
Lecture 7: Features 1

COMP 590/776: Computer Vision
Instructor: Soumyadip (Roni) Sengupta

TA: Mykhailo (Misha) Shvets

Course Website:
Scan Me!



Recap



Original

Sharpening

Blur

Shifted left by 1 pixel

Linear Filtering: 
Cross-correlation 
& Convolution



Convolution

• Same as cross-correlation, except that the kernel is “flipped” 
(horizontally and vertically)

• Convolution is commutative and associative

Cross-correlation



Aliasing
• Images are Signals in 2D
• Signals contain low frequency (smooth regions) and high frequency 

(sharp changes in intensity)
• To accurately downsample a signal/image, # of samples >= 2*highest 

frequency in the signal. (Nyquist Rate!)
• If your task is to downsample by 1/4, you do not have enough 

samples, thus the downsampled image is inaccurate especially in 
terms of high frequency components.



Partial Derivatives
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Can be implemented as 
a convolution operation



Noise in 2D

Noisy Input Ix via [-1,0,1] Zoom

Source: D. Fouhey



Noise + Smoothing

Smoothed Input Ix via [-1,0,1] Zoom

Source: D. Fouhey



Canny edge detector

1. Filter image with derivative of Gaussian 

2. Find magnitude and orientation of gradient

3. Non-maximum suppression

4. Linking and thresholding (hysteresis):
• Define two thresholds: low and high
• Use the high threshold to start edge curves and 

the low threshold to continue them

Source: D. Lowe, L. Fei-Fei, J. Redmon



Fourier Transform
Teases away fast vs. slow changes in the image.



A sum of sines
• Our building block:
•

• Add enough of them to get 
any signal f(x) you want!

)+fwxAsin(



Scary Math

Discrete Fourier Transform



Amplitude Spectrum of DFT



Application: Hybrid Images
Gaussian Filter

Laplacian Filter

• A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

Gaussianunit impulse Laplacian of Gaussian

http://cvcl.mit.edu/hybridimage.htm


Today: Feature extraction—Corners and blobs



Motivation: Automatic panoramas

Credit: Matt Brown



GigaPan:
http://gigapan.com/

Also see Google Zoom Views: 
https://www.google.com/culturalinstitute/beta/project/gigapixels

Motivation: Automatic panoramas

http://gigapan.com/
https://www.google.com/culturalinstitute/beta/project/gigapixels


Steps of creating a Panorama 
(For this & next week)

This is your next homework assignment!



Why extract features?

• Motivation: panorama stitching
• We have two images – how do we combine them?



Why extract features?

• Motivation: panorama stitching
• We have two images – how do we combine them?

Step 1: extract features
Step 2: match features



Why extract features?

• Motivation: panorama stitching
• We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images
Step 4: blending images

This Week

Next Week



Content: Today’s class

• Why detect features?
• What is a good feature?
• Harris Corner Detector
• Properties of Harris Corner Detector
• Blob Detector
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Object recognition (David Lowe)



Application: Visual SLAM

• (aka Simultaneous Localization and Mapping)



3D Reconstruction

Internet Photos (“Colosseum”) Reconstructed 3D cameras and points



Augmented Reality



Image matching

by Diva Sian

by swashford

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/swashford/428567562/


Harder case

by Diva Sian by scgbt

http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/


Harder still?



NASA Mars Rover images
with SIFT feature matches

Answer below (look for tiny colored squares…)



Feature matching for object search



Feature matching



More motivation…  
Feature points are used for:

• Image alignment (e.g., mosaics)
• 3D reconstruction
• Motion tracking (e.g. for AR)
• Object recognition
• Image retrieval
• Robot/car navigation
• … other



Content: Today’s class

• Why detect features?
• What is a good feature?
• Harris Corner Detector
• Properties of Harris Corner Detector
• Blob Detector



What makes a good feature?

Features = A set of salient keypoints (pixels) in an image



Local features: main components
1) Detection: Identify the interest points

2) Description: Extract vector feature 
descriptor surrounding each interest 
point

3) Matching: Determine 
correspondence between descriptors 
in two views
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Credit: Kristen Grauman



Advantages of local features

Locality 
• features are local, so robust to occlusion and clutter

Quantity
• hundreds or thousands in a single image

Distinctiveness: 
• can differentiate a large database of objects

Efficiency
• real-time performance achievable



Invariant local features
Find features that are invariant to transformations

• geometric invariance:  translation, rotation, scale
• photometric invariance:  brightness, exposure, …

Feature Descriptors



Want uniqueness

Look for image regions that are unusual
• Lead to unambiguous matches in other images

How to define “unusual”?



Content: Today’s class

• Why detect features?
• What is a good feature?
• Harris Corner Detector
• Properties of Harris Corner Detector
• Blob Detector



Harris corner detector

• C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988



The Basic Idea

• We should easily recognize the point by looking 
through a small window
• Shifting a window in any direction should give a 

large change in intensity



Local measures of uniqueness

Suppose we only consider a small window of pixels
• What defines whether a feature is a good or bad candidate?

Credit: S. Seitz, D. Frolova, D. Simakov



Harris Detector: Basic Idea

“flat” region:
no change in 
all directions

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions



Local measures of uniqueness

“flat” region:
no change in all 
directions

“edge”:  
no change along the 
edge direction

“corner”:
significant change in 
all directions

• How does the window change when you shift it?
• Shifting the window in any direction causes a big change

Credit: S. Seitz, D. Frolova, D. Simakov



Consider shifting the window W by (u,v)
• how do the pixels in W change?
• compare each pixel before and after by

summing up the squared differences (SSD)
• this defines an SSD “error” E(u,v):

• We are happy if this error is high
• Slow to compute exactly for each pixel and each 

offset (u,v)

Harris corner detection:  the math

W
(u,v)

Chris Harris and Mike Stephens (1988). "A Combined Corner and 
Edge Detector". Alvey Vision Conference.



Corner Detection: Mathematics

I(x, y)
E(u, v)

E(0,0)

Change in appearance of window W for the shift [u,v]:
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Corner Detection: Mathematics
Change in appearance of window W for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)
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Corner Detection: Mathematics

We want to find out how this function behaves for 
small shifts

E(u, v)

Change in appearance of window W for the shift [u,v]:
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Taylor Series expansion of I:

If the motion (u, v) is small, then first order approximation is good

Plugging this into the formula on the previous slide…

Small motion assumption

𝑓 𝑥 + 𝑢 ≈ 𝑓 𝑥 + 𝑓! 𝑥 𝑢

𝑥 𝑥 + 𝑢



Corner detection:  the math

Consider shifting the window W by (u,v)
• define an SSD “error” E(u,v):

W
(u,v)



Corner detection:  the math

Consider shifting the window W by (u,v)
• define an SSD “error” E(u,v):

• Thus, E(u,v) is locally approximated as a quadratic error function

W
(u,v)



The surface E(u,v) is locally approximated by a quadratic form. 

The second moment matrix

Let’s try to understand its shape.



Horizontal edge: 

u
v

E(u,v)



Vertical edge: 

u
v

E(u,v)



Interpreting the second moment matrix
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General case
We can visualize H as an ellipse with axis lengths 
determined by the eigenvalues of H and orientation 
determined by the eigenvectors of H

direction of the 
slowest change

direction of the 
fastest change

(lmax)-1/2

(lmin)-1/2

const][ =ú
û

ù
ê
ë

é
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Hvu

Ellipse equation:
lmax, lmin : eigenvalues of H



Quick eigenvalue/eigenvector review
The eigenvectors of a matrix A are the vectors x that satisfy:

The scalar l is the eigenvalue corresponding to x
• The eigenvalues are found by solving:

• In our case, A = H is a 2x2 matrix, so we have

• The solution:

Once you know l, you find x by solving



Corner detection:  the math

Eigenvalues and eigenvectors of H
• Define shift directions with the smallest and largest change in error
• xmax = direction of largest increase in E
• lmax = amount of increase in direction xmax

• xmin = direction of smallest increase in E
• lmin = amount of increase in direction xmin

xmin

xmax



Corner detection:  the math
How are lmax, xmax, lmin, and xmin relevant for feature detection?

• What’s our feature scoring function?



Corner detection:  the math
How are lmax, xmax, lmin, and xmin relevant for feature detection?

• What’s our feature scoring function?
Want E(u,v) to be large for small shifts in all directions

• the minimum of E(u,v) should be large, over all unit vectors [u v]
• this minimum is given by the smaller eigenvalue (lmin) of H



Interpreting the eigenvalues

l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2;
E increases in all 
directions

l1 and l2 are small;
E is almost constant 
in all directions

“Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification of image points using eigenvalues of M:



Visualization of second moment 
matrices



Visualization of second moment 
matrices

Note: axes are rescaled so 
ellipse areas are 
proportional to edge 
energy (i.e., bigger ellipses 
correspond to stronger 
edges)



Corner detection summary
Here’s what you do:

• Compute the gradient at each point in the image
• For each pixel:

• Create the H matrix from nearby gradient values
• Compute the eigenvalues. 
• Find points with large response (lmin > threshold)

• Choose those points where lmin is a local maximum as features



Corner detection summary
Here’s what you do:

• Compute the gradient at each point in the image
• For each pixel:

• Create the H matrix from nearby gradient values
• Compute the eigenvalues. 
• Find points with large response (lmin > threshold)

• Choose those points where lmin is a local maximum as features



The Harris operator
lmin is a variant of the “Harris operator” for feature detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to lmin but less expensive (no square root)
• Called the Harris Corner Detector or Harris Operator
• Lots of other detectors, this is one of the most popular

Alternate Version of Harris Detector M = H



Harris detector: Steps
1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix H in a Gaussian 

window around each pixel 
3. Compute corner response function f or R
4. Threshold f or R
5. Find local maxima of response function 

(nonmaximum suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


The Harris operator

Harris 
operator



Harris detector example



f value (red high, blue low)



Threshold (f > value) 



Find local maxima of f (non-max suppression)



Harris features (in red)



Feature selection

• Distribute points evenly over the image



Adaptive Non-maximal Suppression

• Desired: Fixed # of features per image
• Want evenly distributed spatially…
• Sort points by non-maximal suppression radius

[Brown, Szeliski, Winder, CVPR’05]



Weighting the derivatives

• In practice, using a simple window W doesn’t work too well

• Instead, we’ll weight each derivative value based on its distance from 
the center pixel



Harris Corners – Why so complicated?
• Can’t we just check for regions with lots of gradients in the x and y 

directions?
• No! A diagonal line would satisfy that criteria

Current 
Window



Content: Today’s class

• Why detect features?
• What is a good feature?
• Harris Corner Detector
• Properties of Harris Corner Detector
• Blob Detector



Image transformations
• Geometric

Rotation

Scale

• Photometric
Intensity change



Invariance and equivariance   
• We want corner locations to be invariant to 

photometric transformations and equivariant to 
geometric transformations

• Invariance: image is transformed and corner 
locations do not change

• Equivariance: if we have two transformed 
versions of the same image, features should be 
detected in corresponding locations

• (Sometimes “invariant” and “equivariant” are 
both referred to as “invariant”)

• (Sometimes “equivariant” is called “covariant”)



Harris detector invariance properties: image 
translation

• Derivatives and window function are equivariant

Corner location is equivariant w.r.t. translation



Harris detector invariance properties: image 
rotation

Second moment ellipse rotates but its shape (i.e.
eigenvalues) remains the same

Corner location is equivariant w.r.t. image rotation



Harris detector invariance properties: 
Affine intensity change

• Only derivatives are used à
invariance to intensity shift I ® I + b

• Intensity scaling: I ® a I
R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I ® a I + b



Harris detector invariance properties: scaling

All points will be 
classified as edges

Corner

Neither invariant nor equivariant to scaling



Scale invariant detection
Suppose you’re looking for corners

Key idea:  find scale that gives local maximum of f
• in both position and scale
• One definition of f: the Harris operator



Scale Invariant Detection
• Consider regions (e.g. circles) of different sizes around a point

• Regions of corresponding sizes will look the same in both images



Scale Invariant Detection
• The problem: how do we choose corresponding circles independently

in each image?

• Choose the scale of the “best” corner



Keypoint detection with scale selection
• We want to extract keypoints with characteristic scales that are 

equivariant (or covariant) w.r.t. to scaling of the image

K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. ICCV 2001
T. Lindeberg, Feature detection with automatic scale selection, IJCV 30(2), pp. 77-116, 1998
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https://hal.inria.fr/inria-00548276/file/mikolajcICCV2001.pdf
http://www.nada.kth.se/cvap/abstracts/cvap198.html


Keypoint detection with scale selection
• We want to extract keypoints with characteristic scales that are 

equivariant (or covariant) w.r.t. to scaling of the image
• Approach: compute a scale-invariant response function over 

neighborhoods centered at each location (𝑥, 𝑦) and a range of 
scales (𝜎), find scale-space locations (𝑥, 𝑦, 𝜎) where this function 
reaches a local maximum

• A particularly convenient response function is given by the scale-
normalized Laplacian of Gaussian (LoG) filter:

∇%&'() = 𝜎)
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𝜕)𝑦
𝑔“scale space”



Content: Today’s class

• Why detect features?
• What is a good feature?
• Harris Corner Detector
• Properties of Harris Corner Detector
• Blob Detector



Laplacian of Gaussian
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Source: J. Johnson and D. Fouhey

https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx


Scale-normalized Laplacian
• You need to multiply the LoG by 𝜎! to make responses comparable 

across scales 

∇!"#$% = 𝜎%
𝜕%

𝜕𝑥% 𝑔 +
𝜕%

𝜕%𝑦 𝑔



Laplacian of Gaussian
• “Blob” detector

• Find maxima and minima of LoG operator in space 
and scale

* =

maximum

minima



Scale selection: Characteristic Scale

• We can find the characteristic scale of the blob by convolving it with 
scale-normalized Laplacians at several scales (𝜎) and looking for the 
maximum response

maximum



Scale-space blob detector: Example



Scale-space blob detector: Example



Scale-space blob detector: Example



Find local maxima in 3D position-scale space

K. Grauman, B. Leibe
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Local features: main components
1) Detection: Identify the interest 

points

2) Description: Extract vector 
feature descriptor surrounding 
each interest point.

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )1()1(
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Kristen Grauman

This Class

Next Class:
We will learn
about what is SIFT
feature! The most
famous feature in
Computer Vision!!



Slide Credits

• CS5670, Introduction to Computer Vision, Cornell Tech, by Noah 
Snavely.

• CS 194-26/294-26: Intro to Computer Vision and Computational 
Photography, UC Berkeley, by Alyosha Efros.

• Fall 2022 CS 543/ECE 549: Computer Vision, UIUC, by Svetlana 
Lazebnik.

https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
https://slazebni.cs.illinois.edu/fall22/

