# Lecture 7: Features 1

COMP 590/776: Computer Vision

Instructor: Soumyadip (Roni) Sengupta

TA: Mykhailo (Misha) Shvets



Course Website: Scan Me!

Recap



Blur



Linear Filtering: Cross-correlation & Convolution



Shifted left by 1 pixel



Sharpening

#### Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v] F[i+u,j+v] \qquad \text{Cross-correlation}$$

Convolution is commutative and associative

#### Aliasing

- Images are Signals in 2D
- Signals contain low frequency (smooth regions) and high frequency (sharp changes in intensity)
- To accurately downsample a signal/image, # of samples >= 2\*highest frequency in the signal. (Nyquist Rate!)
- If your task is to downsample by 1/4, you do not have enough samples, thus the downsampled image is inaccurate especially in terms of high frequency components.

#### Partial Derivatives

Can be implemented as a convolution operation



-1 1



 $\frac{\partial f(x,y)}{\partial x}$ 



$$\frac{\partial f(x,y)}{\partial v}$$

or 1

#### Noise in 2D

**Noisy Input** Ix via [-1,0,1] Zoom

Source: D. Fouhey

#### Noise + Smoothing

**Smoothed Input** 



Statement Constitution of the Constitution of

Ix via [-1,0,1]





Zoom





Source: D. Fouhey



# Canny edge detector



- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient



3. Non-maximum suppression



- 4. Linking and thresholding (hysteresis):
  - Define two thresholds: low and high
  - Use the high threshold to start edge curves and the low threshold to continue them

#### Fourier Transform

Teases away fast vs. slow changes in the image.



#### A sum of sines

- Our building block:
- $A\sin(\omega x + \phi)$
- Add enough of them to get any signal f(x) you want!



#### Scary Math

Fourier Transform : 
$$F(\omega) = \int_{-\infty}^{+\infty} f(x)e^{-i\omega x} dx$$

Inverse Fourier Transform : 
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega)e^{i\omega x} d\omega$$

Discrete Fourier Transform 
$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi k n/N}.$$

The discrete Fourier transform (DFT) of an image f of size M imes N is an image F of same size defined as:

$$F(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-j \, 2\pi \left( rac{um}{M} + rac{vn}{N} 
ight)}$$

# Amplitude Spectrum of DFT







# Application: Hybrid Images



#### Today: Feature extraction—Corners and blobs





## Motivation: Automatic panoramas



Credit: Matt Brown

#### Motivation: Automatic panoramas



GigaPan:

http://gigapan.com/

Also see Google Zoom Views:

https://www.google.com/culturalinstitute/beta/project/gigapixels

# Steps of creating a Panorama (For this & next week)

This is your next homework assignment!

## Why extract features?

- Motivation: panorama stitching
  - We have two images how do we combine them?





## Why extract features?

- Motivation: panorama stitching
  - We have two images how do we combine them?



Step 1: extract features Step 2: match features

#### Why extract features?

Motivation: panorama stitching

• We have two images – how do we combine them?



Step 1: extract features

Step 2: match features

Step 3: align images

Step 4: blending images

This Week

Next Week

### Content: Today's class

- Why detect features?
- What is a good feature?
- Harris Corner Detector
- Properties of Harris Corner Detector
- Blob Detector

## Content: Today's class

- Why detect features?
- What is a good feature?
- Harris Corner Detector
- Properties of Harris Corner Detector
- Blob Detector

## Object recognition (David Lowe)





## Application: Visual SLAM

• (aka Simultaneous Localization and Mapping)





#### 3D Reconstruction



Internet Photos ("Colosseum")



Reconstructed 3D cameras and points

# Augmented Reality



# Image matching



by <u>Diva Sian</u>



by swashford

#### Harder case





by <u>Diva Sian</u> by <u>scgbt</u>

## Harder still?



# Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches

## Feature matching for object search





# Feature matching



#### More motivation...

#### Feature points are used for:

- Image alignment (e.g., mosaics)
- 3D reconstruction
- Motion tracking (e.g. for AR)
- Object recognition
- Image retrieval
- Robot/car navigation
- ... other



## Content: Today's class

- Why detect features?
- What is a good feature?
- Harris Corner Detector
- Properties of Harris Corner Detector
- Blob Detector



## Local features: main components

1) Detection: Identify the interest points



3) Matching: Determine correspondence between descriptors in two views



$$\mathbf{x}_{1} = [x_{1}^{(1)}, \dots, x_{d}^{(1)}]$$

$$\mathbf{x}_{2} = [x_{1}^{(2)}, \dots, x_{d}^{(2)}]$$



## Advantages of local features

#### Locality

features are local, so robust to occlusion and clutter

#### Quantity

• hundreds or thousands in a single image

#### Distinctiveness:

can differentiate a large database of objects

#### Efficiency

real-time performance achievable

### Invariant local features

Find features that are invariant to transformations

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...



## Want uniqueness

Look for image regions that are unusual

• Lead to unambiguous matches in other images

How to define "unusual"?

## Content: Today's class

- Why detect features?
- What is a good feature?
- Harris Corner Detector
- Properties of Harris Corner Detector
- Blob Detector

#### Harris corner detector

• C.Harris, M.Stephens. "A Combined Corner and Edge Detector". 1988



#### The Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity



## Local measures of uniqueness

Suppose we only consider a small window of pixels

• What defines whether a feature is a good or bad candidate?







#### Harris Detector: Basic Idea







"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

## Local measures of uniqueness

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change



"flat" region: no change in all directions



"edge": no change along the edge direction



"corner":
significant change in all directions

#### Harris corner detection: the math

#### Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

- We are happy if this error is high
- Slow to compute exactly for each pixel and each offset (u,v)



# Corner Detection: Mathematics Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$





# Corner Detection: Mathematics Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^{2}$$





# Corner Detection: Mathematics Change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

We want to find out how this function behaves for small shifts

## Small motion assumption

Taylor Series expansion of *I*:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u, v) is small, then first order approximation is good

$$I(x+u,y+v) \approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

$$\approx I(x,y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$
short

shorthand:  $I_x = \frac{\partial I}{\partial x}$ 



Plugging this into the formula on the previous slide...

#### Consider shifting the window W by (u,v)

• define an SSD "error" *E(u,v)*:



$$E(u,v) = \sum_{\substack{(x,y) \in W}} [I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum_{\substack{(x,y) \in W}} [I(x,y) + I_{x}u + I_{y}v - I(x,y)]^{2}$$

$$\approx \sum_{\substack{(x,y) \in W}} [I_{x}u + I_{y}v]^{2}$$

#### Consider shifting the window W by (u,v)

• define an SSD "error" *E(u,v)*:

$$E(u,v) \approx \sum_{(x,y)\in W} [I_x u + I_y v]^2$$

$$\approx Au^2 + 2Buv + Cv^2$$



$$A = \sum_{(x,y)\in W} I_x^2 \qquad B = \sum_{(x,y)\in W} I_x I_y \qquad C = \sum_{(x,y)\in W} I_y^2$$

• Thus, E(u,v) is locally approximated as a quadratic error function

#### The second moment matrix

 $(x,y) \in W$ 

The surface E(u,v) is locally approximated by a quadratic form.

$$E(u,v) \approx Au^2 + 2Buv + Cv^2$$
 
$$\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
 
$$A = \sum_{(x,y)\in W} I_x^2$$
 
$$H$$
 
$$B = \sum_{(x,y)\in W} I_x I_y$$
 
$$C = \sum_{(x,y)\in W} I_y^2$$

Let's try to understand its shape.

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$



Horizontal edge: 
$$I_x=0$$

$$H = \left| \begin{array}{cc} 0 & 0 \\ 0 & C \end{array} \right|$$



$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$



Vertical edge: 
$$I_{y}=0$$

$$H = \left[ \begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right]$$



## Interpreting the second moment matrix

 Consider the axis-aligned case (gradients are either horizontal or vertical):

$$\frac{u^2}{\left(a^{-1/2}\right)^2} + \frac{v^2}{\left(b^{-1/2}\right)^2} = 1$$



#### General case

We can visualize *H* as an ellipse with axis lengths determined by the *eigenvalues* of *H* and orientation determined by the *eigenvectors* of *H* 



$$\begin{bmatrix} u & v \end{bmatrix} & H & \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$



## Quick eigenvalue/eigenvector review

The **eigenvectors** of a matrix **A** are the vectors **x** that satisfy:

$$Ax = \lambda x$$

The scalar  $\lambda$  is the **eigenvalue** corresponding to **x** 

The eigenvalues are found by solving:

$$det(A - \lambda I) = 0$$

• In our case, **A** = **H** is a 2x2 matrix, so we have

$$\det \begin{bmatrix} h_{11}-\lambda & h_{12} \\ h_{21} & h_{22}-\lambda \end{bmatrix} = 0$$
 • The solution: 
$$\lambda_{\pm} = \frac{1}{2} \left[ (h_{11}+h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11}-h_{22})^2} \right]$$

Once you know  $\lambda$ , you find **x** by solving

$$\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

$$E(u,v) pprox \left[ egin{array}{c|cccc} u & v \end{array} \right] \left[ egin{array}{c|cccc} A & B & u & v \end{array} \right] \left[ egin{array}{c|cccc} u & v \end{array} \right] \left[ egin{array}{ccccc} u & v \end{array} \right] \left[ egin{array}{c|cccc} u & v \end{array} \right] \left[ egin{array}{c|ccccc} u & v \end{array} \right] \left[ egin{array}{c|cccc} u &$$

#### Eigenvalues and eigenvectors of H

- Define shift directions with the smallest and largest change in error
- $x_{max}$  = direction of largest increase in E
- $\lambda_{max}$  = amount of increase in direction  $x_{max}$
- $x_{min}$  = direction of smallest increase in E
- $\lambda_{min}$  = amount of increase in direction  $x_{min}$

How are  $\lambda_{max}$ ,  $x_{max}$ ,  $\lambda_{min}$ , and  $x_{min}$  relevant for feature detection?

• What's our feature scoring function?

How are  $\lambda_{max}$ ,  $x_{max}$ ,  $\lambda_{min}$ , and  $x_{min}$  relevant for feature detection?

What's our feature scoring function?

Want E(u,v) to be large for small shifts in all directions

- the minimum of E(u,v) should be large, over all unit vectors  $[u \ v]$
- this minimum is given by the smaller eigenvalue ( $\lambda_{min}$ ) of H



## Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:



# Visualization of second moment matrices



# Visualization of second moment matrices



Note: axes are rescaled so ellipse areas are proportional to edge energy (i.e., bigger ellipses correspond to stronger edges)

## Corner detection summary

#### Here's what you do:

- Compute the gradient at each point in the image
- For each pixel:
  - Create the *H* matrix from nearby gradient values
  - Compute the eigenvalues.
  - Find points with large response ( $\lambda_{min}$  > threshold)
- Choose those points where  $\lambda_{min}$  is a local maximum as features



 $H = \sum_{(x,y)\in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$ 

## Corner detection summary

#### Here's what you do:

- Compute the gradient at each point in the image
- For each pixel:
  - Create the *H* matrix from nearby gradient values
  - Compute the eigenvalues.
  - Find points with large response ( $\lambda_{min}$  > threshold)
- Choose those points where  $\lambda_{min}$  is a local maximum as features



## The Harris operator

 $\lambda_{min}$  is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The *trace* is the sum of the diagonals, i.e.,  $trace(H) = h_{11} + h_{22}$
- Very similar to  $\lambda_{min}$  but less expensive (no square root)
- Called the *Harris Corner Detector* or *Harris Operator*
- Lots of other detectors, this is one of the most popular

## Harris detector: Steps

- 1. Compute Gaussian derivatives at each pixel
- 2. Compute second moment matrix *H* in a Gaussian window around each pixel
- 3. Compute corner response function *f* or *R*
- 4. Threshold *f* or *R*
- 5. Find local maxima of response function (nonmaximum suppression)

## The Harris operator



## Harris detector example



f value (red high, blue low)



## Threshold (f > value)



## Find local maxima of f (non-max suppression)



## Harris features (in red)



## Feature selection

• Distribute points evenly over the image



#### Adaptive Non-maximal Suppression

- Desired: Fixed # of features per image
  - Want evenly distributed spatially...
  - Sort points by non-maximal suppression radius [Brown, Szeliski, Winder, CVPR'05]



(a) Strongest 250



(b) Strongest 500



(c) ANMS 250, r = 24



(d) ANMS 500, r = 16

## Weighting the derivatives

• In practice, using a simple window W doesn't work too well

$$H = \sum_{(x,y)\in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

• Instead, we'll weight each derivative value based on its distance from the center pixel

$$H = \sum_{(x,y)\in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$



## Harris Corners – Why so complicated?

- Can't we just check for regions with lots of gradients in the x and y directions?
  - No! A diagonal line would satisfy that criteria



## Content: Today's class

- Why detect features?
- What is a good feature?
- Harris Corner Detector
- Properties of Harris Corner Detector
- Blob Detector

## Image transformations

• Geometric

#### **Rotation**



#### Scale

Photometric
 Intensity change









## Invariance and equivariance

- We want corner locations to be invariant to photometric transformations and equivariant to geometric transformations
  - Invariance: image is transformed and corner locations do not change
  - Equivariance: if we have two transformed versions of the same image, features should be detected in corresponding locations
  - (Sometimes "invariant" and "equivariant" are both referred to as "invariant")
  - (Sometimes "equivariant" is called "covariant")



# Harris detector invariance properties: image translation



• Derivatives and window function are equivariant

Corner location is equivariant w.r.t. translation

# Harris detector invariance properties: image rotation



Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is equivariant w.r.t. image rotation

## Harris detector invariance properties: Affine intensity change



• Only derivatives are used  $\rightarrow$  invariance to intensity shift  $I \rightarrow I + b$ 

• Intensity scaling:  $I \rightarrow a I$ 





 $I \rightarrow a I + b$ 

Partially invariant to affine intensity change

## Harris detector invariance properties: scaling



Neither invariant nor equivariant to scaling

#### Scale invariant detection

Suppose you're looking for corners



Key idea: find scale that gives local maximum of f

- in both position and scale
- One definition of *f*: the Harris operator

#### Scale Invariant Detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images



#### Scale Invariant Detection

• The problem: how do we choose corresponding circles *independently* in each image?

• Choose the scale of the "best" corner



## Keypoint detection with scale selection

 We want to extract keypoints with characteristic scales that are equivariant (or covariant) w.r.t. to scaling of the image



K. Mikolajczyk and C. Schmid. <u>Indexing based on scale invariant interest points</u>. ICCV 2001 T. Lindeberg, <u>Feature detection with automatic scale selection</u>, *IJCV* 30(2), pp. 77-116, 1998

## Keypoint detection with scale selection

- We want to extract keypoints with characteristic scales that are equivariant (or covariant) w.r.t. to scaling of the image
- Approach: compute a *scale-invariant* response function over neighborhoods centered at each location (x, y) and a range of scales  $(\sigma)$ , find *scale-space locations*  $(x, y, \sigma)$  where this function reaches a local maximum
- A particularly convenient response function is given by the scalenormalized Laplacian of Gaussian (LoG) filter:





$$\nabla_{\text{norm}}^2 = \sigma^2 \left( \frac{\partial^2}{\partial x^2} g + \frac{\partial^2}{\partial^2 y} g \right)$$

## Content: Today's class

- Why detect features?
- What is a good feature?
- Harris Corner Detector
- Properties of Harris Corner Detector
- Blob Detector

## Laplacian of Gaussian



Source: J. Johnson and D. Fouhey

## Scale-normalized Laplacian

• You need to multiply the LoG by  $\sigma^2$  to make responses comparable across scales



$$\nabla_{\text{norm}}^2 = \sigma^2 \left( \frac{\partial^2}{\partial x^2} g + \frac{\partial^2}{\partial^2 y} g \right)$$

## Laplacian of Gaussian

• "Blob" detector



• Find maxima and minima of LoG operator in space and scale

### Scale selection: Characteristic Scale

• We can find the *characteristic scale* of the blob by convolving it with *scale-normalized* Laplacians at several scales ( $\sigma$ ) and looking for the maximum response



## Scale-space blob detector: Example



## Scale-space blob detector: Example



sigma = 11.9912

## Scale-space blob detector: Example



### Find local maxima in 3D position-scale space



## Local features: main components

This Class

1) Detection: Identify the interest points



Next Class:
We will learn
about what is SIFT
feature! The most
famous feature in
Computer Vision!!

Description: Extract vector  $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$  feature descriptor surrounding each interest point.



3) Matching: Determine correspondence between descriptors in two views



#### Slide Credits

- <u>CS5670, Introduction to Computer Vision</u>, Cornell Tech, by Noah Snavely.
- <u>CS 194-26/294-26</u>: Intro to Computer Vision and Computational Photography, UC Berkeley, by Alyosha Efros.
- Fall 2022 CS 543/ECE 549: Computer Vision, UIUC, by Svetlana Lazebnik.