoint + NN + heuristics SuperPoint + SuperGlue

SuperGlue: more correct matches and fewer mismatches

Slide Credits

* CS5670, Introduction to Computer Vision, Cornell Tech, by Noah
Snavely.

* CS 194-26/294-26: Intro to Computer Vision and Computational
Photography, UC Berkeley, by Alyosha Efros.

 Fall 2022 CS 543/ECE 549: Computer Vision, UIUC, by Svetlana
Lazebnik.

https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://inst.eecs.berkeley.edu/~cs194-26/
https://slazebni.cs.illinois.edu/fall22/

