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Many Options:
- Mean Filtering
- Gaussian Filtering
- Bilateral Filtering

Laplacian Filtering

Filters



Mean vs. Gaussian filtering



Sharpen filter

Gaussianscaled impulse
Sharpen filter
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Edge Aware Smoothing: Gaussian vs Bilateral

Smooths everything nearby 
(even edges)

Smooths everything nearby 
(even edges)



Aliasing
• Images are Signals in 2D
• Signals contain low frequency (smooth regions) and high frequency 

(sharp changes in intensity)
• To accurately downsample a signal/image, # of samples >= highest 

frequency in the signal. (Nyquist Rate!)
• If your task is to downsample by 1/4, you do not have enough 

samples, thus the downsampled image is inaccurate especially in 
terms of high frequency components.



A real problem! 128 x 128 à 64x64

Open-CV:
default, bicubic, Lanczos4

Pytorch:
bilinear, bicubic PIL: Lanczos

Credit: @jaakkolehtinen

https://twitter.com/jaakkolehtinen


Solution = 
Gaussian pre-
filtering

• Solution: filter 
the image, then
subsample blur

F0 H*

subsample blur subsample …
F1

F1 H*

F2F0



Gaussian Pyramids:

- Efficient representation for searching and 
sorting through a large (millions) volume of 
images.

- Very useful in image retrieval

- A powerful generic concept of representing 
images with hierarchical features capturing 
high-level details to low-level structures.
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Can be implemented as 
a convolution operation
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Edge detection

• Convert a 2D image into a set of curves
– Extracts salient features of the scene
– More compact than pixels



Origin of edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity



Images as functions…

• Edges look like steep cliffs



Characterizing edges
• An edge is a place of rapid change in the image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivativeSource: L. Lazebnik



Image Gradient & Edges

Why is there structure at 1 and not at 2?

1
2

Source: D. Fouhey

Direction of image gradients



Effects of noise
• Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz



Solution: smooth first

• To find edges, look for peaks in )( gf
dx
d

*

f

g

f * g

)( gf
dx
d

*

Source: S. Seitz



Noise in 2D

Noisy Input Ix via [-1,0,1] Zoom

Source: D. Fouhey



Noise + Smoothing

Smoothed Input Ix via [-1,0,1] Zoom

Source: D. Fouhey



How many convolutions here? 

f

g

f * g

)( gf
dx
d

*

can we reduce this?



Derivative theorem of convolution

• This saves us one operation:



Derivative of Gaussian filter

* [1 -1]    = 



2D edge detection filters

Gaussian
derivative of Gaussian (x)



Derivative of Gaussian filter

x-direction y-direction



The Sobel operator
• Common approximation of derivative of Gaussian

-1 0 1

-2 0 2
-1 0 1

1 2 1

0 0 0
-1 -2 -1

• The standard definition of the Sobel operator omits the 1/8 term
– doesn’t make a difference for edge detection
– the 1/8 term is needed to get the right gradient magnitude



Sobel operator: example

Source: Wikipedia





Example

original image

Demo:  http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/ Image credit: Joseph Redmon

http://bigwww.epfl.ch/demo/ip/demos/edgeDetector/


Finding edges

where is the edge?

smoothed gradient magnitude



Get Orientation at Each Pixel
• Get orientation (below, threshold at minimum gradient magnitude)

theta = atan2(gy, gx)

0

360

Gradient orientation angle



• Check if pixel is local maximum along gradient direction
• requires interpolating pixels p and r

Non-maximum supression



Before Non-max Suppression



After Non-max Suppression



Still noise exists!



Thresholding edges
• Still some noise
• Only want strong edges
• 2 thresholds, 3 cases

• R > T: strong edge
• R < T but R > t: weak edge
• R < t: no edge

• Strong edges are edges!
• Weak edges are edges 

iff they connect to strong
• Look in some neighborhood

(usually 8 closest)



Canny edge 
detector

1. Filter image with derivative of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):
• Define two thresholds: low and high
• Use the high threshold to start edge curves and 

the low threshold to continue them

Source: D. Lowe, L. Fei-Fei, J. Redmon



Canny edge detector

• Our first computer vision pipeline!
• Still a widely used edge detector in computer vision

• Depends on several parameters:

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 8:679-714, 1986. 

: width of the Gaussian blur

high threshold
low threshold

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Canny edge detector

Canny with Canny with original 

• The choice of         depends on desired behavior
– large       detects “large-scale” edges
– small       detects fine edges

Source: S. Seitz
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Salvador Dali
“Gala Contemplating the Mediterranean Sea, 
which at 30 meters becomes the portrait 
of Abraham Lincoln”, 1976







Spatial Frequencies and Perception

Campbell-Robson contrast sensitivity curve



A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.



Jean Baptiste Joseph Fourier (1768-1830)
• had crazy idea (1807):
• Any univariate function 

can be rewritten as a weighted 
sum of sines and cosines of 
different frequencies. 

• Don’t believe it?  
• Neither did Lagrange, 

Laplace, Poisson and 
other big wigs

• Not translated into 
English until 1878!

• But it’s (mostly) true!
• called Fourier Series

...the manner in which the author arrives at these equations 
is not exempt of difficulties and... his analysis to integrate 
them still leaves something to be desired on the score of 

generality and even rigour.

Laplace

Lagrange
Legendre



A sum of sines
• Our building block:
•

• Add enough of them to get 
any signal f(x) you want!

• How many degrees of 
freedom?

• What does each control?

)+fwxAsin(



Fourier Transform
•We want to understand the frequency w of our signal.  So, let’s 
reparametrize the signal by w instead of x:

)+fwxAsin(

f(x) F(w)Fourier 
Transform

F(w) f(x)Inverse Fourier 
Transform

For every w from 0 to inf, F(w) holds the amplitude A 
and phase f of the corresponding sine  

• How does F hold both? 

)()()( www iIRF +=
22 )()( ww IRA +±=

)(
)(tan 1

w
wf

R
I-=

We can always go back:



Time and Frequency

• !"#$%&!'('g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)
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= +



Frequency Spectra

• !"#$%&!'('g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +



Frequency Spectra

• Usually, frequency is more interesting than the phase
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Frequency Spectra



FT: Just a change of basis

.

.

.

* =

M * f(x) = F(w)

F x N N x 1 F x 1



IFT: Just a change of basis

.

.

.

* =

M-1 * F(w) = f(x)

N x F F x 1 N x 1



Finally: Scary Math

• …not really scary:
• is hiding our old friend:

• So it’s just our signal f(x) times sine at frequency w
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)+fwxsin(
phase can be encoded

by sin/cos pair



Discrete Fourier Transform in 2D

Discrete Fourier Transform
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Discrete Fourier Transform (DFT) in 2D

Credits: https://vincmazet.github.io/bip/filtering/fourier.html



Amplitude Spectrum of DFT



Amplitude Spectrum of DFT



Filtering & Frequency Domain

Low pass Filtering with Gaussian Filter High pass Filtering with Laplacian Filter



The importance of Phase

Slide: Andrew Zisserman



The Convolution Theorem
• The Fourier transform of the convolution of two 

functions is the product of their Fourier transforms

• The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two inverse 
Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg =*

][F][F][F 111 hggh --- *=



2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter

Filtering



Fourier Transform pairs

What is the best low pass filter?

Causes aliasing!



Gaussian



Box Filter
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Aude Oliva & Antonio Torralba & Philippe G Schyns, SIGGRAPH 2006

Application: Hybrid Images (in HW)



Application: Hybrid Images
Gaussian Filter

Laplacian Filter

• A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

Gaussianunit impulse Laplacian of Gaussian

http://cvcl.mit.edu/hybridimage.htm


Image Compression

89k



Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

cut up into 8x8 blocks

For each block
• Compute DCT coefficients.
• Coarsely quantize

• Many high frequency 
components will become 
zero

• Encode (e.g., with Huffman 
coding)



Using DCT in JPEG 
• The first coefficient B(0,0) is the DC component, the average intensity
• The top-left coeffs represent low frequencies, the bottom right – high frequencies

• DCT is very similar to DFT (Fourier Transform), but instead of using complex 
exponentials (e-jx) we use real-valued cosine functions.

• A signal's DCT representation tends to have more of its energy concentrated in a 
small number of coefficients compared DFT, thus more suitable for compression.



JPEG compression comparison

89k 12k



Slide Credits

• CS5670, Introduction to Computer Vision, Cornell Tech, by Noah 
Snavely.

• CS 194-26/294-26: Intro to Computer Vision and Computational 
Photography, UC Berkeley, by Alyosha Efros.

• CS 15-463, 663, 862, CMU, by Computational Photography, Ioannis
Gkioulekas.

https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://graphics.cs.cmu.edu/courses/15-463/2018_fall/


Suggested Reading

• Fourier Transform in 5 minutes (video)
• Szeliski, Chapter 3.1, 3.2, 3.3, 3.4, 3.5
• Forsyth & Ponce, Chapter 4, Chapter 5.1, 5.2, 5.3

https://www.youtube.com/watch?v=JciZYrh36LY

