Lecture 3:

Colors: Human Vision \& Computer Vision

COMP 590/776: Computer Vision
Instructor: Soumyadip (Roni) Sengupta
TA: Mykhailo (Misha) Shvets

Etymology

$\underbrace{\text { PHOTOGRAPHY }}_{\text {lign }}$

Camera = light-measuring device

[^0]
This assumption is made often in computer vision

- Shape from shading
- HDR imaging
- Image matching
- Color constancy
- Applications relying on color
- Image delubrring
- Etc ...

image of object

surface normals
 From Lu et al, CVPR'10

Camera = light-measuring device?

\$ Portrait Mode	2. Soft Skin Mode	顑 Transform Mode
(A) Self-portrait Mode	7 Scenery Mode	Panorama Assist Mode
[2] Sports Mode	* Night Portrait Mode	\therefore Night Scenery Mode
(10) Food Mode	${ }^{+1}{ }^{4}$ Party Mode	\% 0 if Candle Light Mode
${ }^{3}{ }^{2}$ Baby Mode 1/2	51 Pet Mode	\triangle Sunset Mode
Fi High Sensitivity Mode	[) High-speed Burst Mode	[7] Flash Burst Mode
${ }^{[7 / 4}$ Starry Sky Mode	* Fireworks Mode	0 Beach Mode
8. Snow Mode	Aerial Photo Mode	國 Pin Hole Mode
- Elilm Grain Mode $^{\text {a }}$	\square High Dynamic Mode	(9) Photo Frame Mode

Camera pipeline photo-finishing routines "Secret recipe" of a camera

Photographs taken from three different cameras with the same aperture, shutter speed, white-balance ,ISO, and picture style.

Modern photography pipeline

Digital cameras

- Digital cameras are not designed to be light-measuring devices
- They are designed to produce visually pleasing photographs
- There is a great deal of processing (photo-finishing) applied in the camera hardware

Today's class

- Eye \& Human Vision
- Pinhole Camera
- Perception of Color
- Quantifying Color
- Commonly Used Color Spaces
- Color Constancy

Today's class

- Eye \& Human Vision
- Pinhole Camera
- Perception of Color
- Ouantifying Color
- Commony Used Color Spaces
- Color Constancy

The Eye

- The human eye is a camera!
- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

Saccadic eye movement

Saccadic eye movement

Biology of color sensations

- Our eye has three receptors (cone cells) that respond to visible light and give the sensation of color

Retina up-close

Cones and rods

- We have additional light sensitive cells called rods that are not responsible for color.
- Rods are used in low-light vision.
- Cone cells are most concentrated around the fovea of the eye

Fovea = region of retina where visual activity is the highest, responsible for central vision.

Distribution of Rods and Cones

Rod / Cone sensitivity

Today's class

- Eye \& Human Vision
- Pinhole Camera
- Perception of Color
- Quantifying Color
- Commoniy U'sed Color Spaces
- Color Constancy

Projection

Steve Seitz

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?
- No. This is a bad camera.

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Camera Obscura

- Basic principle known to Mozi (470-390 BC), Aristotle (384322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

Home-made pinhole camera

Why so blurry?

Pinhole photography

Justin Quinnell, The Clifton Suspension Bridge. December 17th 2007 - June 21st 2008

Shrinking the aperture

- Why not make the aperture as small as possible?
- Less light gets through
- Diffraction effects...

Shrinking the aperture

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

The Camera

The Human Eye

	Human Eye	Camera
How does light enter?	Pupil	Aperture
What controls the amount of light?	Iris	Diaphragm
What interprets the image?	Retina	Film
How is the light focused?	Lens	Lens

Credits: https://slideplayer.com/slide/6029035/ \& https://www.knowswhy.com/similarities-between-camera-and-human-eye/

Today's class

- Eye \& Human Vision
- Pinhole Camera
- Perception of Color - Quantifying Color - Commonly Used Color Spaces - Color Constancy

Two types of light-sensitive receptors

Cones

- cone-shaped
- less sensitive
- operate in high light
- color vision

Rods

- rod-shaped
- highly sensitive
- operate at night
- gray-scale vision

Color

Def Color (noun):The property possessed by an object of producing different sensations on the eye as a result of the way it reflects or emits light.

Oxford Dictionary

Color is perceptual

- Color is not a primary physical property on an object
- Red, Green, Blue, Pink, Orange,Atomic Tangerine, Baby Pink, etc., are just words we assign to human color sensations

Which is the "true blue"?

Where do "color sensations" come from?

A very small range of electromagnetic radiation

White light through a prism

Light is separated into "monochromatic" light at different wave lengths.

Light-material interaction

Light-material interaction

Illuminant Spectral Power Distribution (SPD)

- Most types of light "contain" more than one wavelengths.
- We can describe light based on the distribution of power over different wavelengths.

We call our sensation of all of these distributions "white".

Daylight

Halogen

Incandescent

Cool White LED

Fluorescent

Warm White LED

Light-material interaction

Spectral reflectance

- Most materials absorb and reflect light differently at different wavelengths.
- We can describe this as a ratio of reflected vs incident light over different wavelengths.

Light-material interaction

Human color vision

Retinal vs perceived color

This is known as Color Constancy: more later in this lecture

Perceived vs measured brightness by human eye

Human-eye response (measured brightness) is linear.
However, human-eye perception (perceived brightness) is non-linear:

- More sensitive to dark tones.
- Approximately a Gamma function.

Not everyone is trichromat

- Types of color blindness:
- Deuteranopia: missing M cones
- Protanopia: missing L cones
- Tritanopia: missing S cones
- " M " and " L " on the X -chromosome
- Why men are more likely to be color blind
- "L" has high variation, so some women are tetrachromatic
- Some animals have
- 1 (night animals)
- 2 (e.g., dogs)
- 4 (fish, birds)
- 5 (pigeons, some reptiles/amphibians)
- 12 (mantis shrimp)

Trichromacy

Cone primaries $=\mathrm{L}, \mathrm{M}, \mathrm{S}$ Image primaries $=$ R, G, B

Wavelength
Rods and cones act as filters on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
- Each cone yields one number
- How can we represent an entire spectrum with 3 numbers?
- We can't! Most of the information is lost
- As a result, two different spectra may appear indistinguishable
» such spectra are known as metamers

Metamers

by Jeff Beall, Adam Doppelt and Johun F. Hughes

Tristimulus color theory

Grassman's Law states that a source color can be matched by a linear combination of three independent "primaries".

Source light \#1

Three lights (shown as lightbulbs) serve
as primaries. Each light has intensity, or
weights, R1, G1, B1 to match the
source light \#1 perceived color.
If we combined source The amount of each primary needed to match the new source light \#3 is
lights $1 \& 2$ to get
a new source light 3

[^1]
Today's class

- Eye \& Human Vision
- Pinhole Camera
- Perception of Color
- Quantifying Color
- Commonly Used Color Spaces

Radiometry vs. photometry

- Radiometry

- Quantitative measurements of radiant energy
- Often shown as spectral power distributions (SPD)
- Measures either light coming from a source (radiance) or light falling on a surface (irradiance)
- Photometry/ colorimetry
- Quantitative measurement of perceived radiant energy based on human's sensitivity to light
- Perceived in terms of "brightness" (photometry) and color (colorimetry)

Quantifying color

- We still need a way to quantify color \& brightness
- SPDs go through a"black box" (human visual system) and are perceived as color
- The only way to quantify the "black box" is to perform a human study

CIE RGB color matching

CIE RGB color matching

For some test colors, no mix of the primaries could give a match! For these cases, the subjects were ask to add primaries to the test color match.

This was treated as a negative value of the primary added to the test color.

CIE RGB results

Plots are of the mixing coefficients of each primary needed to produce the corresponding monochromatic light at that wavelength.

Note that these functions have been scaled such that area of each curve is equal.

CIE RGB 2-degree Standard Observer (based onWright/Guild's data)

CIE RGB results

Negative values -- the three primaries used did not span the full range of perceptual colors.

CIE 1931 XYZ

- In 1931, the CIE met and approved defining a new canonical basis, termed XYZ that would be derived fromWright-Guild's CIE RGB data
- Properties desired in this conversion:
- White point defined at $X=1 / 3, Y=1 / 3, Z=1 / 3$
- Y would be the luminosity function $(V(\lambda))$
- Quite a bit of freedom in selecting these $X Y Z$ basis
- In the end, the adopted transform was:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
0.4887180 & 0.3106803 & 0.2006017 \\
0.1762044 & 0.8129847 & 0.0108109 \\
0.0000000 & 0.0102048 & 0.9897952
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]_{\text {CIE } 1931 \text { RGB }}
$$

Nice article see:Fairman et al"How the CIE 1931 Color-Matching FunctionsWere Derived fromWright-Guild Data", Color Research \&Application, 1997

CIE xy (chromaticity)

$$
\begin{gathered}
x=\frac{X}{X+Y+Z} \\
y=\frac{Y}{X+Y+Z} \\
(X, Y, Z) \longleftrightarrow(x, y, Y) \\
\text { chromaticity } \uparrow \\
\text { luminance/brightness } \\
\text { Perspective projection of 3D retinal } \\
\text { color space to two dimensions. }
\end{gathered}
$$

CIE xy chromaticity diagram

This gives us the familiar horseshoe shape of visible colors as a 2D plot. Note the axis are x \& y

Point "E" represents where $X=Y=Z$ have equal energy ($X=0.33, Y=0.33, Z=0.33$)

CIE XYZ "white point"

In the 1930s, CIE had a bad habit of over using the variables X, Y. Note that x, y are chromaticity coordinates, x, y (with the b-arabove) are the matching functions, and X, Y are the imaginary SPDs of CIE XYZ.

Fast forward 80+ years

- CIE 1931 XYZ, CIE 1931 xyY (2-degree standard observer) color spaces have stood the test of time
- Many other studies have followed (most notably - CIE 1965 XYZ 10- degree standard observer), ...
- But in the literature (and in this tutorial) you'll find CIE 1931 XYZ color space remains the preferred standard

What is perhaps most amazing?

- 80+ years of CIE XYZ and it is all based on the experiments by the "standard observers"
- How many standard observers were used?
$100,500,1000$?

A Standard Observer

CIE XYZ is based on 17 standard observers

10 byWright, 7 by Guild

Today's class

- Eye \& Human Vision
- Pinhole Camera
- Perception of Color
- Quantifying Color
- Commonly Used Color Spaces

CIE XYZ and RGB

- While CIE XYZ is a canonical color space,images/devices rarely work directly with XYZ
- XYZ are not real primaries
- RGB primaries dominate the industry
- We are all familiar with the RGB color cube

But by now, you should realize that Red, Green, Blue have no quantitative meaning. We need to know their corresponding SPDs or CIE XYZ values.

Color spaces: RGB

Default color space

Color gamuts

The RGB values span a subspace of CIE-XYZ to define the devices gamut.

Color gamuts

If you have RGB values, they are specific to a particular device .

Gamuts of various common industrial RGB spaces

The problem with RGBs visualized in chromaticity space

Device 1 -
Device 2
Device 3 - -

RGB values have no meaning if the primaries between devices are not the same!

HSV: Perceptual Color Space

Hue

Name of the color
(yellow, red, blue,green,...)

Value/Lightness/Brightness

How light or dark a color is.

Saturation/Chroma/Color Purity

How "strong" or "pure" a color is.

Image from Benjamin Salley
A page from a Munsell Student Color Set

HSV

- Perceptual dimensions of color:
- Hue: the "kind" of color, regardless of its attributes
- Saturation: Purity, "colorfulness"
- Value (or lightness): total amount of light
- Use rgb2hsv() and hsv2rgb() in Matlab, in Python w/skimage

Color spaces: HSV

Intuitive color space

S

Color spaces: L*a*b*

"Perceptually uniform"* color space

$$
\begin{aligned}
& \mathrm{L}=\text { Luma (Lightness) } \\
& \mathrm{a}=\text { Red to Green } \\
& \mathrm{b}=\text { Blue to yellow }
\end{aligned}
$$

L
($a=0, b=0$)
a
($\mathrm{L}=65, \mathrm{~b}=0$)
b
($\mathrm{L}=65, \mathrm{a}=0$)

CIE LAB space

- CIE LAB space (also written as CIE L*****) was introduced as a perceptually uniform color space
- Why?
- CIE XYZ provides a means to map between a physical SPD (radiometric measurement) to a colorimetric measurement (perceptual)
- However, a uniform change in CIE XYZ space does result in an uniform change in perceived color difference (see diagram)
- CIE Lab transforms CIE to a new space where color (and brightness) differences are more uniform.

The ellipses shows the range of colors (around the center of the ellipse) that would be perceived as the same. We can see that CIE XYZ this is not uniform.

David MacAdam performed experiments into color perception. This plot is known as the MacAdam ellipses.

CIE LAB

Chromaticity comparison's between CIE LAB and CIE XYX

I want to train Deep Learning algorithms, why should I care beyond RGB color spaces?

- If you are training ML systems to do object recognition, detection, etc, you shouldn't care.
- But if you are solving different Image Processing \& Computational Photography tasks, you should!
- CIE Lab color space is commonly used for tasks like:
- Image Colorization
- Intrinsic Image Decomposition
- Reflectance Estimation
- Many papers often use other color spaces instead of RGB. It can help in easier learning.

Color error metric - CIE 2000 Delta $\mathrm{E}(\Delta \mathrm{E})$

- The CIE defined a color error metric in 2000 based on the CIE LAB space. This returns a color error between 0-100.
- You will see this referred to as CIEDE2000, CIEDE, \triangle E, Delta E,DE, .
- Delta E 2000 interpretation:

Delta E	Perception
$<=1.0$	Not perceptible by human eyes.
$1-2$	Perceptible through close observation.
$2-10$	Perceptible at a glance.
$11-49$	Colors are more similar than opposite
100	Colors are exact opposite

Color error metric - CIE 2000 Delta E ($\Delta \mathrm{E}$)

- How do you use this in practice?
- As a metric or loss function to measure color/chromaticity of the reconstructed image w.r.t. GT image.
"Measure Albedo in the Wild: Filling the Gap in Albedo Evaluation", ongoing work in my group which uses this metric to evaluate a Deep Learning algorithm's ability to estimate 'true' color of an object.

Today's class

- Eye \& Human Vision
- Pinhole Camera
- Perception of Color
- Quantifying Color
- Commonliv1Ised Color Spaces
- Color Constancy

An object's SPD

- In a real scene, an object's SPD is a combination of the its reflectance properties and scene illumination

Our earlier example ignored illumination (we could assume it was pure white light).

Illuminant 2 SPD

Color constancy

- Our visual system is able to compensate for the illumination

Chromatic adaptation example

Chromatic adaptation example

What color is the "The Dress"?

https://en.wikipedia.org/wiki/The dress

Two Scene Interpretations of \#thedress Warm
illumination
Blue\&black
material

Color constancy/chromatic adaptation

- Color constancy (also called chromatic adaptation) is the ability of the human visual system to adapt to scene illumination
- This ability is not perfect, but it works fairly well
- Image sensors do not have this ability (it must be performed as a processing step,.i.."white balance")

Note: Our eyes do not adjust to the illumination in the photograph -- we adjust to the viewing conditions of the scene we are viewing the photograph!

Color temperature

- Illuminants are often described by their "color temperature"
- This mapping is based on theoretical "blackbody radiators" that produce SPDs for a given temperature -- expressed in Kelvin (K)
- We map light sources (both real and synthetic) to their closest color temperature (esp in Photography/Video production)

$$
B_{\lambda}(\lambda, T)=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{\frac{h c}{\lambda k_{\mathrm{B}} T}}-1}
$$

Plank's law
Spectral density of electromagnetic radiation emitted by a blackbody radiator at a given temperatureT.

Color temperature

Kelvin Color Temperature Scale

Typical description of color temperature used in photography \& lighting sources.

Lighting industry uses color temperature

Usage of color temperature in these ads relate to the perceived color of the bulb's light.The heat output of a typical LED bulb is between 60C-100C (~333-373K).

White point

- A white point is a CIE XYZ or CIE XYY value of an ideal"white target" or "white reference"
- The idea of chromatic adaptation is to make white points the same between scenes.

Color constancy (at its simplest)

- (Johannes) Von Kries transform
- Compensate for each channel corresponding to the L,M,S cone response

$$
\left[\begin{array}{c}
L_{2} \\
M_{2} \\
S_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 / L_{1 w} & 0 & 0 \\
0 & 1 / M_{1 w} & 0 \\
0 & 0 & 1 / S_{1 w}
\end{array}\right]\left[\begin{array}{c}
L_{1} \\
M_{1} \\
S_{1}
\end{array}\right]
$$

\nearrow		i
$\mathrm{L}_{2}, \mathrm{M}_{2}, \mathrm{~S}_{2}$ is the new LMS	$\mathrm{L}_{1 w}, \mathrm{M}_{1 w}, \mathrm{~S}_{1 w}$ is the LMS	L_{1}, M_{1}, S_{1} are the input
response with the illuminant	response to "white" under	LMS space under an
divided "out". In this case	this illuminant	illuminant.
white is equal to [1,1,1]		

Illuminant to illuminant mapping

- More appropriate would be to map to another illuminant's LMS response (e.g.in the desired viewing condition)
- $(\mathrm{LMS})_{1}$ under an illuminant with white-response $\left(\mathrm{L}_{1 w}, \mathrm{M}_{1 w}, \mathrm{~S}_{1 w}\right)$
- $(\mathrm{LMS})_{2}$ under an illuminant with white-response $\left(\mathrm{L}_{2 w}, \mathrm{M}_{2 w}, \mathrm{~S}_{2 w}\right)$

Example

Simulation of different "white points" by photographing a"white" object under different illumination.

Example

Input

Adapted to "target" illuminant

Target Illumination

Today's class

- Eye \& Human Vision
- Pinhole Camera
- Perception of Color
- Quantifying Color
- Commonly Used Color Spaces
- Color Constancy

Next Class: A typical color imaging pipeline

NOTE:This diagram represents the steps applied on a typical consumer camera pipeline. ISPs may apply these steps in a different order or combine them in various ways. A modern camera ISP will undoubtedly be more complex, but will almost certainly implement these steps in some manner.

Watch these 5 min videos!

- Color in 5 min: https://youtu.be/6tTNgvAl1y4
- Displays in 5 min: https://youtu.be/1albYPL9Cfg
- Pinhole Camera in 5 min: https://youtu.be/F5WA26W4JaM

Additional Reading

Sec 3.1, 3.2, 3.3 from Forsyth \& Ponce

Interested in Color \& Perception of Color in Data Visualization?

UNC VisuaLab

danielle.szafir@cs.unc.edu | https://cu-visualab.org/

Use models of perception to create tools for data science

Slide Credits

- "Understanding Color and the In-Camera Image Processing Pipeline for Computer Vision", by Michael S. Brown, ICCV 2019 tutorial.
- CS 194-26/294-26: Intro to Computer Vision and Computational Photography, UC Berkeley, by Alyosha Efros.
- CS 15-463, 663, 862, CMU, by Computational Photography, Ioannis Gkioulekas.

[^0]: Simple models of a camera assumes an image is a "quantitative measurement" of scene radiance.

[^1]: Source light \#3

