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Steps of creating a Panorama

This is your next homework assighment!



Why extract features? (last week)

e Motivation: panorama stitching
* We have two images — how do we combine them?




Why extract features? (last week

e Motivation: panorama stitching
* We have two images — how do we combine them?

Step 1: extract features
Step 2: match features



How to align and combine two images?

e Motivation: panorama stitching
* We have two images — how do we combine them?

Step 1: extract features } Last Week
Step 2: match features

Step 3: align images .
Step 4: blending images This Week



What is the geometric relationship between these
two images?




What is the geometric relationship between these
two images?

Very important for creating mosaics!
First, we need to know what this transformation is.
Second, we need to figure out how to compute it using feature matches.



Image Warping

* image filtering: change range of image
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* image warping: change domain of image
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Image Warping

* image filtering: change range of image

Richard Szeliski Image Stitching



Parametric (global) warping

* Examples of parametric warps:
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translation rotation

Richard Szeliski Image Stitching

10



Parametric (global) warping
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* Transformation T is a coordinate-changing machine:

p’=T(p)
 What does it mean that T is global?

* |s the same for any point p
e can be described by just a few numbers (parameters)

 Let’s consider linear transforms (can be represented by a 2x2 matrix):

x! T

p'=Tp | =T
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Today’s class

e Types of 2D Transformations

* Linear
* Affine
e Perspective (Homography)

 Computing 2D Transformations

* Linear Least Squares
* Affine
* Perspective (Homography)



Today’s class

e Types of 2D Transformations
e Linear



Common linear transformations

* Rotation by angle @ (about the origin)
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i cos) —sinéb | What is the inverse?
R — Q s 9 For rotations:
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2-D Rotation

X =1 oS (¢)

y =1 sin ({)
X’ =rcos (¢ + 0)
y’ =1 sin (¢ + 0)

o (X,a y,)
(X, ¥)




2-D Rotation

X =1 oS (¢)
y =1sin ()

x’=r1cos (¢ +
. . y’=rsin (¢ + 0)
e (X » Y )
Trig Identity...

X" =1 cos(d) cos(0) — r sin(¢p) sin(O)
(X’ Y) y’ =1 sin(¢) cos(0) + r cos(¢) sin(O)




2-D Rotation

X =1 oS (¢)
y =1 sin ()

x’=r1cos (¢ +
y’=rsin (¢ + 0)
Trig Identity...

X" =1 cos(d) cos(0) — r sin(¢p) sin(O)
y’ =1 sin(¢) cos(0) + r cos(¢) sin(O)

o (X,a y,)
(X, ¥)

bstitute. ..
(I) X’ =X ¢0s(0) - y sin(0)

y’=x sin(0) +y cos(0)



2-D Rotation

*This is easy to capture in matrix form:

X' _ cos(@) —sin()] x
B _\sin(@) cos(H)J_

Y

R

CU R T T DR 1T

(0,0)



2Xx2 Matrices

* What types of transformations can be

represented with a 2x2 matrix?

2D ldentity?
xX'=x [x'}
y'=y y
2D Scale around (0,0)?
xX'=s,*x x|

yvzsy*y y'




2Xx2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)7?

X'=cos®O*x—sin®*y {x} _ {cos@ —sin @}{x

y'=smn®*x+cos@®*y sin®  cos® |y

2D Shear?
X'=x+sh_*y x' 1 sh_| x
y'=sh, *x+y ' sh 1 ||y




2Xx2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

2D Mirror over (0,0)7?

X'=—x X'
y'=—y y'



2x2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Translation?

/
r = x+1
+CENO!
/

Yy = Yyt iy

Translation is not a linear operation on 2D coordinates

Only linear 2D transformations
can be represented with a 2x2 matrix




All 2D Linear Transformations

e Linear transformations are combinations of ...
e Scale,

!
* Rotation, X _ a b|x
e Shear, and y' c d y
* Mirror

* Properties of linear transformations:
* Origin maps to origin
* Lines map to lines

* Parallel lines remain parallel
* Ratios are preserved

* Closed under composition X' a b
veLe 4

|



Today’s class

e Types of 2D Transformations

e Affine



Homogeneous Coordinates

* Q: How can we represent translation as a 3x3 matrix?
'_
X'=X+I,

y'=y+t,

*Homogeneous coordinates

* represent coordinates in 2
dimensions with a 3-vector - x

| )

homogeneous coords




Homogeneous coordinates

;f(x, y, W)
W ,/
Il
Trick: add one more coordinate: y. homogeneous plane

- ’

T /

(z,y) = | v !
’ Ax/w, y/w, 1)

1 w=1 Y}

L _ [ 4

homogeneous image
coordinates

y

Converting from homogeneous coordinates

y | = (z/w,y/w)




Homogeneous Coordinates

* Add a 3rd coordinate to every 2D point
* (x,y, W) represents a point at location (x/w, y/w)
* (x,y, 0) represents a point at infinity
* (0, 0, 0) is not allowed

Y
21
(2,1,1) or (4,2,2) or (6,3,3)
14 o
Convenient ) 5 X
coordinate system to
represent many

useful
transformations



Homogeneous Coordinates

* Q: How can we represent translation as a 3x3 matrix?

X'=x+t,
y'=y+t,
* A: Using the rightmost column: Translation =
i ]. O t:r | i LL | i LL 1 th |
0 0 1 1 1




Affine transformations

1 0 ¢,
T=|0 1 t,
any transformation represented by
O O 1 « a 3x3 matrix with last row [00 1 ]

we call an affine transformation
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Basic affine transformations

x| [1 0 ¢ |x x'

Yi=(0 1 ¢ |y y'

1] |0 0 1|1 1]
Translate

(x'| [cos® —sin@ O x]| [ X'

y'|=|sm6@ cosf® O}y y'

1] | 0 0 1] 1] 1|

2D in-plane rotation




Matrix Composition

* Transformations can be combined by

matrix multiplication

X' 1 0 #|cos®
V(=10 1 #y|smnO

w] (|00 1] O
p = T(hty)

—sin® 0
cos® O
0 1
R(©)

SX
0

0

0 0
sy 0

0 1

S(Sx,Sy)

Does the order of multiplication matter?




Affine transformations

* Affine transformations are combinations of ...
* Linear transformations, and - -
* Translations |

* Properties of affine transformations:
* Origin does not necessarily map to origin
* Lines map to lines

Parallel lines remain parallel

 Ratios are preserved

Closed under composition

S AU

S < =




Today’s class

e Types of 2D Transformations

* Perspective (Homography)



Where do we go from here?

a b c

d e f
what happens when we

_ O O ]‘ _ mess with this row?

affine transformation



Projective Transformations aka Homographies aka Planar
Perspective Maps

H - -

a b c
= | H=|d e f

> H g h 1
Called a homography
(or planar perspective map)

N7’ A
. Pplanar surface

Any two images of the same planar surface in 3D space are
related by a homography (assuming a pinhole camera model).



https://en.wikipedia.org/wiki/Homography
https://en.wikipedia.org/wiki/Pinhole_camera_model

Homographies

a b c
— | d e f
g h 1

What happens when the
denominator is 0?







Points at infinity
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black area
where no pixel
maps to
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Homographies (Projective Transformation)

. v a b c | [ x|
* Homographies ... g l=1d e ¥ y
* Affine transformations, and W' g h 1 W
* Projective warps ST I
! hoo ho1 hoz | | 2
Y; | = | h1o h11 P12 Yi
1 ] [ hoo ho1 hoo 1

where the length of the

. . L. L
Properties of projective transformations: vector [ho. hos o by 1is 1.

e Origin does not necessarily map to origin

Lines map to lines

Parallel lines do not necessarily remain parallel
Ratios are not preserved

Closed under composition



2D image transformations

/y

Y ﬁmhl 1ty
translation

Euclidean 1ﬁ111e

O projective E]

N
Name Matrix # D.O.F. | Preserves: Icon
translation [ 1 ‘ t ] 2 orientation + - - -
2x3
rigid (Euclidean) [ R ’ t ]2 \ 3 lengths + - - - Q
2X.

similarity

[ SR | ¢ ]2><3 4 angles + -

affine

[ A Lxg 6 parallelism + - - -

projective

[I:I ] . 8 straight lines
3x3

N




Today’s class

 Computing 2D Transformations

* Linear Least Squares
* Affine
* Perspective (Homography)



Computing transformations

* Given a set of matches between images A and B
* How can we compute the transform T from A to B?
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* Find transform T that best “agrees” with the matches



Today’s class

e Types of 2D Transformations

* Linear
* Affine
* Perspective (Homography)

 Computing 2D Transformations
* Linear Least Squares



Simple case: translations
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Pl How do we solve for

(Xt, Yt)




Simple case: translations

mm»lw ; \nw




Another view

mm»lw ; \nu

|
.

Yi T Yt
e System of linear equations

* What are the knowns? Unknowns?
* How many unknowns? How many matches do we need?



Another view

e =
Alllmlllllmw ——7
—le | O

S
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* Problem: more equations than unknowns
e “Overdetermined” system of equations
* We will find the least squares solution



Least squares: linear regression




Linear regression

12

101

*

8L 3 i
residual error
L * |

Mileage
[e)]

Calculate partial derivatives
w.r.t. m and b and set them to O.

Cost(m, D) Z 1y — (ma; +0) .



Linear regression

X1 1
L9 1
T, |1




Least squares

At =Db
* Find t that minimizes
At — b||”
* To solve, form the normal equations
A"At=A"D

t=(ATA) ATb

Check proof here


http://pillowlab.princeton.edu/teaching/statneuro2018/slides/notes03b_LeastSquaresRegression.pdf

Another view

e =
Alllmlllllmw ——7
—le | O
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* Problem: more equations than unknowns
e “Overdetermined” system of equations
* We will find the least squares solution



Least squares formulation

* For each point (%X, ¥i)
X, + Xy = X,
Yi+tye = Y
* we define the residuals as
re, (X¢) = (X +X¢) — X
ry.(yt) = (Yityt) -V



Least squares formulation

e Goal: minimize sum of squared residuals
n

C(xt,yt) = Z (Txf,; (Xt)2 Py (yt)z)

1=1

e “Least squares” solution

* For translations, is equal to mean (average)
displacement



Least squares formulation

e Can also write as a matrix equation

1 0 | - xh —
0 1 Y1 — Y1
1 O To — To
0 1 [xt]: Yo — Y2

Yt :
1 0 T, — Tp

_ 0 1 i _ y%'_'yn

2n X 2 2x1 2nx1




Today’s class

 Computing 2D Transformations

e Affine



Affine transformations

— x/ n — a b - _ a . _
_ 1 | i 0O 0 1 11 1 | - |

SCOTT McCLOUD

* How many unknowns?
* How many equations per match?
* How many matches do we need?



Affine transformations

* Residuals: |
’I“:m (aa b7 Ca d) 67 f) — (CLZEZ T b’yz —— (v) _ ZCZ‘
My (a7 b? C, da €, f) T (dlE@ T €Y; T f) o y:,
e Cost function:
C((L? b C, d €, f) —
n
Z (T:r’i (a“ b? C? d? 67 f)2 _I_ ’r’yz (a~ b: C: d: 6: f)Q)
1=1

Calculate partial derivatives w.r.t. (a,b,c,d,e,f) and set to O.



Affine transformations

e Matrix form

S =

L1

}—L

0
L2

-

1 0
0 x,

2n X6

Y1

0
Y2

0
Yn

—-— D Q0 9




Today’s class

 Computing 2D Transformations

* Perspective (Homography)



Homographies

SR
RS-+

To unwarp (rectify) an image
e solve for homography H given p and p’

e solve equations of the form: wp’ = Hp

— linear in unknowns: w and coefficients of H
— His defined up to an arbitrary scale factor
— how many matches are necessary to solve for H?



Solving for homographies

- hoo hor hoo | | @i ]

/
L;
y: | = | hio hi11 hio Y;
1 | hog ho1 hoo || 1]
1 — _hoo%i + ho1yi + hoo
L=
hooxi + ho1y; + hoo ,
Not linear!
Y = hi1o%; + h11y; + hi1o
I =

hoox; + ho1y; + hoo

hoox; + ho1yi + hoo
hiox; + h11y; + hio

i (hoow; + ho1y; + hoo)
yi(hoox; + ho1y; + hoo)




Solving for homographies

i (hoow; + ho1y; + hoo) hooT; -

- ho1Y;

yi(hoox; + ho1y; + hoo) hio%;

z; y;p 1 0 0 0 —zla; —aly; —x
0 00 = v 1 —ya, —yyi -y

TV M ™

- hoo

- h11Y;

hoo
ho1
hoo
] hio

hio
hoo
ho1
hoo

- hio



Solving for homographies

hoo
_ _ | ho1 o
1 y1 1 0 0 O —zfjzy —2ly; —af hoo 0
0 0 0 z1 y1 1 —yiz1 —v1y1 —¥; hio 0
: hll — :
Tn yn 1 0 O O —alxp —ahyn —2, hio 0
0 0 0 zn yn 1 —YnTn  —YnYn —?J;z_ h2o | 0
ho1
A
2n X9 I9]- 2n

Defines a least squares problem: minimize ||[Ah — 0|2

e Since h is only defined up to scale, solve for unit vector fl
e Rank(A) ="




Solving for homographies

Ax h o O Rank(A) = 8
2n

2n X9 9

Calculate Singular Value decomposition of A -> A= UDV’

Uis2nxr; Disrxr (diagonal matrix with singular values) ; Vis 9 x r, where r=rank(A).
In ideal case r=rank(A)=8, h is in null-space of A.

In practice rank(A)=9, thus the goal is to find the smallest singular value of A.

Smallest singular value of A also indicates how well the homography can be estimated.

Calculate A’A = VDU'UDV'"=V D? V-1 (Since, UU = V'V =])

This is eigen-decomposition of A’A

Smallest singular value of A -> Smallest eigen value of AA.
Solution: optimal h = eigenvector of A’A with smallest eigenvalue.



Computing transformations




Image alignment algorithm

Given images A and B

1. Compute image features for A and B
Match features between A and B

3. Compute homography between A and B using least squares on set
of matches

What could go wrong?



O U t ‘ | e rS outliers
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inliers

Lead to next class on RANSAC



Slide Credits

* CS5670, Introduction to Computer Vision, Cornell Tech, by Noah
Snavely.

* CS 194-26/294-26: Intro to Computer Vision and Computational
Photography, UC Berkeley, by Alyosha Efros.

 Fall 2022 CS 543/ECE 549: Computer Vision, UIUC, by Svetlana
Lazebnik.



https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://inst.eecs.berkeley.edu/~cs194-26/
https://slazebni.cs.illinois.edu/fall22/

