Lecture 13: Two-view Geometry

COMP 590/776: Computer Vision

Instructor: Soumyadip (Roni) Sengupta

TA: Mykhailo (Misha) Shvets

Course Website: Scan Me!

Image Coordinates

Camera Coordinates

World Coordinates

$$\mathbf{x}_i = egin{bmatrix} x_i \ y_i \end{bmatrix}$$
 Perspective Projection $\mathbf{X}_c = egin{bmatrix} x_c \ y_c \ z_c \end{bmatrix}$ Coordinate Transformation $\mathbf{X}_w = egin{bmatrix} x_w \ y_w \ z_w \end{bmatrix}$
$$egin{bmatrix} f_{x} & 0 & o_x & 0 \ 0 & f_y & o_y & 0 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$egin{bmatrix} R_{3 \times 3} & \mathbf{t} \ \mathbf{0}_{1 \times 3} & 1 \end{bmatrix}$$

Last lecture: How to calibrate the camera?

Intrinsics

Extrinsics

Slide inspired by Shree Nayar

Now that our cameras are calibrated, can we find the 3D scene point of a pixel?

You know we can't, but we know it'll be... on the ray!

Camera coord frame

Ray

3D to 2D: (point)
$$u = f_x \frac{x_c}{z_c} + o_x \\ v = f_y \frac{y_c}{z_c} + o_y$$

2D to 3D: (ray) Back projection

$$x = \frac{z}{f_x}(u - o_x)$$

$$y = \frac{z}{f_y}(v - o_y)$$

$$z > 0$$

Our goal: Develop theories and study how a 3D point and its projection in 2 images are related to each other!

From a single image you can only back project a pixel to obtain a ray on which the actual 3D point lies

To find the actual location of the 3D point, you need:

an additional image captured from another viewpoint.

Today's class

- Epipolar Geometry
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

Today's class

- Epipolar Geometry
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

The Epipole

Epipolar constraint

Another way to construct the epipolar plane, this time given $oldsymbol{x}$

Epipolar constraint

Example: Converging Cameras

Epipoles finite, maybe in image; epipolar lines converge

Example: Converging Cameras

Epipolar lines come in pairs: given a point p, we can construct the epipolar line for p'.

Example 1: Converging Cameras

Example: Parallel to Image Plane

Epipoles infinitely far away, epipolar lines parallel

Example: Forward Motion

Example: Forward Motion

Example: Forward Motion

Epipole is focus of expansion / principal point of the camera.

Epipolar lines go out from principal point

Motion perpendicular to image plane

http://vimeo.com/48425421

The point **x** (left image) maps to a _____ in the right image

The baseline connects the _____ and ____

An epipolar line (left image) maps to a _____ in the right image

An epipole **e** is a projection of the _____ on the image plane

All epipolar lines in an image intersect at the ______

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

How would you do it?

Epipolar constraint

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line

How do you compute the epipolar line?

Today's class

- Epipolar Geometry
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

Recall:Epipolar constraint

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Epipolar Line

$$ax+by+c=0$$
 in vector form $egin{array}{c|c} a & b \ c & c \end{array}$

If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

$$\boldsymbol{x}^{\top}\boldsymbol{l} = 0$$

So if $oldsymbol{x'}^ op oldsymbol{l}' = 0$ and $oldsymbol{\mathbf{E}} oldsymbol{x} = oldsymbol{l}'$ then

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Where does the essential matrix come from?

Can we express essential matrix as function of camera parameters?

Linear algebra reminder: cross product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$egin{aligned} oldsymbol{a} imesoldsymbol{b} & a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{aligned} egin{aligned} oldsymbol{a} & a_1b_2-a_2b_1 \end{aligned}$$

cross product of two vectors in the same direction is zero vector

$$\boldsymbol{a} \times \boldsymbol{a} = 0$$

remember this!!!

$$\mathbf{c} \cdot \mathbf{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

Linear algebra reminder: cross product

Cross product

$$oldsymbol{a} imesoldsymbol{b}=\left[egin{array}{c} a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{array}
ight]$$

Can also be written as a matrix multiplication

$$oldsymbol{a} imesoldsymbol{b}=egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix}$$

Skew symmetric

Compare with: dot product

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

dot product of two orthogonal vectors is (scalar) zero

$$\boldsymbol{x}' = \mathbf{R}(\boldsymbol{x} - \boldsymbol{t})$$

Camera-camera transform just like world-camera transform

 $oldsymbol{x},oldsymbol{t},oldsymbol{x}'$ These three vectors are coplanar

$$(m{x}-m{t})^{ op}(m{t} imes m{x}) = 0$$
 dot product of orthogonal vectors cross-product: vector orthogonal to plane

Putting it together

rigid motion

coplanarity

$$oldsymbol{x}' = \mathbf{R}(oldsymbol{x} - oldsymbol{t})$$

$$\mathbf{x}' = \mathbf{R}(\mathbf{x} - \mathbf{t}) \qquad (\mathbf{x} - \mathbf{t})^{\top} (\mathbf{t} \times \mathbf{x}) = 0$$

use skew-symmetric matrix to represent cross $({m x'}^{ op}{m R})([{f t}_{ imes}]{m x})=0$ product

$$(\boldsymbol{x}'^{\top}\mathbf{R})(\boldsymbol{t}\times\boldsymbol{x})=0$$

$$(\boldsymbol{x}'^{\top}\mathbf{R})([\mathbf{t}_{\times}]\boldsymbol{x})=0$$

$$\boldsymbol{x}'^{\top}(\mathbf{R}[\mathbf{t}_{\times}])\boldsymbol{x} = 0$$

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Essential Matrix [Longuet-Higgins 1981]

$$m{a} imes m{b} = [m{a}]_ imes m{b} = \left[egin{array}{ccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight] \left[egin{array}{c} b_1 \ b_2 \ b_3 \end{array}
ight] m{E} = m{R} [m{t}]_ imes$$

Skew symmetric

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

Longuet-Higgins Prize

The Longuet-Higgins Prize recognizes CVPR papers from ten years ago that have made a significant impact on computer vision research.

in Computer Vision! Test-of-the award!

More information about this prize can be found here

2022	"Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite"	A. Geiger, P. Lenz, R. Urtasun
2021	"Real-time human pose recognition in parts from single depth image"	J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake
2021	"Baby talk: Understanding and generating simple image descriptions"	G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, T. L. Berg
2020	"Secrets of Optical Flow Estimation and Their Principles"	D. Sun, S. Roth, M. Black
2019	"ImageNet: A large-scale hierarchical image database"	J. Deng, W. Dong, R. Socher, LJ. Li, K. Li, L. Fei- Fei
2018	"A Discriminatively Trained, Multiscale, Deformable Part Model"	P. Felzenszwalb, D. McAllester, and D. Ramanan
2017	"Accurate, Dense, and Robust Multi-View Stereopsis"	Y. Furukawa, J. Ponce
2017	"Object Retrieval with Large Vocabularies and Fast Spatial Matching"	J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman
2016	"Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories"	S. Lazebnik, C. Schmid, J. Ponce

Faculty @ UNC, Now at Meta

Most coveted prize

Faculty @ UNC, Now Faculty @ UIUC

Properties of the E matrix

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

Longuet-Higgins equation

$$\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\mathsf{T}}\boldsymbol{l} = 0$$

$$\boldsymbol{x}'^{\top}\boldsymbol{l}' = 0$$

$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

$$oldsymbol{l} = \mathbf{E}^T oldsymbol{x}'$$

Epipoles

$$e'^{\top}\mathbf{E} = \mathbf{0}$$

$$\mathbf{E}e = \mathbf{0}$$

(2D points expressed in <u>camera</u> coordinate system)

Properties of the E matrix

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

- E has 5 degrees of freedom, why?
 - R has 3 degree of freedom
 - T has 3 degree of freedom
 - However since this is a projective transformation one can apply an arbitrary scale to E. Thus 1 degree of freedom less.
- E is rank 2, why?
 - [t_x] is skew symmetric, hence rank 2.
 - Thus Det(E) = 0.
- E has 2 singular value both of which are equal.
 - [t_x] a skew symmetric matrix has 2 equal singular values

2 possible notation

$$x' = R(x - t)$$

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

$$x' = Rx - Rt$$

= $Rx + t'$

$$\mathbf{E} = [\mathbf{ ilde{t}}]_{ imes} \mathbf{R}$$

Today's class

- Epipolar Geometry
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

In practice we have points in image coordinate, i.e. pixel values.

The essential matrix operates on image points expressed in **2D coordinates** in the camera coordinate system.

$$\hat{m{x}'} = \mathbf{K}'^{-1}m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1}m{x}$

Writing out the epipolar constraint in terms of image coordinates

$$oldsymbol{x}'^ op (\mathbf{K}'^{- op}\mathbf{E}\mathbf{K}^{-1})oldsymbol{x} = 0$$
 $oldsymbol{x}'^ op \mathbf{F}oldsymbol{x} = 0$ Fundamental Matrix

Properties of the E matrix

$$\mathbf{E}=\mathbf{R}\,[\mathbf{t}]_{\times}$$

$$\mathbf{F} = \mathbf{R}[\mathbf{t}]_{ imes}$$
 $\mathbf{F} = \mathbf{K'}^{- op} \mathbf{E} \mathbf{K}^{-1}$ $\mathbf{F} = \mathbf{K'}^{- op} [\mathbf{t}_{ imes}] \mathbf{R} \mathbf{K}^{-1}$

 $\mathbf{x}'^{\top}\mathbf{E}\mathbf{x}=0$

Longuet-Higgins equation

$$\boldsymbol{x}^{\mathsf{T}}\boldsymbol{l} = 0$$

$$oldsymbol{l}' = \mathbb{E} oldsymbol{x}$$

$$\mathbf{x}'^{\mathsf{T}}\mathbf{l}' = 0$$

$$oldsymbol{l} = \mathbb{E}^T oldsymbol{x}'$$

Epipoles

$$e'^{\top} \mathbf{E} = \mathbf{0}$$

$$\mathbf{E}e=\mathbf{0}$$

(2D points expressed in image coordinate system)

Properties of the E matrix

$$\mathbf{E}=\mathbf{R}\left[\mathbf{t}
ight]_{ imes}$$

$$\mathbf{F} = \mathbf{R}[\mathbf{t}]_{\times}$$
 $\mathbf{F} = \mathbf{K'}^{-\top}\mathbf{E}\mathbf{K}^{-1}$ $\mathbf{F} = \mathbf{K'}^{-\top}[\mathbf{t}_{\times}]\mathbf{R}\mathbf{K}^{-1}$

- Lenas 5 degrees of freedom, why?
 - F is 3x3, has 8 degrees of freedom, since it is a projective transformation.
 - F is rank 2. So 1 less degree of freedom.
- Eis rank 2, why?
 - Same reason as E
 - [t_x] is skew symmetric, hence rank 2.

• Ehas 2 singular value both of which are equal.

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

Essential matrix maps a **point** to a **line**

- Rank 2
- 5 DoF

$$x' = \mathbf{H}x$$

Homography maps a **point** to a **point**

- Rank 3
- 8 DoF

Homography is a special case of the Essential/Fundamental matrix, for planar scenes

Example

epipolar lines

$$\mathbf{F} = \begin{bmatrix} -0.00310695 & -0.0025646 & 2.96584 \\ -0.028094 & -0.00771621 & 56.3813 \\ 13.1905 & -29.2007 & -9999.79 \end{bmatrix}$$

$$m{x} = egin{bmatrix} 343.53 \\ 221.70 \\ 1.0 \end{bmatrix}$$

$$m{l}' = \mathbf{F} m{x}$$
 $= egin{bmatrix} 0.0295 \\ 0.9996 \\ -265.1531 \end{bmatrix}$

$$m{l}' = \mathbf{F} m{x}$$

$$= \left[egin{array}{c} 0.0295 \\ 0.9996 \\ -265.1531 \end{array} \right]$$

Where is the epipole?

$$\mathbf{F}e = \mathbf{0}$$

The epipole is in the right null space of **F**

How would you solve for the epipole?

 $\mathbf{F}e = \mathbf{0}$

The epipole is in the right null space of **F**

How would you solve for the epipole?

SVD!

SVDs are pretty useful, huh?

Today's class

- Epipolar Geometry
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

Big picture: 3 key components in 3D

Big picture: 3 key components in 3D

Estimating the fundamental matrix

Assume you have *M* matched *image* points

$$\{\boldsymbol{x_m}, \boldsymbol{x'_m}\}$$
 $m = 1, \ldots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 **F** matrix?

Solve with SVD!

Set up a homogeneous linear system with 9 unknowns

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How many equation do you get from one correspondence?

$$\left[\begin{array}{ccc|ccc|ccc} x_m' & y_m' & 1\end{array}\right] \left[\begin{array}{ccc|ccc|ccc} f_1 & f_2 & f_3 & & x_m \\ f_4 & f_5 & f_6 & & y_m \\ f_7 & f_8 & f_9\end{array}\right] \left[\begin{array}{ccc|ccc|ccc} x_m & & & & & \\ & y_m & & & \\ & & & & & \end{array}\right] = 0$$

ONE correspondence gives you ONE equation

$$x_m x'_m f_1 + x_m y'_m f_2 + x_m f_3 + y_m x'_m f_4 + y_m y'_m f_5 + y_m f_6 + x'_m f_7 + y'_m f_8 + f_9 = 0$$

Set up a homogeneous linear system with 9 unknowns

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

How many equations do you need?

How do you solve a homogeneous linear system?

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

Total Least Squares

minimize $\|\mathbf{A} \boldsymbol{x}\|^2$ subject to $\|\boldsymbol{x}\|^2 = 1$

SVD!

Problem with eight-point algorithm

$$[u'u \quad u'v \quad u' \quad v'u \quad v'v \quad v' \quad u \quad v] \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix} = -1$$

Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

1 9	$egin{array}{c} f_{11} \ f_{12} \ f_{13} \ f_{21} \ \end{array}$	
5 4 4 8	$egin{array}{c} f_{22} \ f_{23} \ f_{31} \ f_{32} \ \end{bmatrix}$	

- Poor numerical conditioning
- Can be fixed by rescaling the data

Problem with 8-point algorithm

$$\begin{bmatrix} u_{1}u_{1}' & v_{1}u_{1}' & u_{1}' & u_{1}v_{1}' & v_{1}v_{1}' & v_{1}' & u_{1} & v_{1} & 1 \\ u_{2}u_{2}' & v_{2}u_{2}' & u_{2}' & u_{2}v_{2}' & v_{2}v_{2}' & v_{2}' & u_{2} & v_{2} & 1 \\ \vdots & \vdots \\ u_{n}u_{n}' & v_{n}u_{n}' & u_{n}' & u_{n}v_{n}' & v_{n}v_{n}' & v_{n}' & u_{n} & v_{n} & 1 \end{bmatrix} \begin{bmatrix} f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix} = 0$$

Orders of magnitude difference between column of data matrix → least-squares yields poor results

Normalized 8-point algorithm

normalized least squares yields good results Transform image to ~[-1,1]

Normalized 8-point algorithm

- Transform input by $\hat{\mathbf{x}}_i = T\mathbf{x}_i$, $\hat{\mathbf{x}}_i' = T\mathbf{x}_i'$
- Call 8-point on $\hat{\mathbf{x}}_i$, $\hat{\mathbf{x}}_i'$ to obtain $\hat{\mathbf{F}}$
- $\mathbf{F} = \mathbf{T}'^{\mathrm{T}} \hat{\mathbf{F}} \mathbf{T}$

Fundamental matrix of normalized camera coordinate

Results (ground truth)

Results (8 point algorithm)

Results (normalized 8-point algorithm)

Enforcing rank constraints

Problem: Given a matrix F, find the matrix F' of rank k that is closest to F,

$$\min_{F'} ||F - F'||^2$$

$$\operatorname{rank}(F') = k$$

Solution: Compute the singular value decomposition of F,

$$F = U\Sigma V^T$$

Form a matrix Σ ' by replacing all but the k largest singular values in Σ with 0.

Then the problem solution is the matrix F' formed as,

$$F' = U\Sigma'V^T$$

(Normalized) Eight-Point Algorithm

- 1. (Normalize points)
- 2. Construct the M x 9 matrix A
- 3. Find the SVD of A
- 4. Entries of **F** are the elements of column of**V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

Fundamental -> Essential -> Rotation + Translation

- From normalized 8-pt algorithm we have F, s.t. rank(F)=2.
- Recover intrinsic camera matrix K and K' (find focal length of 2 cameras, often comes as a part of meta data).
- Recover Essential matrix E from $\mathbf{F} = \mathbf{K'}^{-\top} \mathbf{E} \mathbf{K}^{-1}$
- An ideal E is rank(2) and has 2 singular values that are equal, and is upto a scale.
 - An ideal E will have SVD E=U diag(1,1,0) V^T .
 - Project estimated E such that 2 singular values are 1.
- Decompose Essential matrix to obtain Rotation and Translation $\mathbf{E} = [\mathbf{ ilde{t}}]_ imes \mathbf{R}$
 - 4 possible solutions -> only 1 case where reconstructed 3D pt is in front of both cameras.
 - See Results 9.18 & 9.19, pg 258-259 for the proof.

What about more than two views?

• The geometry of three views is described by a 3 x 3 x 3 tensor called the *trifocal tensor*

 The geometry of four views is described by a 3 x 3 x 3 x 3 tensor called the *quadrifocal tensor*

After this it starts to get complicated...

"A New Rank Constraint on Multi-view Fundamental Matrices, and its Application to Camera Location Recovery", Sengupta et. al. CVPR 2017.

Necessary but not sufficient

In case of all collinear cameras : $rank(A) \leq 2$ and $rank(F) \leq 4$

The Fundamental Matrix Song

Today's class

- Epipolar Geometry
- Essential Matrix
- Fundamental Matrix
- 8-point Algorithm
- Triangulation

Big picture: 3 key components in 3D

Big picture: 3 key components in 3D

Triangulation Disclaimer: Noise

Ray's don't always intersect because of noise!!!

Least squares get you to a reasonable solution but it's not the actual geometric error (it's how far away the solution is from Ax = 0)

In practice with noise, you do nonlinear least squares, or "bundle adjustment" (more than 2 image case, next lecture..)

X s.t.

x = PX, x' = P'X

Slide credit: Shubham Tulsiani

Create two points on the ray:

- 1) find the camera center; and
- 2) apply the pseudo-inverse of P on x.

Then connect the two points. This procedure is called backprojection image 1 image 2 \boldsymbol{x} camera 2 with matrix \mathbf{P}' camera 1 with matrix ${f P}$

Given a set of (noisy) matched points

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$

and camera matrices

$$\mathbf{P}, \mathbf{P}'$$

Estimate the 3D point

$$\mathbf{x} = \mathbf{P} X$$

(homogeneous coordinate)

This is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = lpha \mathbf{P} X$$
(heterogeneous coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$

Same direction but differs by a scale factor

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

Cross product of two vectors of same direction is zero (this equality removes the scale factor)

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight] \left[egin{array}{c} X \ Y \ Z \ 1 \end{array}
ight]$$

Do the same after first expanding out the camera matrix and points

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{ccc} --- & oldsymbol{p}_1^ op & --- \ --- & oldsymbol{p}_2^ op & --- \ --- & oldsymbol{p}_3^ op & --- \end{array}
ight] \left[egin{array}{c} X \ X \end{array}
ight]$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight]$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^{\top} \boldsymbol{X} \\ \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \\ x \boldsymbol{p}_2^{\top} \boldsymbol{X} - y \boldsymbol{p}_1^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

$$\left[egin{array}{c} y oldsymbol{p}_3^ op oldsymbol{X} - oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_1^ op oldsymbol{X} - x oldsymbol{p}_3^ op oldsymbol{X} \ oldsymbol{p}_1^ op oldsymbol{X} - x oldsymbol{p}_3^ op oldsymbol{X} \ x oldsymbol{p}_2^ op oldsymbol{X} - y oldsymbol{p}_1^ op oldsymbol{X} \end{array}
ight] = \left[egin{array}{c} 0 \\ 0 \\ 0 \end{array}
ight]$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

$$\left[egin{array}{c} y oldsymbol{p}_3^ op oldsymbol{X} - oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_1^ op oldsymbol{X} - x oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight] = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

Remove third row, and rearrange as system on unknowns

$$\left[egin{array}{c} y oldsymbol{p}_3^ op - oldsymbol{p}_2^ op \ oldsymbol{p}_1^ op - x oldsymbol{p}_3^ op \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

$$\mathbf{A}_i \mathbf{X} = \mathbf{0}$$

Now we can make a system of linear equations (two lines for each 2D point correspondence)

Concatenate the 2D points from both images

Two rows from camera one

Two rows from camera two

$$\left[egin{array}{c} yoldsymbol{p}_3^ op - oldsymbol{p}_2^ op \ oldsymbol{p}_1^ op - xoldsymbol{p}_3^ op \ y'oldsymbol{p}_3'^ op - oldsymbol{p}_2'^ op \ oldsymbol{p}_1'^ op - x'oldsymbol{p}_3'^ op \ oldsymbol{0} \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \ 0 \ 0 \end{array}
ight]$$

sanity check! dimensions?

$$\mathbf{A}X = 0$$

How do we solve homogeneous linear system?

Slide Credits

- <u>CS5670, Introduction to Computer Vision</u>, Cornell Tech, by Noah Snavely.
- <u>CS 194-26/294-26</u>: Intro to Computer Vision and Computational Photography, UC Berkeley, by Angjoo Kanazawa.
- CS 16-385: Computer Vision, CMU, by Matthew O'Toole

Additional Reading

- Multiview Geometry, Hartley & Zisserman,
 - Chapter 9 (focus on topics discussed or mentioned in the slides).
 - Chapter 10.1, 10.2 (not discussed in class, no midterm ques, but imp to understand, practical importance.)
 - Chapter 11.1, 11.2
 - Chapter 12.1, 12.2, 12.3, 12.4 (no midterm ques, but imp to understand)