Lecture 10: 2D Transformation & Alignment

COMP 590/776: Computer Vision
Instructor: Soumyadip (Roni) Sengupta
TA: Mykhailo (Misha) Shvets

Course Website: Scan Me!
Today’s class

• Fitting with outliers – RANSAC
• Warping
• Blending
• HW3 Motivation
Today’s class

• Fitting with outliers – RANSAC
 • Warping
 • Blending
 • HW3 Motivation
Outliers
Matching features

What do we do about the “bad” matches?
Robustness

• Let’s consider the problem of linear regression

Problem: Fit a line to these datapoints

Least squares fit

• How can we fix this?
Idea

• Given a hypothesized line
• Count the number of points that “agree” with the line
 • “Agree” = within a small distance of the line
 • I.e., the inliers to that line

• For all possible lines, select the one with the largest number of inliers
Counting inliers
Counting inliers

Inliers: 3
Counting inliers

Inliers: 20
Translations
RAndom SAmple Consensus

Select *one* match at random, count *inliers*
Random Sample Consensus

Select another match at random, count inliers
RAAndom SAAmple Consensus

Output the translation with the highest number of inliers
Final step: least squares fit

Find average translation vector over all inliers
RANSAC

• Idea:
 • All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 • RANSAC only has guarantees if there are < 50% outliers
 • “All good matches are alike; every bad match is bad in its own way.”
 – Tolstoy via Alyosha Efros
RANSAC

• General version:
 1. Randomly choose s samples
 • Typically $s =$ minimum sample size that lets you fit a model
 2. Fit a model (e.g., line) to those samples
 3. Count the number of inliers that approximately fit the model
 4. Repeat N times
 5. Choose the model that has the largest set of inliers
RANSAC for estimating homography

- RANSAC loop:
 1. Select four feature pairs (at random)
 2. Compute homography H (exact)
 3. Compute inliers where $\text{dist}(p'_i, Hp_i) < \varepsilon$
 4. Keep largest set of inliers
 5. Re-compute least-squares H estimate on all of the inliers
How many rounds?

• If we have to choose s samples each time
 • with an outlier ratio e
 • and we want the right answer with probability p

\[
N \geq \frac{\log(1 - p)}{\log(1 - (1 - e)^s)}
\]

<table>
<thead>
<tr>
<th>s</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

$p = 0.99$
How big is s?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)

<table>
<thead>
<tr>
<th>Name</th>
<th>Matrix</th>
<th># D.O.F.</th>
<th>Preserves:</th>
<th>Icon</th>
</tr>
</thead>
<tbody>
<tr>
<td>translation</td>
<td>$\begin{bmatrix} I & t \end{bmatrix}_{2\times3}$</td>
<td>2</td>
<td>orientation + ⋅⋅⋅</td>
<td></td>
</tr>
<tr>
<td>rigid (Euclidean)</td>
<td>$\begin{bmatrix} R & t \end{bmatrix}_{2\times3}$</td>
<td>3</td>
<td>lengths + ⋅⋅⋅</td>
<td></td>
</tr>
<tr>
<td>similarity</td>
<td>$\begin{bmatrix} sR & t \end{bmatrix}_{2\times3}$</td>
<td>4</td>
<td>angles + ⋅⋅⋅</td>
<td></td>
</tr>
<tr>
<td>affine</td>
<td>$\begin{bmatrix} A \end{bmatrix}_{2\times3}$</td>
<td>6</td>
<td>parallelism + ⋅⋅⋅</td>
<td></td>
</tr>
<tr>
<td>projective</td>
<td>$\begin{bmatrix} \tilde{H} \end{bmatrix}_{3\times3}$</td>
<td>8</td>
<td>straight lines</td>
<td></td>
</tr>
</tbody>
</table>
RANSAC pros and cons

• Pros
 • Simple and general
 • Applicable to many different problems
 • Often works well in practice

• Cons
 • Parameters to tune
 • Sometimes too many iterations are required
 • Can fail for extremely low inlier ratios
 • We can often do better than brute-force sampling
Today’s class

• Fitting with outliers – RANSAC
• Warping
• Blending
• HW3 Motivation
Implementing image warping

- Given a coordinate xform $(x', y') = T(x, y)$ and a source image $f(x, y)$, how do we compute a transformed image $g(x', y') = f(T(x, y))$?
Forward Warping

• Send each pixel \((x, y)\) to its corresponding location \((x', y') = T(x, y)\) in \(g(x', y')\)

• What if pixel lands “between” two pixels?
Forward Warping

• Send each pixel \((x,y)\) to its corresponding location \((x',y') = T(x,y)\) in \(g(x',y')\)

 • What if pixel lands “between” two pixels?
 • Answer: add “contribution” to several pixels, normalize later (splatting)
 • Can still result in holes
Today’s class

• Fitting with outliers – RANSAC
• Warping
• Blending
• HW3 Motivation
Blending

• We’ve aligned the images – now what?
Blending

• Want to seamlessly blend them together
Image Blending
Feathering
Effect of window size
Effect of window size
Good window size

“Optimal” window: smooth but not ghosted
 • Doesn’t always work...
Pyramid blending

Create a Laplacian pyramid, blend each level

Band-pass filtering in spatial domain

Gaussian Pyramid (low-pass images)

Laplacian Pyramid (sub-band images)
Pyramid Blending

Left pyramid

blend

Right pyramid
The diagram illustrates the concept of laplacian levels in the context of pyramids. Each level represents a different scale in the pyramid structure, with levels 4, 2, and 0 shown respectively. The left pyramid is labeled as (a), (b), and (c) for levels 4, 2, and 0 respectively. The right pyramid is labeled as (d), (e), and (f) for the same levels. The blended pyramid, which is a combination of both left and right pyramids, is labeled as (g), (h), and (i) for levels 4, 2, and 0 respectively.
Poisson Image Editing

For more info: Perez et al, SIGGRAPH 2003
Today’s class

• Fitting with outliers – RANSAC
• Warping
• Blending
• HW3 Motivation
Fun with homographies

Original image

St. Petersburg
photo by A. Tikhonov

Virtual camera rotations
Analysing patterns and shapes

What is the shape of the b/w floor pattern?

The floor (enlarged)

Automatically rectified floor

Slide from Criminisi
Analysing patterns and shapes

From Martin Kemp *The Science of Art* (manual reconstruction)

2 patterns have been discovered!
Analysing patterns and shapes

What is the (complicated) shape of the floor pattern?

St. Lucy Altarpiece, D. Veneziano
Slide from Criminisi

Automatically rectified floor
Analysing patterns and shapes

From Martin Kemp, *The Science of Art*
(*manual reconstruction*)
Some panorama examples

“Before SIGGRAPH Deadline” Photo credit: Doug Zongker
Some panorama examples

• Every image on Google Streetview
Slide Credits

• CS5670, Introduction to Computer Vision, Cornell Tech, by Noah Snavely.

• CS 194-26/294-26: Intro to Computer Vision and Computational Photography, UC Berkeley, by Alyosha Efros.