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Image classification demo

https://cloud.google.com/vision/docs/drag-and-drop
See also: 
https://aws.amazon.com/rekognition/
https://www.clarifai.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

…

https://cloud.google.com/vision/docs/drag-and-drop
https://aws.amazon.com/rekognition/
https://www.clarifai.com/
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/


What is “Recognition”?

Next few slides adapted from Li, Fergus, & Torralba’s 
excellent short course on category and object recognition

http://people.csail.mit.edu/torralba/shortCourseRLOC/index.html


• Verification: is that a lamp?
What is “Recognition”?
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• Verification: is that a lamp?
• Detection: where are the people?
• Identification: is that Potala Palace?
• Object categorization
• Scene and context categorization

What is “Recognition”? • outdoor
• city
• …



• Verification: is that a lamp?
• Detection: where are the people?
• Identification: is that Potala Palace?
• Object categorization
• Scene and context categorization
• Activity / Event Recognition 

What is “Recognition”? what are these 
people doing?



Recognition: What type of output?

Semantic segmentation Instance segmentation

Image classification Object detection

• And beyond: depth/3D structure prediction, image description, etc.



Object recognition: Is it really so hard?

This is a chair

Find the chair in this image Output of normalized correlation



Object recognition: Is it really so hard?
Find the chair in this image 

Pretty much garbage:
Simple template matching is not 

going to do the trick



Object recognition: Is it really so hard?
Find the chair in this image 

A “popular method is that of template matching, by point to point correlation of a model 
pattern with the image pattern. These techniques are inadequate for three-dimensional 
scene analysis for many reasons, such as occlusion, changes in viewing angle, and 
articulation of parts.” Nivatia & Binford, 1977.



• Works well for object instances (or 
distinctive images such as logos)

• Not great for generic object 
categories

Why not use SIFT matching for everything?



Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422 

And it can get a lot harder



Variability: Camera position,
Illumination,
Shape,
etc…

Why is recognition hard?

Svetlana Lazebnik



Challenge: lots of potential classes



• The same class of object 
can appear very
differently in different 
images

Variation Makes Recognition Hard

Viewpoint Variation Lighting Variation Deformation

Background Clutter Occlusion
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The Semantic Gap

What we see What the computer sees



• Input: an image
• Output: the class label for that image

• Label is generally one or more of the 
discrete labels used in training
• e.g. {cat, dog, cow, toaster, apple, tomato, 

truck, … }

Image Classifiers in a Nutshell
def classifier(image):

//Do some stuff
return class_label;

“Toaster”

“Cat”

“Dog”



• Distinct realities can produce the same 
image…
• We generally can’t compute the “right” 

answer, but we can compute the most 
likely one…
• We need some kind of prior to condition 

on. We can learn this prior from data:

The Problem is Under-constrained

I think there may be 
a spy among us…

f(x) = argmax
`x

P (`x|data)

<latexit sha1_base64="8IkMdkTl92/e7GIx4RlV5DbAwQM="></latexit>



• Data
• More is always better (as long as it is good data)
• Annotation is the hard part

• Representation
• Low level: SIFT, HoG, GIST, edges
• Mid level: Bag of words, sliding window, deformable model
• High level: Contextual dependence
• Deep learned features

• Learning Techniques
• E.g. choice of classifier or inference method

What Matters in Recognition?
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24 Hrs in Photos

https://www.kesselskramer.com/project/24-hrs-in-photos/

Flickr Photos From 1 Day in 2011

https://www.kesselskramer.com/project/24-hrs-in-photos/


• PASCAL VOC
• Not Crowdsourced, bounding boxes, 20 categories

• ImageNet
• Huge, Crowdsourced, Hierarchical, Iconic objects

• SUN Scene Database, Places
• Not Crowdsourced, 397 (or 720) scene categories

• LabelMe (Overlaps with SUN)
• Sort of Crowdsourced, Segmentations, Open ended

• SUN Attribute database (Overlaps with SUN)
• Crowdsourced, 102 attributes for every scene

• OpenSurfaces
• Crowdsourced, materials

• Microsoft COCO
• Crowdsourced, large-scale objects

Data Sets

… and many more https://paperswithcode.com/datasets?task=image-classification



• 20 object categories (aeroplane to TV/monitor) 

• Three challenges:
• Classification challenge (is there an X in this image?)
• Detection challenge (draw a box around every X)
• Segmentation challenge (which class is each pixel?)



Large Scale Visual Recognition Challenge 
(ILSVRC)

20 object classes 22,591 images
1000 object classes 1,431,167 images

Dalmatian

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

2010-2017



Variety of object classes in ILSVRC



Variety of object classes in ILSVRC



• Data
• More is always better (as long as it is good data)
• Annotation is the hard part

• Representation
• Low level: SIFT, HoG, GIST, edges
• Mid level: Bag of words, sliding window, deformable model
• High level: Contextual dependence
• Deep learned features

• Learning Techniques
• E.g. choice of classifier or inference method

What Matters in Recognition?



Recall: Origins of computer vision

Roberts, 1963Hough, 1959 Rosenfeld, 1969 Duda & Hart, 1972

https://dspace.mit.edu/handle/1721.1/11589
https://inspirehep.net/literature/919922


History of recognition: Geometric alignment

Huttenlocher & Ullman (1987)

Lowe (1985)Grimson & Lozano-Perez (1984)Perkins (1978)

Ayache & Faugeras (1986)



History of recognition: Hierarchies of parts

Figures from Marr’s Vision (1982)

http://s-f-walker.org.uk/pubsebooks/epubs/Marr%5d_Vision_A_Computational_Investigation.pdf


History of recognition: Deformable templates

M. Fischler and R. Elschlager, The representation and matching of pictorial structures, IEEE 
Trans. on Computers, 1973

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.7951&rep=rep1&type=pdf


History of recognition: Appearance-based models

M. Turk and A. Pentland, Face recognition using 
eigenfaces, CVPR 1991

H. Murase and S. Nayar, Visual learning and recognition of 3-d 
objects from appearance, IJCV 1995

https://sites.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
https://sites.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
http://murase.m.is.nagoya-u.ac.jp/~murase/pdf/704-pdf.pdf
http://murase.m.is.nagoya-u.ac.jp/~murase/pdf/704-pdf.pdf


History of recognition: Features and classifiers

Rowley, Baluja, Kanade (1998)

Schneiderman & Kanade (1998)

Neural network

Statistics of feature responses, probabilistic classifier

Osuna, Freund, Girosi (1997)

Support vector machines

Viola & Jones (2001)

Rectangle features, boosting

Appearance manifolds 
+ neural network

Sung & Poggio (1994)



History of recognition: Deformable templates

Felzenszwalb & Huttenlocher (2000) Felzenszwalb et al. (2008)

Pictorial structures revisited Discriminatively trained deformable part-based models



History of recognition: Constellation models

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)



History of recognition: Bags of keypoints

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

Inspired by Bag of Words features from NLP



Spatial pyramids
• Orderless pooling of local features over a coarse grid

level 0 level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)

Pyramid representations are very 
popular in Vision, and still used in 
conjunction with deep learning.



Spatial pyramids
• Caltech101 classification results:



History of recognition: Neural networks
Neocognitron

Fukushima (1980)

LeNet-5

LeCun et al. (1998)

AlexNet

Krizhevsky et al. (2012)

Rosenblatt (1958)

Perceptrons

Minsky & Papert (1969)

Back-propagation

Rumelhart, Hinton & Williams (1986)



• Data
• More is always better (as long as it is good data)
• Annotation is the hard part

• Representation
• Low level: SIFT, HoG, GIST, edges
• Mid level: Bag of words, sliding window, deformable model
• High level: Contextual dependence
• Deep learned features

• Learning Techniques
• E.g. choice of classifier or inference method

What Matters in Recognition?



Training & Testing a Classifier



Training & Testing a Classifier



• Nearest Neighbor
• kNN (“k-Nearest Neighbors”)
• Linear Classifier
• Neural Network
• Deep Neural Network
• …

Classifiers
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Nearest Neighbor (NN) Classifier

• Train
• Remember all training images 

and their labels

• Predict
• Find the closest (most 

similar) training image
• Predict its label as the true 

label



CIFAR-10 and NN results

Slides from Andrej Karpathy and Fei-Fei Li
http://vision.stanford.edu/teaching/cs231n/



k-nearest neighbor
• Find the k closest points from training data
• Take majority vote from K closest points







Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/

http://vision.stanford.edu/teaching/cs231n-demos/knn/


Hyperparameters

• What is the best distance to use?
• What is the best value of k to use?

• These are hyperparameters: choices about the algorithm that we set 
rather than learn

• How do we set them?
• One option: try them all and see what works best



Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Slide composited from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



• N training images, M test images

• Training: O(1)
• Testing: O(MN)

• We often need the opposite:
• Slow training is ok
• Fast testing is necessary

kNN -- Complexity and Storage



k-Nearest Neighbors: Summary

• In image classification we start with a training set of images and 
labels, and must predict labels on the test set

• The K-Nearest Neighbors classifier predicts labels based on nearest 
training examples

• Distance metric and K are hyperparameters

• Choose hyperparameters using the validation set; only run on the 
test set once at the very end!



Problems with KNN: Distance Metrics



• As the number of dimensions 
increases, the same amount of data 
becomes more sparse.
• Amount of data we need ends up being 

exponential in the number of 
dimensions

Problems with KNN: The Curse of Dimensionality

Animation from https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html


• Nearest Neighbor
• kNN (“k-Nearest Neighbors”)
• Linear Classifier
• Neural Network
• Deep Neural Network
• …

Classifiers



Linear Classifiers



• Nearest Neighbors
• Store every image
• Find nearest neighbors at test 

time, and assign same class

Linear Classification vs. Nearest Neighbors



• Nearest Neighbors
• Store every image
• Find nearest neighbors at test 

time, and assign same class

• Linear Classifier
• Store hyperplanes that best 

separate different classes
• We can compute continuous class 

score by calculating (signed) 
distance from hyperplane

We can interpret this as a linear 
"score function” for each class.

Linear Classification vs. Nearest Neighbors



Score functions

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Parametric Approach

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Parametric Approach: Linear Classifier

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Parametric Approach: Linear Classifier

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Linear Classifier

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Interpretation: Algebraic

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



• Parameters define a hyperplane for 
each class:

• We can think of each class score as 
defining a distribution that is 
proportional to distance from the 
corresponding hyperplane

Interpretation: Geometric

f(xi,W, b) = Wxi + b

<latexit sha1_base64="Fyp5bDMhtZDA0Ksosbmyu6Y617s="></latexit>

The Space of
All Images



• We can think of the rows in         as templates for each class
Interpretation: Template matching

f(xi,W, b) = Wxi + b

<latexit sha1_base64="Fyp5bDMhtZDA0Ksosbmyu6Y617s="></latexit>

Rows of W in 





Hard Cases for a Linear Classifier





• Learning methods
• k-Nearest Neighbors
• Linear classification

• Classifier outputs a score function giving a score to each class
• How do we define how good a classifier is based on the training data? 

(Spoiler: define a loss function)

Recap



Linear classification

Output scores



Loss functions



• Two classes (e.g., “cat” and “not cat”)
• AKA “positive” and “negative” classes

Simpler example: binary classification

cat not cat



0:negative
0:positive

<+×
³+×
b
b

ii

ii

wxx
wxx

Linear classifiers

Which hyperplane is best? We 
need a loss function to decide 

• Find linear function (hyperplane) to 
separate positive and negative 
examples



• One possibility: Number of misclassified examples
• Problems: discrete, can’t break ties
• We want the loss to lead to good generalization
• We want the loss to work for more than 2 classes

What is a good loss function?

Loss: 2 Loss: 0 Loss: 0



• Interpret Scores as 
unnormalized log 
probabilities of classes

Softmax classifier

Squashes values into probabilities 
ranging from 0 to 1

(score function)

Example with three classes:



Softmax classifier

0.06

0.82

0.12

Softmax
“probabilities”



Cross-entropy loss

(score function)

We call Li cross-
entropy loss



Cross-entropy loss

(score function)

We call Li cross-
entropy loss

fyi : score of correct class



Cross-entropy loss

(score function)

We call Li cross-
entropy loss



• Cross-entropy loss is just one possible loss function
• One nice property is that it reinterprets scores as probabilities, which have a 

natural meaning

• SVM (max-margin) loss functions also used to be popular
• But currently, cross-entropy is the most common classification loss

Losses



• Have score function and loss function
• Currently, score function is based on linear classifier
• Next, will generalize to convolutional neural networks

• Find W and b to minimize loss

Summary

Average of cross-entropy loss 
over all training examples

{ Regularization term



• Fine-grain classification
• How do we distinguish between more 

subtle class differences?

What’s Still Hard?
Animal->Bird->Oriole…



• Few shot learning
• How do we generalize from only a small 

number of examples?

What’s Still Hard?



Slide Credits

• CS5670, Introduction to Computer Vision, Cornell Tech, by Noah 
Snavely.
• CS 543 Computer Vision, by Stevlana Lazebnik, UIUC.
• EECS 442 Computer Vision, by Justin Johnson & David Fouhey, U 

Michigan.

https://www.cs.cornell.edu/courses/cs5670/2022sp/
https://slazebni.cs.illinois.edu/fall22/
https://web.eecs.umich.edu/~justincj/teaching/eecs442/WI2021/

