Lecture 12:
Camera Models (cont.)

COMP 590/776: Computer Vision
Instructor: Soumyadip (Roni) Sengupta
TA: Mykhailo (Misha) Shvets

Course Website:

Scan Me!



Today’s Class

* Camera Calibration
* Vanishing Points and Lines



Today’s Class

e Camera Calibration



Big picture: 3 key components in 3D
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Big picture: 3 key components in 3D

@ N
3D Points
(Structure)
- y
i Camera Calibration
® o Pose Estimation
@
(today’s class)
' - .
A s °©
a ~
Correspondences Camera
i (Motion)
- y




Big picture: 3 key components in 3D
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Big picture: 3 key components in 3D
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Big picture: 3 key components in 3D
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Big picture: 3 key components in 3D
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Big picture: 3 key components in 3D
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Structure
(scene geometry)

Motion
(camera parameters)

Measurements
(camera parameters)

Camera Calibration

(Pose Estimation) t t 3Dto 2D
known estimate correspondences
Triangulation . 2D to 2D
(Stereo, Multi-view Stereo) estimate known coorespondences
Reconstruction . . 2D to 2D
(Structure from Motion, SLAM) estimate estimate

coorespondences




Given a single image,
estimate the exact position of the photographer
+ the intrinsics of the camera (focal length)



Geometric camera calibration

Given a set of matched points

{Xi’ ,f[;z} Same setup as homography estimation
(slightly different derivation here)

pointin 3D point in the
space image

and camera model

z = f(X;p) =PX

g Camera
projection parameters )
model matrix

Find the (pose) estimate of

We’'ll use a perspective camera
model for pose estimation



Mapping between 3D point and image points

- - - - X
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(non-linear relation between coordinates)
How can we make these relations linear?



How can we make these relations linear?

Make them linear with algebraic manipulation...
Py X —p3 Xy =0
p{ X —p3 Xz' =0

Now we can setup a system of linear equations
with multiple point correspondences



In matrix form ...

For N points ...

0 —-zX'
XT _yle
0 —z'X;
X, -yX{
T

OT —x’X_][Y
Xy —yYXy

=0

How do we solve

this system?



Solve for camera matrix by

A

& = arg min ||Az||* subject to ||z|* =1

£r
- X;r 0 —.CL"XI -
T T _ )
A= xr= | P
XLy 0 —2'X} | P3|
0 X]—\r/- —y’X} 1

Solution x is the column of V corresponding B T
to smallest singular value of A =UXV

Equivalently, solution x is the Eigenvector ATA
corresponding to smallest Eigenvalue of



P1 P2 P33 P4
Now we have: P=|p5 ps pr Dps

P9 Pio P11 P12

How do you get the intrinsic and extrinsic
parameters from the projection matrix?



Decomposition of the Camera Matrix

P1 P2 P3| P4
P=|ps pe pr | ps
P9 Pio P11 | P12

P = K[R|t]
= K[R| — Rc]
= [M| — Mc]




Decomposition of the Camera Matrix

P1 P2 P3| P4
P=|ps pe pr | ps
P9 Pio P11 | P12

P = K[R|t] letv= [cC
= K[R| — Rc] 1]
— [M| — Mc] Then Pv=Mc—-Mc=0

) ( Y

Find the camera center C Find intrinsic K and rotation R

What is the projection of the
camera center?




Decomposition of the Camera Matrix

p1 D2 P3| P4 |
P=|ps ps D7 | Ds

P9 Pio P11 | P12 _

P = K[R|t]

= K[R| — Rc]

= [M] — Mc]|

Find the camera center C

Pc=0

How do we compute the
camera center from this?

~

s

Find intrinsic K and rotation R




Decomposition of the Camera Matrix

P1 P2 P3| P4
P=|ps pe pr | ps
P9 Pio P11 | P12

P = K[R|t]
= K[R| — Rc]
= [M| — Mc]
 FindthecameracenterC | | Find intrinsic K and rotation R
Pc=0
SVD of P!

c is the singular vector corresponding
to the smallest singular value

. J . J

Note that we will have c as 4D homogenous coordinate. You will need to convert this to 3D heterogenous coordinate.



Decomposition of the Camera Matrix

i P1 P2 P3| P4 ]
P=|ps pe Dpr | ps
P9 Pio P11 | P12 _
P = K[R|t]
= K[R| — Rc]
= M| — Mc]
Find the camera center C 1 r Find intrinsic K and rotation R
Pc=0
¢ M = KR
SVD of P!

c is the singular vector corresponding
to the smallest singular value

Any useful properties of K
and R we can use?




Decomposition of the Camera Matrix

P1 P2 P3| P4
P=|ps ps Dpr | Ds
P9 Pio P11 | P12 _
P = K[R|t]
= K[R| — Rc]
= [M| — Mc]
Find the camera center C Find intrinsic K and rotation R
Pc=0
M = KR
SVD of P! 2 p\
c is the singular vector corresponding right upper  orthogonal

to the smallest singular value

triangle

How do we find K
and R?



Decomposition of the Camera Matrix

P1 P2 P3| P4
P=1|ps ps pr | s
P9 Pio P11 | P12 _
P = K[R|t]
= K[R| — Rc]
= [M| — Mc]
Find the camera center C Find intrinsic K and rotation R
Pc=0
M = KR
SVD of P!
c is the singular vector corresponding .
to the smallest singular value QR decomposition




Geometric camera calibration

Given a set of matched points
{X . . } Where do we get these
1y L

matched points from?

point in 3D point in the
space image

and camera model

= f(X;p) =PX

iecti Camera
projection parameters o

Find the (pose) estimate of

We'll use a perspective camera
model for pose estimation



Calibration using a reference object

Place a known object in the scene:
e identify correspondences between image and scene
e compute mapping from scene to image

Issues:
 must know geometry very accurately
 must know 3D->2D correspondence




Geometric camera calibration

Advantages:
* Verysimple to formulate.
* Analytical solution.

Disadvantages:
 Doesn’t model radial distortion.
* Hard to impose constraints (e.g., known f).
 Doesn’t minimize the correct error function.

For these reasons, nonlinear methods are preferred
e Define error function E between projected 3D points and image positions
— E is nonlinear function of intrinsics, extrinsics, radial distortion

e Minimize E using nonlinear optimization techniques



Geometric camera calibration
(how to solve in practice)

* Step 1: Use SVD to find P from N pairs of x; and X.

 Step 2: Decompose P to obtain individual elements: K (intrinsics), R
(rotation), t (translation).

 Step 3: Formulate a non-linear optimization to obtain optimal set of
(K,R,t) that minimizes the re-projection error:

|| x; - K*R*(X;-t) | |
Initialize the optimization with (K,R,t) obtained from Step 2.



Alternative: Multi-plane calibration

D imane1 [1-4]  [H ES

N image (1-4] [ FS

DY Image | 11-4] [HEES DY Imaget |1-4] [ Ha B3

Advantages:
e Onlyrequires a plane
e Don’t have to know positions/orientations
e Great code available online!

— Matlab version: http://www.vision.caltech.edu/bouguetj/calib doc/index.html

— Also available on OpenCV.
Disadvantage: Need to solve non-linear optimization problem.

Used in Practice for many AR applications


http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

Today’s Class

* Vanishing Points and Lines



Points at infinity
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Vanishing points (1D)

image plane

T~

vanishing point

camera
center

ground plane
* Vanishing point
e projection of a point at infinity
e can often (but not always) project to a finite point in the
image



Vanishing points (2D)
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Vanishing points

image plane
\
_vanishing point V

e

v

camera

center
C

line on ground plane

line on ground plane

* Properties
* Any two parallel lines (in 3D) have the same vanishing point v
* The ray from C through v is parallel to the lines

* An image may have more than one vanishing point
* in fact, every image point is a potential vanishing point



Computing vanishing points

v

N \G

> P=P,+MD



Computing vanishing points

®
v

P
e 0
= P=P,+D

P, +tD,| |[P,/t+D,
P, +tD, P, /t+D,

P = ~
" | P,+tD, P,/t+D,
1 | | Ut
* Properties v=TIP,

* P is a point at infinity, v is its projection
* Depends only on line direction
e Parallel lines Py + tD, P, + tD intersect at P,



One-point perspective




Two-point perspective
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Three-point perspective
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Vanishing lines

* Multiple Vanishing Points
* Any set of parallel lines on the plane define a vanishing point

* The union of all of these vanishing points is the horizon line
e also called vanishing line

* Note that different planes (can) define different vanishing lines



Vanishing lines

* Multiple Vanishing Points
— Any set of parallel lines on the plane define a vanishing point
— The union of all of these vanishing points is the horizon line

e also called vanishing line

— Note that different planes (can) define different vanishing lines



Vanishing Lines




Computing vanishing lines

ground plane

* Properties

* |isintersection of horizontal plane through C with image plane
e Compute | from two sets of parallel lines on ground plane
e All points at same height as C project to |

e points higher than C project above |
* Provides way of comparing height of objects in the scene




Vanishing Lines

1mage

plane




s this parachuter higher or lower than the person taking this picture?




Perspective cues

g A




Perspective cues

g A




Perspective cues

s




Comparing heights

Vanishing
Point

Y : \.




Measuring height

S.4

How high is the camera?
Camera height
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Slide Credits

* CS5670, Introduction to Computer Vision, Cornell Tech, by Noah
Snavely.

* CS 194-26/294-26: Intro to Computer Vision and Computational
Photography, UC Berkeley, by Angjoo Kanazawa.

e CS 16-385: Computer Vision, CMU, by Matthew O’Toole



https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://inst.eecs.berkeley.edu/~cs194-26/
http://16385.courses.cs.cmu.edu/fall2022/

Additional Reading

* Multiview Geometry, Hartley & Zisserman, Chapter 6.1, 6.2.

Related Readings from the past

* Multiview Geometry, Hartley & Zisserman, Chapter 2.1, 2.2, 2.3, 2.4,
2.5,26,2.7,3.1,3.2,4.1,4.2



