Lecture 9: 2D Transformation & Alignment

Instructor: Soumyadip (Roni) Sengupta

ULA: Andrea Dunn, William Li, Liujie Zheng

Course Website: Scan Me!

Steps of creating a Panorama

This is your next homework assignment!

Why extract features? (last week)

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why extract features? (last week)

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features Step 2: match features

How to align and combine two images?

Motivation: panorama stitching

• We have two images – how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images

Step 4: blending images

Last Week

This Week

What is the geometric relationship between these two images?

What is the geometric relationship between these two images?

Very important for creating mosaics!

First, we need to know what this transformation is. Second, we need to figure out how to compute it using feature matches.

Image Warping

• image filtering: change range of image

• image warping: change domain of image

Image Warping

• image filtering: change range of image

• image warping: change domain of image

•
$$g(x) = f(h(x))$$

h

Parametric (global) warping

• Examples of parametric warps:

translation

rotation

aspect

Parametric (global) warping

• Transformation T is a coordinate-changing machine:

$$\mathbf{p}' = T(\mathbf{p})$$

- What does it mean that T is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's consider *linear* transforms (can be represented by a 2x2 matrix):

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \qquad \left[egin{array}{c} x' \ y' \end{array}
ight] = \mathbf{T} \left[egin{array}{c} x \ y \end{array}
ight]$$

Today's class

- Types of 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)
- Computing 2D Transformations
 - Linear Least Squares
 - Affine
 - Perspective (Homography)

Today's class

- Types of 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)
- Computing 2D Transformations
 - Linear Least Squares
 - Affine
 - Perspective (Homography)

Common linear transformations

• Rotation by angle θ (about the origin)

$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

What is the inverse?

For rotations:

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

$$x = r \cos (\phi)$$

$$y = r \sin (\phi)$$

$$x' = r \cos (\phi + \theta)$$

$$y' = r \sin (\phi + \theta)$$


```
x = r \cos (\phi)
y = r \sin (\phi)
x' = r \cos (\phi + \theta)
y' = r \sin (\phi + \theta)
Trig Identity...
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)
y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)
```



```
x = r \cos (\phi)
y = r \sin(\phi)
x' = r \cos (\phi + \theta)
y' = r \sin (\phi + \theta)
Trig Identity...
x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)
y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)
Substitute...
x' = x \cos(\theta) - y \sin(\theta)
y' = x \sin(\theta) + y \cos(\theta)
```

•This is easy to capture in matrix form:

• What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$

$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$\mathbf{x'} = \mathbf{s}_{x} * \mathbf{x} \\ \mathbf{y'} = \mathbf{s}_{y} * \mathbf{y} \qquad \begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 \\ 0 & \mathbf{s}_{y} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$
$$y' = \sin \Theta * x + \cos \Theta * y$$

$$x' = \cos \Theta * x - \sin \Theta * y y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$
$$y' = sh_y * x + y$$

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$

Translation is not a linear operation on 2D coordinates

Only linear 2D transformations can be represented with a 2x2 matrix

All 2D Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Properties of linear transformations:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Today's class

- Types of 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)
- Computing 2D Transformations
 - Linear Least Squares
 - Affine
 - Perspective (Homography)

Homogeneous Coordinates

• Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$

$$y' = y + t_y$$

•Homogeneous coordinates

 represent coordinates in 2 dimensions with a 3-vector

Homogeneous coordinates

Trick: add one more coordinate:

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

Converting from homogeneous coordinates

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

Homogeneous Coordinates

- Add a 3rd coordinate to every 2D point
 - (x, y, w) represents a point at location (x/w, y/w)
 - (x, y, 0) represents a point at infinity
 - (0, 0, 0) is not allowed

Convenient coordinate system to represent many useful transformations

Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

• A: Using the rightmost column:

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

Affine transformations

any transformation represented by a 3x3 matrix with last row [001] we call an affine transformation

$$\left[egin{array}{cccc} a & b & c \ d & e & f \ 0 & 0 & 1 \end{array}
ight]$$

Basic affine transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D *in-plane* rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
The relate

Scale

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Matrix Composition

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t}_{\mathsf{x}}, \mathbf{t}_{\mathsf{y}}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathbf{s}_{\mathsf{x}}, \mathbf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

Does the order of multiplication matter?

Affine transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Today's class

- Types of 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)
- Computing 2D Transformations
 - Linear Least Squares
 - Affine
 - Perspective (Homography)

Where do we go from here?

Projective Transformations aka Homographies aka Planar Perspective Maps

$$\mathbf{H} = \left[egin{array}{cccc} a & b & c \ d & e & f \ g & h & 1 \end{array}
ight]$$

Called a *homography* (or planar perspective map)

Any two images of the same planar surface in 3D space are related by a **homography** (assuming a pinhole camera model).

Homographies

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =$$

What happens when the denominator is 0?

$$\frac{ax+by+c}{gx+hy+1}$$

$$\frac{dx+ey+f}{gx+hy+1}$$

$$1$$

Points at infinity

Image warping with homographies

Homographies (Projective Transformation)

- Homographies ...
 - Affine transformations, and
 - Projective warps

$$\left[\begin{array}{c} x' \\ y' \\ w' \end{array}\right] = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \\ w \end{array}\right]$$

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition

where the length of the vector $[h_{00} h_{01} ... h_{22}]$ is 1.

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c} ig[egin{array}{c} ig[egin{array}{c} ig[egin{array}{c} ig]_{2 imes 3} \end{array} \end{bmatrix}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Today's class

- Types of 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)
- Computing 2D Transformations
 - Linear Least Squares
 - Affine
 - Perspective (Homography)

Computing transformations

- Given a set of matches between images A and B
 - How can we compute the transform T from A to B?

• Find transform T that best "agrees" with the matches

Today's class

- Types of 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)
- Computing 2D Transformations
 - Linear Least Squares
 - Affine
 - Perspective (Homography)

Simple case: translations

How do we solve for $(\mathbf{x}_t, \mathbf{y}_t)$

Simple case: translations

Displacement of match
$$i = (\mathbf{x}_i' - \mathbf{x}_i, \mathbf{y}_i' - \mathbf{y}_i)$$

$$(\mathbf{x}_t, \mathbf{y}_t) = \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i' - \mathbf{x}_i, \frac{1}{n} \sum_{i=1}^n \mathbf{y}_i' - \mathbf{y}_i\right)$$

Another view

$$\mathbf{x}_i + \mathbf{x_t} = \mathbf{x}_i'$$
 $\mathbf{y}_i + \mathbf{y_t} = \mathbf{y}_i'$

- System of linear equations
 - What are the knowns? Unknowns?
 - How many unknowns? How many matches do we need?

Another view

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Least squares: linear regression

Linear regression

$$Cost(m, b) = \sum_{i=1}^{n} |y_i - (mx_i + b)|^2$$

Calculate partial derivatives w.r.t. m and b and set them to 0.

Linear regression

$\lceil x_1 \rceil$	1 -		$\lceil y_1 \rceil$
x_2	1	$\lceil m \rceil$	y_2
•		$\begin{bmatrix} b \end{bmatrix} =$	•
$\lfloor x_n \rfloor$	1 _		$oxed{y_n}$

Least squares

$$At = b$$

Find t that minimizes

$$||{\bf At} - {\bf b}||^2$$

• To solve, form the *normal equations*

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{t} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$
$$\mathbf{t} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{b}$$

Another view

- Problem: more equations than unknowns
 - "Overdetermined" system of equations
 - We will find the *least squares* solution

Least squares formulation

• For each point

$$egin{array}{lll} (\mathbf{x}_i,\mathbf{y}_i) \ \mathbf{x}_i+\mathbf{x_t} &=& \mathbf{x}_i' \ \mathbf{y}_i+\mathbf{y_t} &=& \mathbf{y}_i' \end{array}$$

• we define the *residuals* as

$$r_{\mathbf{x}_i}(\mathbf{x}_t) = (\mathbf{x}_i + \mathbf{x}_t) - \mathbf{x}_i'$$

 $r_{\mathbf{y}_i}(\mathbf{y}_t) = (\mathbf{y}_i + \mathbf{y}_t) - \mathbf{y}_i'$

Least squares formulation

• Goal: minimize sum of squared residuals

$$C(\mathbf{x}_t, \mathbf{y}_t) = \sum_{i=1}^n \left(r_{\mathbf{x}_i}(\mathbf{x}_t)^2 + r_{\mathbf{y}_i}(\mathbf{y}_t)^2 \right)$$

- "Least squares" solution
- For translations, is equal to mean (average) displacement

Least squares formulation

Can also write as a matrix equation

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \vdots \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \begin{bmatrix} x'_1 - x_1 \\ y'_1 - y_1 \\ x'_2 - x_2 \\ y'_2 - y_2 \\ \vdots \\ x'_n - x_n \\ y'_n - y_n \end{bmatrix}$$

Today's class

- Types of 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)
- Computing 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)

Affine transformations

$$\left[egin{array}{c} x' \ y' \ 1 \end{array}
ight] = \left[egin{array}{ccc} a & b & c \ d & e & f \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{c} x \ y \ 1 \end{array}
ight]$$

- How many unknowns?
- How many equations per match?
- How many matches do we need?

Affine transformations

Residuals:

$$r_{x_i}(a, b, c, d, e, f) = (ax_i + by_i + c) - x'_i$$

 $r_{y_i}(a, b, c, d, e, f) = (dx_i + ey_i + f) - y'_i$

• Cost function:

$$C(a,b,c,d,e,f) = \sum_{i=1}^n \left(r_{x_i}(a,b,c,d,e,f)^2 + r_{y_i}(a,b,c,d,e,f)^2\right)$$
 Calculate partial derivatives w.r.t. (a,b,c,d,e,f) and set to 0.

Affine transformations

Matrix form

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ \vdots & & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

$$\mathbf{A}$$

$$\mathbf{t}_{2n \times 6}$$

$$\mathbf{t}_{6 \times 1} = \mathbf{b}_{2n \times 1}$$

Today's class

- Types of 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)
- Computing 2D Transformations
 - Linear
 - Affine
 - Perspective (Homography)

Homographies

To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor
 - how many matches are necessary to solve for H?

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$$
Not linear!

$$x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

 $y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

$$x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

 $y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

$$y_{i}'(h_{20}x_{i} + h_{21}y_{i} + h_{22}) = h_{10}x_{i} + h_{11}y_{i} + h_{12}$$

$$\begin{bmatrix} x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x'_{i}x_{i} & -x'_{i}y_{i} & -x'_{i} \\ 0 & 0 & 0 & x_{i} & y_{i} & 1 & -y'_{i}x_{i} & -y'_{i}y_{i} & -y'_{i} \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1'x_1 & -x_1'y_1 & -x_1' \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y_1'x_1 & -y_1'y_1 & -y_1' \\ \vdots & & & \vdots & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 & -x_n'x_n & -x_n'y_n & -x_n' \\ 0 & 0 & 0 & x_n & y_n & 1 & -y_n'x_n & -y_n'y_n & -y_n' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}$$

$$\mathbf{A}$$

$$\mathbf{A}$$

$$\mathbf{A}$$

$$\mathbf{A}$$

$$\mathbf{A}$$

$$\mathbf{A}$$

$$\mathbf{A}$$

$$\mathbf{D}$$

Defines a least squares problem: minimize $\|\mathbf{A}\mathbf{h} - \mathbf{0}\|^2$

- Since h is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Rank(A) = ?

$$\mathbf{A} \times \mathbf{h} = \mathbf{0}$$
Rank(A) = 8

- Calculate Singular Value decomposition of A -> $A = UDV^T$
- U is 2n x r; D is r x r (diagonal matrix with singular values); V is 9 x r, where r=rank(A).
- In ideal case r=rank(A)=8, h is in null-space of A.
- In practice rank(A)=9, thus the goal is to find the smallest singular value of A.
- Smallest singular value of A also indicates how well the homography can be estimated.
- Calculate $A^TA = VDU^TUDV^T = VD^2V^{-1}$ (Since, $U^TU = V^TV = I$)
- This is eigen-decomposition of A^TA
- Smallest singular value of A -> Smallest eigen value of A^TA .
- Solution: optimal h = eigenvector of A^TA with smallest eigenvalue.

Computing transformations

Image alignment algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?

Outliers

Slide Credits

- <u>CS5670, Introduction to Computer Vision</u>, Cornell Tech, by Noah Snavely.
- <u>CS 194-26/294-26</u>: Intro to Computer Vision and Computational Photography, UC Berkeley, by Alyosha Efros.
- Fall 2022 CS 543/ECE 549: Computer Vision, UIUC, by Svetlana Lazebnik.