Lecture 12: Camera Models (cont.)

COMP 590/776: Computer Vision Instructor: Soumyadip (Roni) Sengupta TA: Mykhailo (Misha) Shvets

Course Website: Scan Me!

Today's Class

- Camera Calibration
- Vanishing Points and Lines

Today's Class

- Camera Calibration
- Vanishing Points and Lines

Stereo Matching

	Structure (scene geometry)	Motion (camera parameters)	Measurements (camera parameters)
Camera Calibration (Pose Estimation)	known	estimate	3D to 2D correspondences
Triangulation (Stereo, Multi-view Stereo)	estimate	known	2D to 2D coorespondences
Reconstruction (Structure from Motion, SLAM)	estimate	estimate	2D to 2D coorespondences

Pose Estimation

Given a single image, estimate the exact position of the photographer + the intrinsics of the camera (focal length)

Geometric camera calibration

Given a set of matched points

 $\{\mathbf{X}_i, \boldsymbol{x}_i\}$

point in the point in 3D image space

Same setup as homography estimation (slightly different derivation here)

and camera model

 $x = f(\mathbf{X}; p) = \mathbf{P}\mathbf{X}$ Camera projection parameters

model

Find the (pose) estimate of

We'll use a perspective camera model for pose estimation

matrix

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

(non-linear relation between coordinates) *How can we make these relations linear?* How can we make these relations linear?

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

Make them linear with algebraic manipulation...

$$oldsymbol{p}_2^{ op} oldsymbol{X} - oldsymbol{p}_3^{ op} oldsymbol{X} y' = 0$$

 $oldsymbol{p}_1^{ op} oldsymbol{X} - oldsymbol{p}_3^{ op} oldsymbol{X} x' = 0$

Now we can setup a system of linear equations with multiple point correspondences

$$p_{2}^{\top} X - p_{3}^{\top} X y' = 0$$

$$p_{1}^{\top} X - p_{3}^{\top} X x' = 0$$
In matrix form ...
$$\begin{bmatrix} X^{\top} & \mathbf{0} & -x' X^{\top} \\ \mathbf{0} & X^{\top} & -y' X^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$
For N points ...
$$\begin{bmatrix} X_{1}^{\top} & \mathbf{0} & -x' X_{1}^{\top} \\ \mathbf{0} & X_{1}^{\top} & -y' X_{1}^{\top} \\ \vdots & \vdots & \vdots \\ X_{N}^{\top} & \mathbf{0} & -x' X_{N}^{\top} \\ \mathbf{0} & X_{N}^{\top} & -y' X_{N}^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$
How the

How do we solve this system?

$$\hat{x} = \underset{x}{\operatorname{arg\,min}} \|\mathbf{A}x\|^2 \text{ subject to } \|x\|^2 = 1$$

$$\mathbf{A} = egin{bmatrix} oldsymbol{X}_1^{ op} & oldsymbol{0} & oldsymbol{X}_1^{ op} & -x'oldsymbol{X}_1^{ op} \ oldsymbol{0} & oldsymbol{X}_1^{ op} & -y'oldsymbol{X}_1^{ op} \ oldsymbol{\vdots} & oldsymbol{x} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \ oldsymbol{0} & oldsymbol{X}_N^{ op} & -x'oldsymbol{X}_N^{ op} \ oldsymbol{0} & oldsymbol{x}_N^{ op} & -y'oldsymbol{X}_N^{ op} \ oldsymbol{x} \end{bmatrix} \qquad oldsymbol{x} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \ oldsymbol{p}_3 \ oldsymbol{y} \end{bmatrix}$$

Solution **x** is the column of **V** corresponding to smallest singular value of

Equivalently, solution **x** is the Eigenvector corresponding to smallest Eigenvalue of

 $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$

 $\mathbf{A}^{\top}\mathbf{A}$

Now we have:
$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

How do you get the intrinsic and extrinsic parameters from the projection matrix?

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

$$\mathbf{P} = \begin{bmatrix} p_{1} & p_{2} & p_{3} & p_{4} \\ p_{5} & p_{6} & p_{7} & p_{8} \\ p_{9} & p_{10} & p_{11} & p_{12} \end{bmatrix}$$
$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}] \qquad \text{Let } \mathbf{v} = \begin{bmatrix} \mathbf{c} \\ & 1 \end{bmatrix}$$
$$= \mathbf{K}[\mathbf{R}|-\mathbf{Rc}] \qquad & 1 \end{bmatrix}$$
$$= [\mathbf{M}|-\mathbf{Mc}] \qquad \text{Then } \mathbf{Pv} = \mathbf{Mc} - \mathbf{Mc} = \mathbf{0}$$

Find the camera center \boldsymbol{C}

What is the projection of the camera center?

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{Pc} = \mathbf{0}$

How do we compute the camera center from this?

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the singular vector corresponding to the smallest singular value

Find intrinsic **K** and rotation **R**

Note that we will have c as 4D homogenous coordinate. You will need to convert this to 3D heterogenous coordinate.

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the singular vector corresponding to the smallest singular value

Find intrinsic **K** and rotation **R**

 $\mathbf{M}=\mathbf{K}\mathbf{R}$

Any useful properties of K and R we can use?

$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$
$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$
$$= \mathbf{K}[\mathbf{R}|-\mathbf{Rc}]$$
$$= [\mathbf{M}|-\mathbf{Mc}]$$

 Find the camera center C
 Find

 Pc = 0
 SVD of P!

 c is the singular vector corresponding to the smallest singular value
 Find the sector corresponding to the smallest singular value

Find intrinsic K and rotation R

$$\mathbf{M} = \mathbf{KR}$$

$$\bigwedge_{\substack{\uparrow \\ \text{right upper orthogonal triangle}}}$$

How do we find K and R?

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the singular vector corresponding to the smallest singular value

Find intrinsic **K** and rotation **R**

$$\mathbf{M} = \mathbf{K}\mathbf{R}$$

QR decomposition

Geometric camera calibration

Given a set of matched points

 $\{\mathbf{X}_i, \boldsymbol{x}_i\}$

Where do we get these matched points from?

point in 3D point in the space image

and camera model

 $x = f(\mathbf{X}; p) = \mathbf{P}\mathbf{X}$ Camera

parameters

projection model Camera matrix

Find the (pose) estimate of

We'll use a **perspective** camera model for pose estimation

Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence

Geometric camera calibration

Advantages:

- Very simple to formulate.
- Analytical solution.

Disadvantages:

- Doesn't model radial distortion.
- Hard to impose constraints (e.g., known f).
- Doesn't minimize the correct error function.

For these reasons, nonlinear methods are preferred

• Define error function E between projected 3D points and image positions

– E is nonlinear function of intrinsics, extrinsics, radial distortion

• Minimize E using nonlinear optimization techniques

Geometric camera calibration (how to solve in practice)

- Step 1: Use SVD to find P from N pairs of x_i and X_i.
- Step 2: Decompose P to obtain individual elements: K (intrinsics), R (rotation), t (translation).
- Step 3: Formulate a non-linear optimization to obtain optimal set of (K,R,t) that minimizes the re-projection error:

Initialize the optimization with (K,R,t) obtained from Step 2.

Alternative: Multi-plane calibration

Advantages:

- Only requires a plane
- Don't have to know positions/orientations
- Great code available online!
 - Matlab version: <u>http://www.vision.caltech.edu/bouguetj/calib_doc/index.html</u>
 - Also available on OpenCV.

Disadvantage: Need to solve non-linear optimization problem.

Used in Practice for many AR applications

Today's Class

- Camera Calibration
- Vanishing Points and Lines

Points at infinity

- Vanishing point
 - projection of a point at infinity
 - can often (but not always) project to a finite point in the image

- Properties
 - Any two parallel lines (in 3D) have the same vanishing point v
 - The ray from **C** through **v** is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point

- Depends only on line *direction*
- Parallel lines $P_0 + tD$, $P_1 + tD$ intersect at P_{∞}

One-point perspective

Two-point perspective

Three-point perspective

Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the *horizon line*
 - also called vanishing line
 - Note that different planes (can) define different vanishing lines

Vanishing lines

- Multiple Vanishing Points
 - Any set of parallel lines on the plane define a vanishing point
 - The union of all of these vanishing points is the *horizon line*
 - also called vanishing line
 - Note that different planes (can) define different vanishing lines

Computing vanishing lines

- Properties
 - I is intersection of horizontal plane through C with image plane
 - Compute I from two sets of parallel lines on ground plane
 - All points at same height as **C** project to **I**
 - points higher than C project above I
 - Provides way of comparing height of objects in the scene

Vanishing Lines

Is this parachuter higher or lower than the person taking this picture?

Perspective cues

Perspective cues

Perspective cues

Comparing heights

Slide Credits

- <u>CS5670, Introduction to Computer Vision</u>, Cornell Tech, by Noah Snavely.
- <u>CS 194-26/294-26: Intro to Computer Vision and Computational</u> <u>Photography</u>, UC Berkeley, by Angjoo Kanazawa.
- <u>CS 16-385: Computer Vision</u>, CMU, by Matthew O'Toole

Additional Reading

• Multiview Geometry, Hartley & Zisserman, Chapter 6.1, 6.2.

Related Readings from the past

• Multiview Geometry, Hartley & Zisserman, Chapter 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 3.1, 3.2, 4.1, 4.2