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Can we determine shape from lighting?

* Are these spheres?
* Or just flat discs painted with varying color (albedo)?
* There is ambiguity between shading and reflectance
 But still, as humans we can understand the shapes of these objects



What we know: Stereo

e 4

Key Idea: use camera motion to compute shape




Next: Photometric Stereo

Key Idea: use pixel brightness to understand shape



Photometric Stereo

What results can you get?

Input Normals (RGB  Normals (vectors) Shaded 3D Textured 3D
(1 of 12) colormap) rendering rendering



Today’s class

* Measuring Light (recap)

* Image formation with shape, reflectance, and illumination
* Shape from Shading

* Photometric Stereo

* Uncalibrated Photometric Stereo

* Generalized Bas-Relief Ambiguity

* Photometric Stereo in ‘deep learning era’.



Today’s class

* Measuring Light (recap)



Radiometry

 What determines the
brightness of a pixel?




Radiometry

* What determines the
brightness of a pixel?

@robertwestonbreshears
https://www.instagram.com/p/BtgX55ZBhU-/



https://www.instagram.com/p/BtgX55ZBhU-/
https://www.instagram.com/p/BtgX55ZBhU-/

Radiometry

* What determines the
brightness of a pixel?

Light source
properties

Sensor characteristics

Surface
/ Exposure shape

Surface reflectance
properties

Slide by L. Fei-Fei



What is light?

Electromagnetic radiation (EMR) moving along rays in space
« R(A) is EMR, measured in units of power (watts)

— A lis wavelength ,

Light field
« We can describe all of the light in the scene by specifying the radiation (or “radiance”
along all light rays) arriving at every point in space and from every direction

Y
/'%X)X/

The plenoptic function describes all of this light: R(X,Y,Z,0,0,\,t)




Visible light

We “see” electromagnetic
radiation in a range of
wavelengths
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Light transport
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Light sources

* Basic types
* point source

 directional source

e a point source that is infinitely far away
¢ area source

* a union of point sources

* More generally
 alight field can describe *any* distribution of light sources
* Environment map

 What happens when light hits an object?



Today’s class

* Image formation with shape, reflectance, and illumination



Modeling Image Formation

We need to reason about:
* How light interacts with the scene

* How a pixel value is related to light energy in
the world

Track a “ray” of light all the way from
light source to the sensor



Directional Lighting

« Key property: all rays are parallel

« Equivalent to an infinitely distant point
source




Lambertian Reflectance
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Materials - Three Forms
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© Kavita Bala, Computer Science, Cornell Uni

Ideal diffuse
(Lambertian)

Ideal
specular

Directional
diffuse



(Lambertian) specular  diffuse
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© Kavita Bala, Computer Science, Cornell University




|deal Diffuse Reflection

e Characteristic of multiple scattering materials
 An idealization but reasonable for matte surfaces




Lambertian Reflectance
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1. Reflected energy is proportional to cosine of angle between L and N
(incoming)

2. Measured intensity is viewpoint-independent (outgoing)



Final Lambertian image formation model
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I =k;N-L

1. Diffuse albedo: what fraction of incoming light is reflected?
« Introduce scale factor kd

2. Light intensity: how much light is arriving?
« Compensate with camera exposure (global scale factor)

3. Camera response function

« Assume pixel value is linearly proportional to incoming energy (perform
radiometric calibration if not)



Albedo

Sample albedos

Typical Clementine Global Albedo Images
{750 nm filter)

Surface
albedo

Fresh asphalt | 0.04[4]
Open ocean 0.06[°]
Worn asphalt 0.12[4]

Conifer forest
0.08,[61 0.09 to 0.15[7]
(Summer)

Deciduous trees | 0.15 to 0.18[’]

Bare soill 0.1718l e

Near Side Far Side
Green grass 0.258]
Dreca core 0.400°] Objects can have varying albedo and

albedo varies with wavelength
New concrete | 0.55[8]

Ocean ice 0.5-0.7%% Source: https://en.wikipedia.org/wiki/Albedo
Fresh snow 0.80-0.90(8!



https://en.wikipedia.org/wiki/Albedo

Today’s class

* Shape from Shading






Examples of the classic bump/dent stimuli used to test lighting assumptions when judging
shape from shading, with shading orientations (a) 0° and (b) 180° from the vertical.

Thomas R et al. J Vis 2010;10:6

VISION



Human Perception

 Qur brain often perceives shape from shading.
* Mostly, it makes many assumptions to do so.

* For example:

Light is coming from above (sun).

Biased by occluding contours.

by V. Ramachandran



A Single Image: Shape from shading

Suppose (fornow) Lk, =1
1 k N - L
N - L

= cos 0,
You can directly measure angle between normal and light source

e Not quite enough information to compute surface shape

e But can be if you add some additional info, for example
— assume a few of the normals are known (e.g., along silhouette)
— constraints on neighboring normals—“integrability”
— smoothness

e Hard to get it to work well in practice
— plus, how many real objects have constant albedo?
— But, deep learning can help



Deep Learning for Shape from Shading

Input Normal Shading
SfSNet ﬂv ?
ST e ﬁ . N\ Albedo Reconstruction

{ @ w

Relit Images

T

“SfSNet: Learning Shape, Reflectance and llluminance of Faces in the Wild”,
Sengupta, Kanazawa, Castillo, Jacobs, CVPR 2018.

Training Data




InverseRenderNet: Learning single image inverse rendering  CVPR 2019

Ye Yu and William A. P. Smith
Department of Computer Science, University of York, UK
{yy1571,william.smith}@york.ac.uk

nut " Diffuse albedo  Illumination ~ NM predlctlon NM'fro MVS Frontal shading Shadmg

Figure 1: From a single image (col. 1), we estimate albedo and normal maps and illumination (col. 2-4); comparison multi-
view stereo result from several hundred images (col. 5); re-rendering of our shape with frontal/estimated lighting (col. 6-7).



Application: Detecting composite photos

Real photo

Fake photo




Today’s class

e Photometric Stereo



Photometric stereo

Il — de'Ll
I» = kyN-Ly
I3 = k4N Lj




Solving the equations

L] | Lo G=L"1I
Iob | = | Ly! | k4N

I3 ] | Lzl kg = ||G]|

\_Y_, \ Y / ) / NZLG
I L G &
3x1 3x3 3x1

Solve one such linear system per pixel to solve for that pixel’s surface normal



More than three lights

Can get better results by using more than 3 lights

I Lj

— : k‘dN
In Lin
nx3 nx3 3x1

Least squares solution:

I = LG
LTt = TG
G = @' t@wt

Solve for N, k4 as before



Calibrating Lighting Directions

Trick: place a chrome sphere in the scene

* the location of the highlight tells you where the light source is




Example

InPUt - ﬂ

Recovered normal field

Recovered albedo

35

Forsyth & Ponce, Sec. 5.4



Depth from normals

* Solving the linear system per-pixel
gives us an estimated surface
normal for each pixel

* How can we compute depth from
normals?

e Normals are like the “derivative” of
the true depth

Input photo

Estimated normals

Estimated normals
(needle diagram)



Depth from normals

(xaya Zmy)

Vi = (37 + 1ayvzm—l—1,y) — (:B,y,z;,;y)
v — (1, O, Re+1y — Zg;y)
(z,y+1)
(e o) 0 = N-W
(z+1,y)

(nz, ny,nz) - (1,0, “r+1l,y — Zry)

it

Get a similar equation for V,
e Each normal gives us two linear constraints on z
e compute z values by solving a matrix equation



Normal Integration

—
Vz=|p,q|
where: ——— Linear Partial
n1 Differential Equations
pP=—— Integrability Constraint:
n3
. n2 OvP = Oug The order of taking 2" order partial
9= ns derivative with u & v (or x& y)
shouldn’t matter!
(u,v)
z(u,v) = 2(uo, vo) + p(r, s)dr + q(r, 5) ds]

(T,S)Z(Uo 7'00)

Read Normal Integration: A Survey (if interested)



https://arxiv.org/pdf/1709.05940.pdf

from Athos Georghiades



Results




Extension

* Photometric Stereo from Colored Lighting

.

Fig. 2. Applying the original algorithm to a face with white makeup.
Top: example input frames from video of an actor smiling and grimacing.
Bottom: the resulting integrated surfaces.

Video Normals from Colored Lights
Gabriel J. Brostow, Carlos Hernandez, George Vogiatzis, Bjorn Stenger, Roberto Cipolla
IEEE TPAMI, Vol. 33, No. 10, pages 2104-2114, October 2011.



http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5719620&tag=1

Today’s class

e Uncalibrated Photometric Stereo



What if the light directions are unknown?

a = albedo.
Previously ky was g
used for albedo. I =
I, =
IN =an

define “pseudo-normal’

solve linear system ;- I le ]
for pseudo-normal 1 =T
I 0 .
| = 5
: 3x1
In =T
_ 4 Nx1
_ €y d Nx3




What if the light directions are unknown?

a = albedo.

Previously ky was g
used for albedo. I

_ _ ST ]
I ElT
solve linear system I "2
for pseudo-normal at i = . [ B ] | _
each image pixel : : 3xM M: number of pixels
] IN - M ZL Nx3



What if the light directions are unknown?

a = albedo.

Previously ky was g

used for albedo. I =
I, =
In =

define “pseudo-normal”

solve linear system I _.;r How do we solve this
for pseudo-normal at : = . [ B } system without
each image pixel : ; 3xM knowing light matrix L?
) IN - NxM ZJT’ Nx3



Factorizing the measurement matrix

What are the dimensions?




Factorizing the measurement matrix

..n

To reduce to rank 3, we
just need to set all the

) n
3 singular values to 0 except
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Are the results unique?

We can insert any 3x3 matrix Q in the decomposition and get the same images:

I=LB=(LQ"(QB)

Can we use any assumptions to remove some of these 9 degrees of freedom?



Today’s class

* Generalized Bas-Relief Ambiguity



Generalized Bas-Relief ambiguity

We can insert any 3x3 matrix Q in the decomposition and get the same images:
I=LB=(LQ")(QB)

Can we use any assumptions to remove some of these 9 degrees of freedom?

Generalized Bas-Relief ambiguity to rescue! 1 0 0
G=10 1 0
G has 3 degrees of freedom. NN

What does G mean?

How do we obtain G? What constraints lead us to G?




Generalized Bas-Relief ambiguity

Artists have exploited GBR ambiguity in creating statues!

* On can flatten a surface and yet give an impression of
full 3D to a viewer

“The Bas-Relief Ambiguity”, Peter N. Belhumeur, David J. Kriegman, Alan L. Yuille, IJCV 99






Generalized Bas-Relief ambiguity

z = f(z,y)
_O_

/I\




Generalized Bas-Relief ambiguity

Note that if p = (z,y, f(z,y)) and p = (x,y, f(x,y)), then p = Gp where

1 0 0]
G=|0 1 0].
VA
1'/\ 0 0
n=GTq G'==10 X 0
A
o —u —v 1




Generalized Bas-Relief ambiguity

We can insert any 3x3 matrix Q in the decomposition and get the same images:
I=LB=(LQ")(QB)

Can we use any assumptions to remove some of these 9 degrees of freedom?

Generalized Bas-Relief ambiguity to rescue! - .

G has 3 degrees of freedom.

A

|

o =
R — O
> o o

G indicates integrable surface:
The order of taking 2"? order partial derivative with u & v (or x& y) shouldn’t matter!



Enforcing integrability

What does the integrability constraint correspond to?

e Differentiation order should not matter:

d df(x,y) _ d df(x,y)
dy dx dx dy

I=LB=(LQ"H(QB)

If B is integrable, then:
® B’=GT-Bis also integrable for all G of the form (A # 0)

1 0 0
G=[0 1 0
uwov A




For now, ignore specular reflection

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Refraction...

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Interreflections...

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



And Subsurface Scattering...

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra



What assumptions have we
made for all this?

*Lambertian BRDF
*Directional lighting
*Distant Lighting
*Orthographic camera

*No interreflections or scattering



Limitations

Bigger problems
e doesn’t work for shiny things, semi-translucent things
* shadows, inter-reflections

Smaller problems
* camera and lights have to be distant
 calibration requirements

* measure light source directions, intensities
e camera response function

Newer work addresses some of these issues
Some pointers for further reading:

» Zickler, Belhumeur, and Kriegman, "Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction." 1JCV, Vol. 49 No. 2/3,
pp 215-227.

* Hertzmann & Seitz, “Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs.” |EEE Trans. PAMI
2005



http://www.eecs.harvard.edu/~zickler/helmholtz.html
http://grail.cs.washington.edu/projects/sam/

Today’s class

* Photometric Stereo in ‘deep learning era’.



Photometric Stereo now ... in Deep Learning eral

* Exploiting High-quality CG rendering for training data
* Designing deep neural network architectures
e Designing loss functions

 GBR ambiguity is still a problem! -> Flattened objects reconstructed.



Using lighting as a cue for 3D reconstruction
(Photometric Stereo)

Reconstruction Novel View Mesh

Capture Setup

L20 [19] Ours

V Normal Mesh
Inference time: 1600 s

“Real-Time Light-Weight Near-Field Photometric Stereo”,

Mesh

Lichy, Sengupta, Jacobs, CVPR 2022



Captured Images: Right




Single iPhone Image with Built-In Flash

Image 1/1




Photometric Stereo + SLAM for colon reconstruction in colonoscopy

»
~ —~ -~

Photometric Stereo +
SLAM (Ours)

SLAM only

“A Surface-normal Based Neural Framework for Colonoscopy Reconstruction”, Sherry Wang, Yubo Zhang,
Sarah McGill, Julian Rosenman, Jan-Michael Frahm, Soumyadip Sengupta, Steve Pizer, IPMI 2023.
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Johnson and Adelson, 2009



Cookie

Clear Elastomer

Johnson and Adelson, 2009









Lights, camera, action

Sensor

Camera






(a) bench configuration (b) captured

(d) portable configuration

Figure 7: Comparison with the high-resolution result from the
original retrographic sensor. (a) Rendering of the high-resolution
$20 bill example from the original retrographic sensor with a close-
up view. (b) Rendering of the captured geometry using our method.

(e) reconstruction



leather vertically milled metal paper brick
(a) bench configuration (b) portable configuration

Figure 9: Example geometry measured with the bench and portable configurations. Outer image: rendering under direct lighting. Inset:
macro photograph of original sample. Scale shown in upper left. Color images are shown for context and are to similar, but not exact scale.



Sensing Surfaces with GelSight

‘ kimoatmit

T o 138,850 views
https:.//www.youtube.com/watch?v=S7gXih4XS7A



https://www.youtube.com/watch?v=S7gXih4XS7A

