
Lecture 8: Features 2

COMP 590/776: Computer Vision
Instructor: Soumyadip (Roni) Sengupta

TA: Mykhailo (Misha) Shvets

Course Website:
Scan Me!

Recap

Why extract features?

• Motivation: panorama stitching
• We have two images – how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images
Step 4: blending images

This Week

Next Week

Local features: main components
1) Detection: Identify the interest points

2) Description: Extract vector feature
descriptor surrounding each interest
point

3) Matching: Determine
correspondence between descriptors
in two views

],,[)1()1(
11 dxx !=x

],,[)2()2(
12 dxx !=x

Credit: Kristen Grauman

e.g. corners

How do we measure corner?

“flat” region:
no change in all
directions

“edge”:
no change along the
edge direction

“corner”:
significant change in
all directions

• Take a window W, and shift it in all directions by (u,v) pixels
• Corner = where shifting window in all directions causes

significant change.

Credit: S. Seitz, D. Frolova, D. Simakov

Corner Detection: Mathematics
For every pixel (x,y) in an image consider a window W. Shift the window by (u,v) in
every direction and measure the change in pixel intensities using:

Computing this with for loop is expensive.

Let’s assume (u,v) shift is relatively small, and use Taylor series approximation to obtain:

2nd moment matrix

Corner Detection: Understanding H

a-1/2

b-1/2

Major axisM
in

or
 a

xi
s

𝑢 𝑣 𝑎 0
0 𝑏

𝑢
𝑣 = 1

𝑢!

𝑎"#/! ! +
𝑣!

𝑏"#/! ! = 1

direction of the

slowest change

direction of the
fastest change

(lmax)
-1/2(lmin)

-1/2

lmax, lmin : eigenvalues of H

const][=ú
û

ù
ê
ë

é
v
u

Hvu

Interpreting the eigenvalues of H

l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2;
E increases in all
directions

l1 and l2 are small;
E is almost constant
in all directions

“Edge”
l1 >> l2

“Edge”
l2 >> l1

“Flat”
region

Classification of image points using eigenvalues of M:

Harris Corner detector: Steps
1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix H in a Gaussian

window around each pixel
3. Compute corner response function f or R

4. Threshold f or R
5. Find local maxima of response function

(nonmaximum suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Properties of Harris: Invariance and equivariance

• We want corner locations to be invariant to
photometric transformations and equivariant to
geometric transformations
• Invariance: image is transformed and corner

locations do not change
• Equivariance: if we have two transformed

versions of the same image, features should be
detected in corresponding locations

• Harris detector is equivariant to translation and rotation.
• Harris detector is somewhat invariant to intensity change (I’ =a*I +b).
• Harris detector is NOT equivariant to scaling.

Keypoint detection with scale selection
Sc

al
e-

in
va

ria
nt

 re
sp

on
se

fu

nc
tio

n

Characteristic scale = scale at which the Harris operator f/R is maximum.

Approach: compute a scale-invariant response function over neighborhoods
centered at each location (𝑥, 𝑦) and a range of scales (𝜎), find scale-space
locations (𝑥, 𝑦, 𝜎) where this function reaches a local maximum.

“scale space”

Today’s class

• SIFT detector
• SIFT descriptor
• Feature Matching
• Evaluating Results

Today’s class

• SIFT detector
• SIFT descriptor
• Feature Matching
• Evaluating Results

Laplacian of Gaussian

𝜕
𝜕𝑦 𝑔

𝜕
𝜕𝑥 𝑔

Gaussian 𝑔
𝜕!

𝜕!𝑦 𝑔

𝜕!

𝜕!𝑥 𝑔

𝜕!

𝜕!𝑥
𝑔 +

𝜕!

𝜕!𝑦
𝑔

+

Source: J. Johnson and D. Fouhey

https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_detectors.pptx

Scale-normalized Laplacian
• You need to multiply the LoG by 𝜎! to make responses comparable

across scales

∇!"#$% = 𝜎%
𝜕%

𝜕𝑥% 𝑔 +
𝜕%

𝜕%𝑦 𝑔

Laplacian of Gaussian
• “Blob” detector

• Find maxima and minima of LoG operator in space
and scale

* =

maximum

minima

covariantNote: The LoG and DoG operators
are both rotation equivariant

Approximating Laplacian of Gaussian

Find local maxima in 3D position-scale space

K. Grauman, B. Leibe

)()(ss yyxx LL +

s

s2

s3

s4

s5

Þ List of
(x, y, s)

SIFT: Scale-invariant feature transform

D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV 60 (2), pp. 91-110, 2004
D. Lowe. Object recognition from local scale-invariant features. ICCV 1999

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www-staff.informatik.uni-frankfurt.de/asa/seminare/Literatur/L99-Lowe_SIFT_1999.pdf

• Approximate LoG with a difference of
Gaussians (DoG)
• Laplacian:
• 𝜎! 𝐺"" 𝑥, 𝑦, 𝜎 + 𝐺##(𝑥, 𝑦, 𝜎)
• DoG:
• 𝐺 𝑥, 𝑦, 𝑘𝜎 − 𝐺 𝑥, 𝑦, 𝜎

• Compute DoG via an image pyramid

SIFT detector

• In each Octave you progressively blur the image
• To go to next Octave you downsample the image by x2

Today’s class

• SIFT detector
• SIFT descriptor
• Feature Matching
• Evaluating Results

SIFT for matching
• The main goal of SIFT is to enable image matching in the presence of

significant transformations
• To recognize the same keypoint in multiple images, we need to match

appearance descriptors or “signatures” in their neighborhoods
• Descriptors that are locally invariant w.r.t. scale and rotation can handle a

wide range of global transformations

SIFT for matching

• SIFT detector returns a characteristic scale that can be normalized
out, but no characteristic orientation

Invariant descriptors
• We looked at invariant / equivariant detectors

• Most feature descriptors are also designed to be invariant to:
• Translation, 2D rotation, scale

• They can usually also handle
• Limited 3D rotations (SIFT works up to about 60 degrees)
• Limited affine transforms (some are fully affine invariant)
• Limited illumination/contrast changes

Basic idea:
• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient - 90°) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations

Scale Invariant Feature Transform

Adapted from slide by David Lowe

0 2p

angle histogram

SIFT descriptor
Full version

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David LoweInspiration: complex neurons in the primary visual cortex

SIFT detector: Example outputs
• Detected keypoints with characteristic scales and orientations:

SIFT for matching

• Extraordinarily robust detection and description technique
• Can handle changes in viewpoint

• Up to about 60 degree out-of-plane rotation
• Can handle significant changes in illumination

• Sometimes even day vs. night
• Fast and efficient—can run in real time
• Lots of code available

Source: N. Snavely

SIFT Example

sift

868 SIFT features

Other descriptors
• HOG: Histogram of Gradients (HOG)
• Dalal/Triggs
• Sliding window, pedestrian detection

• FREAK: Fast Retina Keypoint
• Perceptually motivated
• Can run in real-time; used in Visual SLAM on-device

• LIFT: Learned Invariant Feature Transform
• Learned via deep learning – along with many other recent features

https://arxiv.org/abs/1603.09114

https://arxiv.org/abs/1603.09114

Summary
• Keypoint detection: repeatable and

distinctive
• Corners, blobs, stable regions
• Harris, SIFT

• Descriptors: robust and selective
• spatial histograms of orientation
• SIFT and variants are typically good for

stitching and recognition

Today’s class

• SIFT detector
• SIFT descriptor
• Feature Matching
• Evaluating Results

Which features match?

Feature matching

Given a feature in I1, how to find the best match in I2?
1. Define distance function that compares two descriptors
• Any distance metric, d(f1,f2), would work: L2, L1 loss are

commonly used

2. Test all the features in I2, find the one with min distance
(OR)
2. Test all the features in I2, find top k matches

f1 f2f2'

Feature distance: Ratio Test

I1 I2

• Often matches can be ambiguous. f1 can have similar distance to both f2 and f2’
• Ratio Test:
• Keep top 2 match: f2, f2’
• If d(f1,f2) < 0.75 * d(f1,f2’), then: match f1 with f2 and keep the point.
• Else reject the match as ambiguous

• If d(f1,f2) < Threshold, then: keep this as ‘strong’ match, else: ‘reject’

Image Matching in OpenCV

Read Image

Compute SIFT

Feature matching

Ratio Test

Visualization

Feature matching example

51 matches (thresholded by ratio score)

We’ll deal with
outliers later

RANSAC next week!

Today’s class

• SIFT detector
• SIFT descriptor
• Feature Matching
• Evaluating Results

Evaluating the results
How can we measure the performance of a feature matcher?

50
75

200

feature distance

True/false positives

The distance threshold affects performance
• True positives = # of detected matches that survive the threshold that are correct
• False positives = # of detected matches that survive the threshold that are incorrect

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

We can choose distance threshold to decide if the match is ‘good’ or not.

Example

• Suppose our matcher computes 1,000 matches between two images
• 800 are correct matches, 200 are incorrect (according to an oracle that gives

us ground truth matches)
• A given threshold (e.g., ratio distance = 0.6) gives us 600 correct matches and

100 incorrect matches that survive the threshold
• True positive rate = 600 / 800 = ¾
• False positive rate = 100 / 200 = ½

True/false positives

Suppose we want to maximize true positives. How do we set the threshold? (We keep all
matches with distance below the threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

True positives = # of detected matches that survive the threshold that are correct
False positives = # of detected matches that survive the threshold that are incorrect

True/false positives

Suppose we want to minimize false positives. How do we set the threshold? (We keep all
matches with distance below the threshold.)

50
75

200
false match

true match

feature distance

How can we measure the performance of a feature matcher?

True positives = # of detected matches that survive the threshold that are correct
False positives = # of detected matches that survive the threshold that are incorrect

0.7

Evaluating the results

0 1

1

false positive rate

true
positive

rate

0.1

How can we measure the performance of a feature matcher?

recall

1 - specificity

true positives surviving threshold
total correct matches (positives)

false positives surviving threshold
total incorrect matches (negatives)

0.7

0 1

1

false positive rate

true
positive

rate

true positives surviving threshold
total correct matches (positives)

0.1

false positives surviving threshold
total incorrect matches (negatives)

ROC curve (“Receiver Operator Characteristic”)

How can we measure the performance of a feature matcher?

recall

1 - specificity

Single number: Area Under the
Curve (AUC)

E.g. AUC = 0.87
1 is the best

Evaluating the results

Generated by choosing
different threshold value

ROC curves – summary

• By thresholding the match distances at different thresholds, we can
generate sets of matches with different true/false positive rates
• ROC curve is generated by computing rates at a set of threshold

values swept through the full range of possible threshold
• Area under the ROC curve (AUC) summarizes the performance of a

feature pipeline (higher AUC is better)
• We will come back to this in binary classification, face verification,

object detection, image retrieval, etc.

Local features & matching in Deep Learning era

• Local Features = SuperPoint
• Train first on synthetic data
• Self-supervised learning on real data.

• Feature Matching = SuperGlue

Performance of SuperPoint

Performance of SuperGlue

Slide Credits

• CS5670, Introduction to Computer Vision, Cornell Tech, by Noah
Snavely.
• CS 194-26/294-26: Intro to Computer Vision and Computational

Photography, UC Berkeley, by Alyosha Efros.
• Fall 2022 CS 543/ECE 549: Computer Vision, UIUC, by Svetlana

Lazebnik.

https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
https://slazebni.cs.illinois.edu/fall22/

