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How to calibrate Intrinsics Extrinsics
the camera? Slide inspired by Shree Nayar



Now that our cameras are
calibrated, can we find the
3D scene point of a pixel?



You know we can’t, but we know it’ll be...

on the ray!
Ray
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Our goal: Develop theories and study
how a 3D point and its projection in

To find the actual location
2 images are related to each other!

of the 3D point, you need:

an additional image captured
From a single image you can only from another viewpoint.
back project a pixel to obtain a ray
on which the actual 3D point lies ’




Today’s class

* Epipolar Geometry
* Essential Matrix

* Fundamental Matrix
e 8-point Algorithm

* Triangulation



Today’s class

* Epipolar Geometry
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Epipolar geometry



Epipolar geometry
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Epipolar geometry
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(projection of o’ on the image plane)



The Epipole

Photo by Frank Dellaert



Epipolar geometry
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Epipolar geometry
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Epipolar constraint

Backproject & to a

ray in 3D _
N Epipolar ling =,
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Another way to construct the epipolar plane, this time given a



Epipolar constraint
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Potential matches for @ lie on the epipolar line I



Example: Converging Cameras
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Epipoles finite, maybe in image; epipolar lines converge

Slide credit: David Fouhey



Example: Converging Cameras
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Epipolar lines come in pairs:
given a point p, we can construct the epipolar line for p’.

Slide credit: David Fouhey



Example 1:
Converging Cameras

Image Credit: Hartley & Zisserman



Example: Parallel to Image Plane

Where is the epipole?

Epipoles infinitely far away, epipolar lines parallel

Slide credit: David Fouhey



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Epipole is focus of

expansion / \Cﬁ pe /
principal point of ®@ o
the camera.
|
O
? O

Epipolar lines go
out from principal
point




Motion perpendicular to image plane

http://vimeo.com/48425421

Slide credit: David Fouhey


http://vimeo.com/48425421

Recap Time!
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The point x (left image) maps to a In the right image
The baseline connects the and
An epipolar line (left image) maps to a In the right image
An epipole e is a projection of the on the image plane

All epipolar lines in an image intersect at the




The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image Right image

How would you do it?



Epipolar constraint

\ )

Potential matches for @ lie on the epipolar line I



The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line



The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line

How do you compute the epipolar line?



Today’s class

e Essential Matrix



Recall:Epipolar constraint

Potential matches for 2 lie on the epipolar line I



Given a point in one image,
multiplying by the essential matrix will tell us
the epipolar line in the second view.

/ Essential matrix is 3x3 and
E.’B — l encodes epipolar geometry.




Epipolar Line

a
ar + by + c = 0 in vector form | = b

C

l If the point 2 is on the epipolar line I then

x'l=0




Soif m’Tl,: O and E.’B — l, then

' "Ex =0




Where does the essential matrix come from?

Can we express essential matrix as function of camera parameters?



Linear algebra reminder: cross product

Vector (cross) product
takes two vectors and returns a vector perpendicular to both

c=aXxb a2b3—a3b2
aXxXb= a3b1 —a1b3
a1by — agby
b
cross product of two vectors in

the same direction is zero
vector

axa=>_0

remember this!!!

|
-

c-a=>0 c-b



Linear algebra reminder: cross product

Cross product

agbz — azbo ]
aXxXb= CL3b1 —a1b3
i a1bs — azb; i

Can also be written as a matrix multiplication

0 —as as bl
aXb:[a]xb: as 0 —a1 b2
i —a9 aq 0 1 L b3 il

Skew symmetric



Compare with: dot product

le=axb
<b
\/
c-a=»1_0 c-b=20

dot product of two orthogonal vectors is (scalar) zero



' =R(x — t)

Camera-camera transform just like world-camera transform



/ \/
:B, t, Jd These three vectors are coplanar

(x — t);_(t x x) =0

dot product of orthogonal vectors cross-product: vector orthogonal to plane



use skew-symmetric
matrix to represent cross (33

product

a X b=alxb

Putting it together

coplanarity

(x—t) (txz)=0

rigid motion
' =R(x —t)

(' "R)(txx)=0

""R)([tx]z) =0
' (Rlty]) =0_

' TEx =0
Do e le] TR
—ay a; 0 || bg | bemmmeeenena-

Skew symmetric
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Esser;tial Matrix
[Longuet-Higgins 1981]



Longuet-Higgins Prize

The Longuet-Higgins Prize recognizes CVPR papers from ten years ago that have

made a significant impact on computer vision research.

More information about this prize can be found here

2022

2021

2021

2020

2019

2018

2017

2017

2016

“Are We Ready for Autonomous Driving? The KITTI

Vision Benchmark Suite”

“Real-time human pose recognition in parts from

single depth image”

“Baby talk: Understanding and generating simple

image descriptions”

“Secrets of Optical Flow Estimation and Their

Principles”

“ImageNet: A large-scale hierarchical image

database”

“A Discriminatively Trained, Multiscale, Deformable

Part Model”

“Accurate, Dense, and Robust Multi-View

Stereopsis”

“Object Retrieval with Large Vocabularies and Fast

Spatial Matching”

“Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene

Categories”

A. Geiger, P. Lenz, R. Urtasun

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M.

Finocchio, R. Moore, A. Kipman, A. Blake

G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi,
A.C.Berg, T. L. Berg

D. Sun, S. Roth, M. Black

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-
Fei

P. Felzenszwalb, D. McAllester, and D.

Ramanan

Y. Furukawa, J. Ponce

J. Philbin, O. Chum, M. Isard, J. Sivic, A.

Zisserman

S. Lazebnik, C. Schmid, J. Ponce

Most coveted prize
in Computer Vision!
Test-of-the award!

Faculty @ UNC,
Now at Meta

Faculty @ UNC,
Now Faculty @ UIUC



Properties of the E matrix

(2D points expressed in camera coordinate system)




Properties of the E matrix

* E has 5 degrees of freedom, why?
* R has 3 degree of freedom
* T has 3 degree of freedom
 However since this is a projective transformation one can apply an
arbitrary scale to E. Thus 1 degree of freedom less.

 Eisrank 2, why?
* [t,] is skew symmetric, hence rank 2.
 Thus Det(E) = 0.

* E has 2 singular value both of which are equal.
* [t ] a skew symmetric matrix has 2 equal singular values



2 possible notation

X' =R (x —t) | E=RI[t]. !

X = Rx— Rt E-=[{.R
=Rx+1



Today’s class

e Fundamental Matrix



In practice we have
points in image

Al T ~
€T Em p— O coordinate, i.e.

pixel values.

The essential matrix operates on image points expressed
in 2D coordinates in the camera coordinate system.

A o N— —1
r =K' 'z’ r=K" x

Writing out the epipolar constraint in terms of image coordinates




Properties of the E matrix

=R, | F=K " TEK ! F=K "[t,]RK™!

(2D points expressed in image coordinate system)



Properties of the E matrix
E-RH.! F=K TEK! F=K' [t RK"

* [=has 5 degrees of freedom, why?
* Fis 3x3, has 8 degrees of freedom, since it is a projective transformation.
* Fisrank 2.So 1 less degree of freedom.

* Eisrank 2, why?

e Same reason as E
e [t,] is skew symmetric, hence rank 2.

* =has 2 singular value both of which are-eeueai=—



Essential Matrix vs Homography

What'’s the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

l! = Ex r' = Hx

Essential matrix maps a Homography maps a
point to a line point to a point

* Rank?2 * Rank3

* 5 DoF * 8 DoF

Homography is a special case of the Essential/Fundamental matrix, for planar scenes
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- —0.00310695 —0.0025646  2.96584
F = —0.028094 —0.00771621 56.3813
- 13.1905 —29.2007  —9999.79 |
" 343.53
r = | 221.70
1.0
! =Fx
- 0.0295
— 0.9996

| —265.1531




! =Fx

0.0295
= | 0.9996
| —265.1531




Where is the epipole?

How would you compute it?



The epipole is in the right null space of F

How would you solve for the epipole?



The epipole is in the right null space of F

How would you solve for the epipole?

SVDs are pretty

SVD! useful, huh?




Today’s class

e 8-point Algorithm



Big picture: 3 key components in 3D
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Big picture: 3 key components in 3D
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Estimating the fundamental matrix




Assume you have M matched image points
/
{e,,2 } m=1,...,M

Each correspondence should satisfy

I'T _
z, Fx, =0

How would you solve for the 3 x 3 F matrix?

Solve with SVD!

Set up a homogeneous linear system with 9 unknowns



al —
z, Fx, =0

i fi f2 f3 | Lm
Lz, Y 1| fa fs fe Ym | =0
fr fs fo || 1 |

How many equation do you get from one correspondence?



- f1
[mflm Y 1] fa
Wi

f2 f3-

fs Jfe

fs fo

ONE correspondence gives you ONE equation

33m$fmf1 + xmy;nf2 =+ xmf3+
YmZm fa + YmYm S5 + Ym fo+

xr/mf7

?J;nfs

fo=0



I fl f2 f3 ] Lm
[ T Ym 1 ] fa f5 Je Ym
7 fs Jo 1

Set up a homogeneous linear system with 9 unknowns

Hence, the 8 point algorithm!

/ / !/ !/ / /
127 1Y, T1 Y171 viyy, v oz y; 1

!/ !/ !/ !/ / !/
TMEy TMYpy TM YMTy YMmYy YMm Ty Yy 1

Note: This is different from the

Homography estimation
where each point pair
contributes 2 equations.

We need at least 8 points
How many equations do you need?

h
fa
f3
fa
fs
fe
fz
fs

fo




How do you solve a homogeneous linear system?

AX =0

Total Least Squares
minimize || Az||?

subject to ||z||? =1

SVD!



Problem with eight-point algorith
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Problem with eight-point algorithm

S
o

250906.36| 183269.57 921.81 200931.10| 146766.13 738.21 272.19 198.81 ﬁ3
2692.28| 131633.03 176.27 6196.73| 302975.59 405.71 15.27 746.79

416374.23| §71684.30 935.47 408110.89| 854384.92 916.90 445.10 931.81 f

1 191183.60{ 171759.40 410.27 416435.62| 374125.90 893.65 465.99 418.65 21

45985.86| 30401.76 57.89) 298604.57 185309.58 352.87 846.22 525.15 f
1647586.04) 546559.67 813.17 1998.37 6628.15 9.86 202.65 672.14 22
116407.01 2727.75 138.89| 169941.27 3982.21 202.77 838.12 19.64
135384.58 75411.13 198.72| 411350.03| 229127.78 603.79 681.28 379.48 f23

Ja

* Poor numerical conditioning S

* Can be fixed by rescaling the data




Problem with 8-point algorithm .

f12
- /7 ’ 7 7 7 7 1_ f13
u1u1 v1u1 u1 ulvl v1v1 v1 u1 Ul f21
UsUy Vol Uy  UUy  VoUp Uy Uy Ty 1 o
Uy VU, Uy UpVy UpVy U, U, U, 1 ;23
31

~10000  ~10000 ~100 ~10000 ~10000 ~100 ~100 ~100 1 f
32
 f33-

Orders of magnitude difference
between column of data matrix

— least-squares yields poor results



Normalized 8-point algorithm

normalized least squares yields good results

Transform image to ~[-1,1]

(0,500)

(1,1)

(0,0)

(0,0)

(700,500) (-1,1)
2 4
500
1 -
>
(700,0) (-1,-1)

(11_1)



Normalized 8-point algorithm

* Transform input by &; = Tx;, X; = Tx;

* Call 8-point on &;, X to obtain F
« F=TTFT

xX'TFx =0

/ \

[T
W_/
F

Fundamental matrix of normalized camera coordinate



Results (ground truth)

m Ground truth with standard stereo calibratiQn

7 F /R




Results (8 point algorithm)

m 8-point algorithm

3 = tr e
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Results (normalized 8-point algorithm)

B Normalized 8-point algorithm

x e i
XX X X 9
X% /oo™y X3 =
X kX ¥ 5 x” i
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Enforcing rank constraints

Problem: Given a matrix F, find the matrix F’ of rank k that is closest to F,
min ||F — F'||?
F/
rank(F' )=k
Solution: Compute the singular value decomposition of F,

F=Uzv!

Form a matrix 2" by replacing all but the k largest singular values in 2 with
0.

Then the problem solution is the matrix F’ formed as,

F'=Uuz'v?t



(Normalized) Eight-Point Algorithm

1. (Normalize points)

2. Construct the M x 9 matrix A

3. Find the SVD of A

4. Entries of F are the elements of column of
V corresponding to the least singular value

4. (Enforce rank 2 constraint on F)

5. (Un-normalize F)



Fundamental -> Essential -> Rotation + Translation

* From normalized 8-pt algorithm we have F, s.t. rank(F)=2.

e Recover intrinsic camera matrix K and K’ (find focal length of 2
cameras, often comes as a part of meta data).

 Recover Essential matrix E from F = I{’_TEI{_1

e Anideal E is rank(2) and has 2 singular values that are equal, and is
upto a scale.
* An ideal E will have SVD E=U diag(1,1,0) V.
* Project estimated E such that 2 singular values are 1.

» Decompose Essential matrix to obtain Rotation and Translation E = [t]« R

* 4 possible solutions -> only 1 case where reconstructed 3D pt is in front ot
both cameras.

* See Results 9.18 & 9.19, pg 258-259 for the proof.



What about more than two views?

* The geometry of three views is described by a 3 x 3 x 3 tensor called
the trifocal tensor

* The geometry of four views is described by a 3 x 3 x 3 x 3 tensor
called the quadrifocal tensor

» After this it starts to get complicated...



“A New Rank Constraint on Multi-view Fundamental Matrices, and its
Application to Camera Location Recovery”, Sengupta et. al. CVPR 2017.

Necessary but not sufficient

- 0 Fio Fh3 Fig Fis T
Fo1 0 Fa3 Fag Fos
F = | F31 F32 0 F34 Fss
" Fy1 Fyo Fuz 0 Fys
_ F51 Fs2 Fs53 Fs54 0 A

with FF = A+ AT
rank(A) = 3 and rank(F’)

6.

In case of all collinear cameras : rank(A) < 2 and rank(F') < 4

78



The Fundamental Matrix Song




Today’s class

* Triangulation



Big picture: 3 key components in 3D
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Big picture: 3 key components in 3D

Correspondences

T

é )

( )

3D Points

(Structure) Triangulation
\_ W,

A

Camera

(Motion)




Triangulation Disclaimer: Noise

" Find 3D point

Ray’s don’t always intersect
because of noise!!!
ml
\C’ Least squares get you to a

reasonable solution but it’s not the

P P’ . .,
actual geometric error (it’s how far
away the solution is from Ax = 0)

X s.t.
In practice with noise, you do non-
linear least squares, or “bundle
= ! D/ ’
x=PX, x =P'X adjustment” (more than 2 image

case, next lecture..)

Slide credit: Shubham Tulsiani



Triangulation

You know the correspondence

image 1 image 2

Given

camera 1 with matrix P camera 2 with matrix P’



Triangulation

Which 3D points map
to x?

image 1 image 2

camera 1 with matrix P camera 2 with matrix P’



Triangulation

How can you
compute this ray?

image 1 image 2

camera 1 with matrix P camera 2 with matrix P’



Triangulation

Create two points on the ray:

1) find the camera center; and

2) apply the pseudo-inverse of P on x.
Then connect the two points.

This procedure is called backprojection P T

image 1 image 2

camera 1 with matrix P camera 2 with matrix P,



Triangulation

How do we find the

exact point on the +
ray? P £

image 1 image 2

camera 1 with matrix P camera 2 with matrix P’



Triangulation

Find 3D object point
Will the lines intersect?

(no single solution due to noise)

image 1 image 2

: , /
camera 1 with matrix P camera 2 with matrix P



Triangulation

Given a set of (noisy) matched points

{mum ¥

and camera matrices

P.P

Estimate the 3D point

X



x =PX

(homogeneous
coordinate)

This is a similarity relation because it involves homogeneous coordinates

x = aPX
(heterogeneous
coordinate)
Same ray direction but differs by a scale factor
- - - - | X il
L Pr P2 P3 P4 v
Yy | =a | p5 Pe Pr D8 7
| < P9 P10 P11 P12 _ 1

How do we solve for unknowns in a similarity relation?



X = aPX

Same direction but differs by a scale factor

XxXPX =0

Cross product of two vectors of same direction is zero
(this equality removes the scale factor)



Do the same after first
expanding out the
camera matrix and points

—

o O

-



Using the fact that the cross product should be zero

XxXPX =0

yp3X Do s X 0
X—pr = 0
$P2X yplx _0_

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations



?/PsX P;X
1X—xp:),X

-

-

Remove third row, and ypg- — p;— 0
rearrange as system on T T X —
unknowns pl —_ :L'p3 O

Now we can make a system of linear equations
(two lines for each 2D point correspondence)




Two rows from
camera one

Two rows from
camera two

1T A
 P1 — T P3

Concatenate the 2D points from both images

ygsT — Pg:
pl o -’Epg X
y'ps —ph'

sanity check! dimensions?

AX =0

o O QO O

How do we solve homogeneous linear system?

SvD!




Slide Credits

* CS5670, Introduction to Computer Vision, Cornell Tech, by Noah
Snavely.

* CS 194-26/294-26: Intro to Computer Vision and Computational
Photography, UC Berkeley, by Angjoo Kanazawa.

e CS 16-385: Computer Vision, CMU, by Matthew O’Toole



https://www.cs.cornell.edu/courses/cs5670/2022sp/
http://inst.eecs.berkeley.edu/~cs194-26/
http://inst.eecs.berkeley.edu/~cs194-26/
http://16385.courses.cs.cmu.edu/fall2022/

Additional Reading

* Multiview Geometry, Hartley & Zisserman,
e Chapter 9 (focus on topics discussed or mentioned in the slides).

e Chapter 10.1, 10.2 (not discussed in class, no midterm ques, but imp to
understand, practical importance.)

e Chapter 11.1, 11.2
e Chapter 12.1, 12.2,12.3, 12.4 (no midterm ques, but imp to understand)



