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Filters

Many Options:

- Mean Filtering

- Gaussian Filtering
- Bilateral Filtering

Blur
Linear Filtering: e
inear Filtering:
=> Cross-correlation => * R
& Convolution il

Original

Laplacian Filtering

Sharpening



Mean vs. Gaussian filtering




Sharpen filter
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Edge Aware Smoothing: Gaussian vs Bilateral

Smooths everything nearby Smooths everything nearby
(even edges) (even edges)
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Aliasing
* Images are Signals in 2D

* Signals contain low frequency (smooth regions) and high frequency
(sharp changes in intensity)

* To accurately downsample a signal/image, # of samples >= highest
frequency in the signal. (Nyquist Rate!)

* |f your task is to downsample by 1/4, you do not have enough
samples, thus the downsampled image is inaccurate especially in
terms of high frequency components.



128 x 128 = 64x64

A real problem!
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Credit: @jaakkolehtinen



https://twitter.com/jaakkolehtinen

Solution =
(Gaussian pre-
filtering

e Solution: filter
the image, then
subsample
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Gaussian Pyramids:

- Efficient representation for searching and

sorting through a large (millions) volume of
images.

- Very useful in image retrieval
A powerful generic concept of representing

images with hierarchical features capturing
high-level details to low-level structures.



Partial Derivatives Can be implemented as

a convolution operation

or 1




Today’s Lecture

* Edge Detection
* Fourier Analysis (in 1D)
* Fourier Analysis (in 2D)

* Applications of Fourier Analysis
* Hybrid Image
* JPG Compression



Today’s Lecture

* Edge Detection



Edge detection

* Convert a 2D image into a set of curves

— Extracts salient features of the scene
— More compact than pixels



Origin of edges

surface normal discontinuity

. < depth discontinuity
O /—(\|= surface color discontinuity
\____,.// illumination discontinuity

* Edges are caused by a variety of factors




Images as functions...

* Edges look like steep cliffs



Characterizing edges

e An edge is a place of rapid change in the image intensity function

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
Source: L. Lazebnik extrema of derivative



Image Gradient & Edges

H — tan_1 (ggj;/gi) Direction of image gradients

Why is there structure at 1 and not at 2?

Source: D. Fouhey



Effects of noise

* Consider a single row or column of the image
* Plotting intensity as a function of position gives a signal

f(x)
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Where is the edge?

Source: S. Seitz



Solution: smooth first

Sigma = 50
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Noise + Smoothing

Smoothed Input

Source: D. Fouhey



How many convolutions here?

Sigma = 50

f*g

d
a(f*g)

Convolution Kernel Signal

Differentiation
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Derivative theorem of convolution

ge(hx f) = (55h) = f

* This saves us one operation:

Kernel

Convolution

Sigma = 50
I

Signal
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Derivative of Gaussian filter
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2D edge detection filters
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Derivative of Gaussian filter
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The Sobel operator
e Common approximation of derivative of Gaussian
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e The standard definition of the Sobel operator omits the 1/8 term
— doesn’t make a difference for edge detection
— the 1/8 term is needed to get the right gradient magnitude



Sobel operator: example

Source: Wikipedia



Image with Edge Edge Location

Derivatives detect Smoothed derivative removes
edge and noise nOise, but blurs edge

Image + Noise



Demo:

original image

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Image credit: Joseph Redmon


http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/

Finding edges

where is the edge?

smoothed gradient magnitude



Get Orientation at Each Pixel

* Get orientation (below, threshold at minimum gradient magnitude)

theta = atan2(gy, gx)
360

Gradient orientation angle




Non-maximum supression

Differentiation
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* Check if pixel is local maximum along gradient direction

* requires interpolating pixels p and r




Before Non-max Suppression




After Non-max Suppression




iIse exists!

Still no




Thresholding edges

Still some noise

Only want strong edges

2 thresholds, 3 cases
e R>T:strong edge
e R<ThbutR>t: weak edge
e R<t:noedge

Strong edges are edges!
Weak edges are edges
iff they connect to strong
* Look in some neighborhood
(usually 8 closest)



Canny edge
detector

1. Filter image with derivative of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):
* Define two thresholds: low and high

* Use the high threshold to start edge curves and
the low threshold to continue them

Source: D. Lowe, L. Fei-Fei, J. Redmon



Canny edge detector

* Our first computer vision pipeline!
e Still a widely used edge detector in computer vision

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern
Analysis and Machine Intelligence, 8:679-714, 1986.

* Depends on several parameters:

high threshold
low threshold

() : width of the Gaussian blur


http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Canny edge detector
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Today’s Lecture

* Fourier Analysis (in 1D)



Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 30 meters becomes the portrait

of Abraham Lincoln”, 1976










Spatial Frequencies and Perception

B 1S

Campbell-Robson contrast sensitivity curve




A nice set of basis

Teases away fast vs. slow changes in the image.

This change of basis has a special name...



Jean Baptiste Joseph Fourier (1768—1\830)
a

e had cra zy idea ( 1807} ...the manner in which the author arrives at these equations

is not exempt of difficulties and... his analysis to integrate

o Any univariate functior them still leaves something to be desired on the score of
can be rewritten as a weighte generality and even rigour.
sum of sines and cosines of Y,
different frequencies. i O

e Don’t believe it?

* Neither did Lagrange,
Laplace, Poisson and
other big wigs

* Not translated into
English until 1878!

e Butit’s (mostly) true!
e called Fourier Series




A sum of sines
 Our building block:

- Asin(ax + @)

* Add enough of them to get
any signal f(x) you want!

* How many degrees of
freedom?

 What does each control?

f(target)=

f1 + f2+ f3...+ fn+...




Fourier Transform

*We want to understand the frequency w of our signal. So, let’s
reparametrize the signal by w instead of x:

f(x) — Fourier — F(w)
Transform

For every w from O to inf, F(w) holds the amplitude A

and phase ¢ of the corresponding sine Asin(ax + @)
* How does F hold both?

F(o)=R(w)+il(w)
A=+|R(®) + (@)’ é=tan" ——2

We can always go back:

F(a)) , Inverse Fourier , f(x)
Transform




Time and Frequency

« example : g(¢r) = sin(2pf't) + (1/3)sin(2p(3f) 1)
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Time and Frequency

« example : g(?) = sin(2pf 1) + (1/3)sin(2p(3f) 1)
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Frequency Spectra

« example : g(?) = sin(2pf 1) + (1/3)sin(2p(3f) 1)
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Frequency Spectra

* Usually, frequency is more interesting than the phase




Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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FT: Just a change of basis
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IFT: Just a change of basis
M * F(aw) = f(x)
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Finally: Scary Math

—+oo
Fourier Transform : F(®) = jf(x)e_lmx dx

—0Q

“+o0
Inverse Fourier Transform : f(x) = % J.F ((D)ei X do
U
e ..notreally scary: " = cos(ax)+isin(ax)
* is hiding our old friend: sin(ax + ¢)

P ' — Asi
phase can be encoded cos(x) +Qsin(x) = Asin(x + @)

by sin/cos pair — A=t P10 ¢=tan1(§j

e So it’s just our signal f(x) times sine at frequency @



Discrete Fourier Transform

X[k = 3 z[nje-2mn/N,

n=0

[

Discrete Fourier Transform in 2D

The discrete Fourier transform (DFT) of an image f of size M x N is an image F' of same size defined

as.



Today’s Lecture

* Fourier Analysis (in 2D)
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Discrete Fourier Transform (DFT) in 2D
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Credits: https://vincmazet.github.io/bip/filtering/fourier.html



Amplitude Spectrum of DFT




Amplitude Spectrum of DFT




Filtering & Frequency Domain

Low pass Filtering with Gaussian Filter High pass Filtering with Laplacian Filter



The importance of Phase

nagnitude

phase

Slide: Andrew Zisserman



The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg*h]=F[g]F[A]

* The inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two inverse
Fourier transforms

F'[ghl=F '[g]*F '[A]

e Convolution in spatial domain is equivalent to
multiplication in frequency domain!



2D convolution theorem example

fix,y) [F(sS,)|
h(x,y) [H(ss,)|
g(x,y)

[G(sws,)|




Filtering

Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Gaussian - Box filter n




Fourier Transform pairs

Spatial domain Frequency domain
f(z) F(s) = / f(2)e 27T qy
“bOX(X) A SinC(S)_OO
n X / \ S Causes aliasing!
+ gauss(x; o) A gauss(s; 1/0)
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What is the best low pass filter?

' sinc(s) tbox(x)
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intensity image

Gaussian

filter: gaussian

filtered image
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log fit magnitude of filtered image




intensity image
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Box Filter

filter: box
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Today’s Lecture

* Edge Detection
* Fourier Analysis (in 1D)
* Fourier Analysis (in 2D)

* Applications of Fourier Analysis
* Hybrid Image
* JPG Compression



Application: Hybrid Images (in HW)

What you See... From Far Away Up Close

| see an
"V angry guy

Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006



Application: Hybrid Images

Gaussian Filter

A. Oliva, A. Torralba, P.G. Schyns,

“Hybrid Images,” SIGGRAPH 2006

Laplacian Filter

1

unit impulse

Gaussian Laplacian of Gaussian


http://cvcl.mit.edu/hybridimage.htm

Image Compression

89k



Lossy Image Compression (JPEG)
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Block-based Discrete Cosine Transform (DCT)



Using DCT in JPEG

* The first coefficient B(0,0) is the DC component, the average intensity

* The top-left coeffs represent low frequencies, the bottom right — high frequencies
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e DCT is very similar to DFT (Fourier Transform), but instead of using complex
exponentials (e’¥) we use real-valued cosine functions.

* Asignal's DCT representation tends to have more of its energy concentrated in a
small number of coefficients compared DFT, thus more suitable for compression.



JPEG compression comparison




Slide Credits

* CS5670, Introduction to Computer Vision, Cornell Tech, by Noah
Snavely.

* CS 194-26/294-26: Intro to Computer Vision and Computational
Photography, UC Berkeley, by Alyosha Efros.

* CS 15-463, 663, 862, CMU, by Computational Photography, loannis
Gkioulekas.



https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://graphics.cs.cmu.edu/courses/15-463/2018_fall/

Suggested Reading

e Fourier Transform in 5 minutes (video)
* Szeliski, Chapter 3.1, 3.2, 3.3, 3.4, 3.5
* Forsyth & Ponce, Chapter 4, Chapter 5.1, 5.2, 5.3



https://www.youtube.com/watch?v=JciZYrh36LY

