## Lecture 11: Camera Models

COMP 590/776: Computer Vision
Instructor: Soumyadip (Roni) Sengupta TA: Mykhailo (Misha) Shvets


Course Website:
Scan Me!

## Breaking out of 2D

...now we are ready to break out of 2D


And enter the real world!


## NeRF in the wild (will get to it towards the end!)



NeRF in the Wild, Martin-Brualla, Radwan et al. CVPR 2021

Nerfstudio: Colab friendly github repo for NeRF (some of you might wanna try this for your project!)

Captured Images: Right


Single iPhone Image with Built-In Flash

Image 1/1


## Lectures in 3D Vision

- Fundamental Concepts (4 lectures)
- Modeling camera and 3D->2D projection (2 lectures)
- 2-view geometry \& Stereo Vision (2 lectures)
-3D Reconstruction techniques (2 lectures)
- Multiview Stereo (MVS)
- Structure from Motion (SfM) + SLAM
- Photometric Stereo (PS)
- Deep Learning + 3D Vision (2 lectures)
- Deep Learning + MVS, SfM, PS
- Neural Radiance Fields (NeRFs)


## Today's Class

- Pinhole \& Lens Camera
- Camera Parameters
- Extrinsic
- Intrinsic
- Perspective Distortion
- Other Projection models
- How to calibrate camera, i.e. estimate camera parameters (next class)


## Today's Class

- Pinhole \& Lens Camera
- Camera Parameters
- Extrinsic
- Intrinsic
- Perspective Distortion
- Other Projection models
- llowto calibrate camera, i.e. estimate camera parameters (next class)


## Pinhole Camera



## Focal length

- Can think of as "zoom"


24 mm

200mm



50 mm


- Also related to field of view (inversely)


## Focal length in practice




135mm


## Focal length = cropping



24 mm


135 mm


## The lens camera



Lenses map "bundles" of rays from points on the scene to the sensor.

## The pinhole camera



Central rays propagate in the same way for both models!

## Important Difference: focal length



In a pinhole camera, focal length is distance between aperture and sensor

## Important Difference: focal length



In a lens camera, focal length is distance where parallel rays intersect

## Describing both lens and pinhole cameras



We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.
- We assume that the focus distance of the lens camera is equal to the focal length of the pinhole camera.

From now on, we will describe cameras as pinhole cameras! Focal length will mean aperture-sensor distance.

## Camera parameters

- How can we model the geometry of a camera?


Three important coordinate systems:

1. World coordinates
2. Camera coordinates
3. Image coordinates


How do we project a given world point $(x, y, z)$ to an image point?

## Coordinate frames

Camera Extrinsic: Change Camera Intrinsic: Change coordinate from world to camera. coordinate from camera to image. (3D -> 3D) M
$K \quad$ (3D $\rightarrow 2 \mathrm{D})$


World coordinates


Camera coordinates


Image coordinates

## Today's Class

## - Pinhole \& Lens Camera

- Camera Parameters
- Extrinsic
- Intrinsic
- Perspective Distortion
- Other Projection models
- H'ow to calibrate camera, i.e estimate camera parameters (next class)


## Camera parameters

To project a point ( $x, y, z$ ) in world coordinates into a camera

- First transform $(x, y, z)$ into camera coordinates
- Need to know
- Camera position (in world coordinates)
- Camera orientation (in world coordinates)
- Together they form Camera Extrinsics
- Then project into the image plane to get image (pixel) coordinates
- Need to know Camera Intrinsics

A camera is a mapping between the 3D world and a 2D image

$$
\begin{array}{ccc}
2 \mathrm{c} \text { image } & \begin{array}{c}
\text { camera } \\
\text { maint }
\end{array} & \begin{array}{c}
\text { 3D world } \\
\text { point }
\end{array}
\end{array}
$$

## $\boldsymbol{x}=\mathbf{P X}$

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

homogeneous
image
$3 \times 1$

Camera
matrix
$3 \times 4$
homogeneous
world point
$4 \times 1$

## Extrinsics

- How do we get the camera to "canonical form"?
- Canonical form: Center of projection at the origin, $x$-axis points right, $y$-axis points down, z-axis points forwards
$X_{w}->$ location of a point in world coordinate.
$\mathbf{X}_{\mathrm{c}}->$ location of a point in camera coordinate.
Step 1: Translate by -c



## Extrinsics

- How do we get the camera to "canonical form"?
- Canonical form: Center of projection at the origin, $x$-axis points right, $y$-axis points down, $z$-axis points forwards


Step 1: Translate by -c

## Extrinsics

- How do we get the camera to "canonical form"?
- Canonical form: Center of projection at the origin, $x$-axis points right, $y$-axis points down, $z$-axis points forwards


Step 1: Translate by -c Step 2: Rotate by R

## Extrinsics

- How do we get the camera to "canonical form"?
- Canonical form: Center of projection at the origin, $x$-axis points right, $y$-axis points down, $z$-axis points forwards


Step 1: Translate by -c Step 2: Rotate by R

## How do we represent 3D rotation?



Euler Angles

## What did we do with 2D rotation?



$$
\begin{aligned}
& \mathbf{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{aligned}
$$

## Rotation matrix in 3D



Order of applying rotation matters

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(composition of 3D rotations is not commutative.)

$R=R_{z}(\alpha) R_{y}(\beta) R_{x}(\gamma)=\left[\right.$| $\cos \alpha^{\text {yaw }}$ |  | $-\sin \alpha$ |
| :---: | :---: | :---: |
| $\sin \alpha$ | $\cos \alpha$ | 0 |
| 0 | 0 | 1 |\(]\left[\begin{array}{ccc}\cos \beta \& 0 \& \sin \beta <br>

0 \& 1 \& 0 <br>
-\sin \beta \& 0 \& \cos \beta\end{array}\right]\left[$$
\begin{array}{ccc}1 & 0 & 0 \\
0 & \cos \gamma & -\sin \gamma \\
0 & \sin \gamma & \cos \gamma\end{array}
$$\right]\)

## How to derive camera extrinsics? [*]

Show on board.
$M=R[I \mid-C]$ (translate first then rotate)
or
$M=[R \mid t]$, where $t=-R C$ (rotate first then translate)

## Coordinate frames

Camera Extrinsic: Change Camera Intrinsic: Change coordinate from world to camera. coordinate from camera to image. (3D -> 3D) M
$K \quad$ (3D $\rightarrow 2 \mathrm{D})$


World coordinates


Camera coordinates


Image coordinates

## The pinhole camera



## The (rearranged) pinhole camera



## Geometric Model: A Pinhole Camera



Figure credit: Peter Hedman

## The (rearranged) pinhole camera



What is the equation for image coordinate x in terms of X ?

## The 2D view of the (rearranged) pinhole camera



What is the equation for image coordinate x in terms of X ?

## The pinhole camera matrix for arbitrary focal length

Relationship from similar triangles:

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}
f X / Z & f Y / Z
\end{array}\right]^{\top}
$$

General camera model in homogeneous coordinates:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{5} & p_{6} & p_{7} & p_{8} \\
p_{9} & p_{10} & p_{11} & p_{12}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

What does the pinhole camera projection look like?

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

## Geometric Model: A Pinhole Camera



## Generalizing the camera matrix

In particular, the camera origin and image origin may be different:

image coordinate system
How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

## Generalizing the camera matrix

In particular, the camera origin and image origin may be different:


How does the camera matrix change?

$$
\mathbf{P}=\left[\begin{array}{cccc}
f & 0 & p_{x} & 0 \\
0 & f & p_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

shift vector
transforming camera origin to image origin

## Typical Intrinsics matrix

## General case



2D affine transform corresponding to a scale by $f$ (focal length) and a translation by ( $c_{x}, c_{y}$ ) (principal point)

Maps 3D rays to 2D pixels
$\alpha$ : aspect ratio (1 unless pixels are not square)
$S$ : skew (0 unless pixels are shaped like rhombi/parallelograms)
$\left(c_{x}, c_{y}\right)$ : principal point ((w/2,h/2) unless optical axis doesn't intersect projection plane at image center)

## Coordinate frames

Camera Extrinsic: Change Camera Intrinsic: Change coordinate from world to camera. coordinate from camera to image. (3D -> 3D) M
$K \quad$ (3D $\rightarrow 2 \mathrm{D})$


World coordinates


Camera coordinates


Image coordinates

## Camera parameters

## A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principal point ( $c_{x}, c_{y}$ ), pixel aspect size $\alpha$
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
s x \\
s y \\
s
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\boldsymbol{\Pi X}
$$



- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations
identity matrix

$$
\boldsymbol{\Pi}=\underset{\text { intrinsics }}{\left[\begin{array}{ccc}
f & s & c_{x} \\
0 & \alpha f & c_{y} \\
0 & 0 & 1
\end{array}\right]} \underset{\text { projection }}{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \underset{\text { rotation }}{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 0
\end{array}\right]} \underset{\text { translation }}{\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 0
\end{array}\right]}
$$

- The definitions of these parameters are not completely standardized
- especially intrinsics-varies from one book to another


## General pinhole camera matrix

## $\mathbf{P}=\mathbf{K}[\mathbf{R} \mid \mathbf{t}]$

$$
\mathbf{P}=\underset{\substack{\text { intrinsic } \\
\text { parameters }}}{\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]} \underset{\substack{\text { extrinsic } \\
\text { parameters }}}{\left[\begin{array}{ccc|c}
r_{1} & r_{2} & r_{3} & t_{1} \\
r_{4} & r_{5} & r_{6} & t_{2} \\
r_{7} & r_{8} & r_{9} & t_{3}
\end{array}\right]}
$$

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3} \\
r_{4} & r_{5} & r_{6} \\
r_{7} & r_{8} & r_{9}
\end{array}\right] \quad \mathbf{t}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right]
$$

3D rotation
3D translation

## Recap

What is the size and meaning of each term in the camera matrix?


## Today's Class

- Pinhole \& Lens Camera
- Camera Darameters
- Extrinsic
- Intrinsic
- Perspective Distortion
- Other Projection models
- How to calibrate camera, i.e. estimate camera parameters (next class)


## The 2D view of the (rearranged) pinhole camera



Perspective distortion: magnification changes with
depth

Perspective projection in 2D
$\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}f X / Z & f Y / Z\end{array}\right]^{\top}$


## Perspective distortion


long focal length

mid focal length

short focal length

## Perspective distortion



http://petapixel.com/2013/01/11/how-focal-length-affects-vour-subjects-apparent-weight-as-seen-with-a-cat/

## Forced perspective



## The Ames room illusion



## The Ames room illusion



## Magnification depends on depth

real-world object



Forced Perspective in movies (VFX)

Forced Perspective in displays


## Projective geometry-what's it good for?

- Uses of projective geometry
- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Camera pose estimation


Dolly Zoom aka Vertigo Effect


Other camera models

## Today's Class

- Pinhole \& Lens Camera
- Camera Darameters
- Extrinsic
- Intrinsic
- Dersnective Distortion
- Other Projection models
- How to calibrate camera, i.e. estimate camera parameters (next class)


## What if...

real-world object


... we continue increasing Z and $f$ while maintaining same magnification?

$$
f \rightarrow \infty \text { and } \frac{f}{Z}=\text { constant }
$$

camera is close to object and has small focal length

perspective
perspective

weak perspective
camera is far from object and has large focal length
increasing focal length


## Different cameras


perspective camera

Weak perspective vs perspective camera
$\left.\begin{array}{|l|lll}y & & \left.\begin{array}{lll}X & Y & Z\end{array}\right]^{\top} \mapsto\left[\begin{array}{lll}{\left[f X / Z_{0} f Y / Z_{0}\right.}\end{array}\right]^{\top} \\ \text { image plane }\end{array} \quad \begin{array}{l}\text { magnification does not } \\ \text { change with deth }\end{array}\right)$

## Comparing camera matrices

Let's assume that the world and camera coordinate systems are the same.

- The perspective camera matrix can be written as:

$$
\mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- The weak perspective camera matrix can be written as:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
1 / d
\end{array}\right] \Rightarrow(d x, d y) \quad \mathbf{P}=\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & Z_{o}
\end{array}\right]
$$

## When can we assume a weak perspective camera?

When the scene (or parts of it) is very far away.


Weak perspective projection applies to the mountains.

## When can we assume a weak perspective camera?

When we use a telecentric lens.


## Orthographic camera

- Special case of weak perspective camera where:
- constant magnification is equal to 1 .
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.


What is the camera matrix in this case?

## Orthographic camera

- Special case of weak perspective camera where:
- constant magnification is equal to 1.
- there is no shift between camera and image origins.
- the world and camera coordinate systems are the same.



## Orthographic projection using a telecentric lens

How do we make the telecentric lens act as an orthographic camera?


We set the sensor distance as:

$$
D^{\prime}=2 f
$$

in order to achieve unit magnification.

## Orthographic projection



## Perspective projection



## Distortion



- Radial distortion of the image
- Caused by imperfect lenses
- Deviations are most noticeable for rays that pass through the edge of the lens



## Radial distortion



- Arrows show motion of projected points relative to an ideal (distortion-free lens)
[Image credit: J. Bouguet http://www.vision.caltech.edu/bouguetj/calib doc/htmls/example.html]


## Correcting radial distortion


from Helmut Dersch

## Today's Class

- Pinhole \& Lens Camera
- Camera Darameters
- Extrinsic
- Intrinsic
- Persnective Distortion
- Other Projection models
- How to calibrate camera, i.e. estimate camera parameters (next class)


## Slide Credits

- CS5670, Introduction to Computer Vision, Cornell Tech, by Noah Snavely.
- CS 194-26/294-26: Intro to Computer Vision and Computational Photography, UC Berkeley, by Angjoo Kanazawa.
- CS 16-385: Computer Vision, CMU, by Matthew O’Toole


## Additional Reading

- Multiview Geometry, Hartley \& Zisserman, Chapter 6.1, 6.2.

Related Readings from the past

- Multiview Geometry, Hartley \& Zisserman, Chapter 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 3.1, 3.2, 4.1, 4.2

