# Lecture 18: Introduction to Recognition

COMP 590/776: Computer Vision Instructor: Soumyadip (Roni) Sengupta TA: Mykhailo (Misha) Shvets



Course Website: Scan Me!

#### Image classification demo



https://cloud.google.com/vision/docs/drag-and-drop

See also:

https://aws.amazon.com/rekognition/

https://www.clarifai.com/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

Next few slides adapted from Li, Fergus, & Torralba's excellent <u>short course</u> on category and object recognition



#### • Verification: is that a lamp?



#### • Verification: is that a lamp?

• Detection: where are the people?



- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?



- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization



- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
- Scene and context categorization



- Verification: is that a lamp?
- Detection: where are the people?
- Identification: is that Potala Palace?
- Object categorization
- Scene and context categorization
- Activity / Event Recognition



#### Recognition: What type of output?

#### Image classification



#### Semantic segmentation

#### Object detection



#### Instance segmentation





• And beyond: depth/3D structure prediction, image description, etc.

#### Object recognition: Is it really so hard?

Find the chair in this image



Output of normalized correlation



This is a chair



### Object recognition: Is it really so hard?



Find the chair in this image





Pretty much garbage: Simple template matching is not going to do the trick

### Object recognition: Is it really so hard?



Find the chair in this image



A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

### Why not use SIFT matching for everything?

• Works well for object *instances* (or distinctive images such as logos)



• Not great for generic object categories



#### And it can get a lot harder



Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422



Svetlana Lazebnik



#### Variation Makes Recognition Hard

 The same class of object can appear very differently in different images





#### The Semantic Gap



PTOTOTIT TTOTOTOTO( J0J0J0JJJJ0JJJ0JJ( PICOIIICOI I CI I( POT TTTOT TOOTOOTO] PODIJIJ TOODIJOO] ]07007007007770007] 70000 J000JJJ0JJJ0( 0770000007777 ][ ٦. ) JOJJOOJ OJOOJJ J( <u>, U J' J</u> JTTT TOTOTO TOTTT ] ]00070707007070770] 7007 7777000070 77( JOTTTTOOOOTTTT TTO]

What we see

#### What the computer sees

### Image Classifiers in a Nutshell

- Input: an image
- Output: the class label for that image
- Label is generally one or more of the discrete labels used in training
  - e.g. {cat, dog, cow, toaster, apple, tomato, truck, ... }

def classifier(image):
//Do some stuff
return class\_label;



#### The Problem is Under-constrained

- Distinct realities can produce the same image...
- We generally can't compute the "right" answer, but we can compute the most likely one...
- We need some kind of prior to condition on. We can learn this prior from data:

$$f(x) = \underset{\ell_x}{\operatorname{argmax}} P(\ell_x | data)$$





### What Matters in Recognition?

#### • Data

- More is always better (as long as it is good data)
- Annotation is the hard part
- Representation
  - Low level: SIFT, HoG, GIST, edges
  - Mid level: Bag of words, sliding window, deformable model
  - High level: Contextual dependence
  - Deep learned features
- Learning Techniques
  - E.g. choice of classifier or inference method

### What Matters in Recognition?

#### • Data

- More is always better (as long as it is good data)
- Annotation is the hard part

#### Representation

- Low level: SIFT, HoG, GIST, edges
- Mid level: Bag of words, sliding window, deformable model
- High level: Contextual dependence
- Deep learned features
- Learning Techniques
  - E.g. choice of classifier or inference method

#### 24 Hrs in Photos

Flickr Photos From 1 Day in 2011



https://www.kesselskramer.com/project/24-hrs-in-photos/

#### Data Sets

- PASCAL VOC
  - *Not* Crowdsourced, bounding boxes, 20 categories
- ImageNet
  - Huge, Crowdsourced, Hierarchical, *Iconic* objects
- SUN Scene Database, Places
  - Not Crowdsourced, 397 (or 720) scene categories
- LabelMe (Overlaps with SUN)
  - Sort of Crowdsourced, Segmentations, Open ended
- SUN Attribute database (Overlaps with SUN)
  - Crowdsourced, 102 attributes for every scene
- OpenSurfaces
  - Crowdsourced, materials
- Microsoft COCO
  - Crowdsourced, large-scale objects

The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- 20 object categories (aeroplane to TV/monitor)
- Three challenges:
  - Classification challenge (is there an X in this image?)
  - Detection challenge (draw a box around every X)
  - Segmentation challenge (which class is each pixel?)



## Large Scale Visual Recognition Challenge (ILSVRC) IM GENET

## 20 object classes22,591 images1000 object classes1,431,167 images

Image: Constraint of the second s

#### http://image-net.org/challenges/LSVRC/{2010,2011,2012}

#### Variety of object classes in ILSVRC

flamingo







bottle



car

#### **ILSVRC**



cock





quail



partridge



ruffed grouse



beer bottle wine bottle water bottle pop bottle ... pill bottle



race car wagon







cab

. .

bottles

cars

birds

#### Variety of object classes in ILSVRC



## What Matters in Recognition?

#### • Data

- More is always better (as long as it is good data)
- Annotation is the hard part
- Representation
  - Low level: SIFT, HoG, GIST, edges
  - Mid level: Bag of words, sliding window, deformable model
  - High level: Contextual dependence
  - Deep learned features
- Learning Techniques
  - E.g. choice of classifier or inference method

#### Recall: Origins of computer vision







(b) Differentiated picture.



(a) Original picture.

(c) Line drawing

(d) Rotated view.



PICTURE

Pattern Classification and Scene Analysis Richard O. Duda and Peter E. Hart



Hough, 1959



Rosenfeld, 1969

Duda & Hart, 1972

#### History of recognition: Geometric alignment





Perkins (1978)



Grimson & Lozano-Perez (1984)



Lowe (1985)











Huttenlocher & Ullman (1987)

Ayache & Faugeras (1986)

(b)

#### History of recognition: Hierarchies of parts



#### History of recognition: Deformable templates

| 0.000 | 12345+7890123455799012345573901234557890          |
|-------|---------------------------------------------------|
| 1.    | 00433334 0042 FEERFF PFFFFFFF44999348498          |
| 2     |                                                   |
| 3     | B#####################################            |
| 4     | **************************************            |
| 5     | ***************************************           |
| 5     | 833###################################            |
| 7     | SERVICES CONSERBORNAGE BAREFFEELDEDTAT            |
| 6     | EELETETTOBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB          |
| 9     | Eters # + + + + + + + + + + + + + + + + + +       |
| 10    | EFFEFHHIBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB          |
| 11    |                                                   |
| 12    | **************************************            |
| 13    |                                                   |
| 14    | \$\$\$ { { { { { { { { { { { { { { { { { {        |
| 15    | EF#FEE+#888##88x) = = +1 *88881244434Hd           |
| 16    | ••••••••••••••••••••••••••••••••••••••            |
| 17    | > 응유유유류의단상행수소 ™21+ = 1 A 명월방 7 A A 자귀하는 색         |
| 18    | FRH = 254 8 - 1 X Z 1 + - 1 A 8 8 X X X A 4989 A  |
| 19    | €€968MM28#489#A)==1)))2 x821 XXXAAM8MA            |
| 20    | <pre>###### AA#############################</pre> |
| 21    | BHEMAAXX FAMER HE +ZMMER XXZ 1ZZ XXAAMAA          |
| 22    | EPPMAAX A# AXX ZZXA=ZZ1 ) 112 XX1 ) Z XXAAMAA     |
| 23    | 66644XX464X1))22-1+ -+)241+)2XXXX444X             |
| 24    | 05************************************            |
| 25    | 0444 AXAAAAXX1) X+ )1- +)XA+))111112222           |
| 26    | €2*MAXXAAMX2)) =x 1x 1+ =+1AX++++)) 111112        |
| 27    | MMAAXAXAXXXXZ2XAXXXZ1)+ZMZ++++)))))1111           |
| 28    | AAAXXXXXXAAXA* 4XXXZZ })X91++++)))11111           |
| 29    | AxxxxxxXZAExxtenquex(1A=1+++))))11111             |
| 30    | XXX222221X#MXAAXXX2)2A±5?X)))11112222             |
| 31    | XXX2222222 MBEA>2X2112A000 AX1272222XXX           |
| 32    | XXXZZZX#+#####AZ1)1ZA#MA#A###AXXXXXXXAA           |
| 33    | XXX7ZABB-PESSEAX XAGEYXAB78895474964A4            |
| 34    | XXXXAGGA X86000000000000XXAM1830P3M393493         |
| 35    | XXABBEBE ) PMAMMAXXXXX AB) ABBEEEFX BEHMM         |
|       |                                                   |

#### 123456789012345678901234567890123456789

Original picture.

123456769012345678901234567490123456739 884 A3638 AYPEAA68A16X12XYYEsYXE +#24244 #38818###237 X\*E87 48#\*#2###18X##7146818888 E6+ERE#8\*8\*8xX 78+8x8=18X#+8887 16×844#44 8H8284+6H1488628XYHX88883\*\*+2X3488887\*XX L BZ BYEYBBEED XERBARBEE ZBABBEE A= X BY AB X A X Z 1 @ 88/ M848 ) 54 (78898 YBUG8 + KR848 + (141 / 884 / 88+8%+>H88888888888888888888848848141814181448 13 8=+8A8)F6f+8F6+1- +7) A\*#L6\*E8+\*#+8#\* €=5×2A8+88#→882= # 2 212-8888++ 82+2+ 888X4824984091))=-)1 +=6)881X=XX412+ 17 HZAXIAXBEB-16)A)- ) - ZBUBXYMA MANKE Y8YX€ZL==88=-AX A1 1F844141#A#K4A 19 682A##X88#48#) X + 2A##)#)28X38X61 AZM+ ABBBB 42808842++62 4644178014764 4X 21 Z@XAZAAAHA##11#A =1Z@Bx@1= AXE-x2@H1@ ALSHMENMENEMEMYABX1+21 1M411AXZOXXX144M 22 23 MBZ MZ #7 @+A211 Z= Z11-M +#1 81 #XA4+4 BEEZZE== MY1 2+1) 2- MZ=+)1444)++ 78 24 25 8A-)816966AX \*X++Z1) =+#)\* +A XXX 828\*18AA=84-1221 A42X X 4= 2411 XX1X1+ "8888)#+)XX "61 XZ4H-+ Z98+ X/ X. -9 +4 1x1A))21=M@MAM@X11)X A Z)1 )) A = xx-A ++++ M ) Z / X)-#88 ×8421X944+# 14 X AX+ ZAA= ) A X== A 281 )++ ) A1 A8 YY+ 4 A) )+1=14-X 30 )ZAMXZZAM#68-MBA# A+M888XE=X 1M))+) ASA ARBIELSEZ ) 1) MEMA-EX99AYX ACCENS 1 EZX-8. #A88 #A8 24\*-E14E\*Starest##Z 33 ZIA MBR#1@18984%A"X "WAAAEEXX"ERXBEBAS 34 35 +8188× 218292×1×1\*+€+×#8088×-444888 123456789012345676901234567890123456789

Noisy picture (sensed scene) as used in experiment.

|    | 1234567890123456784012345678901234557990                            |
|----|---------------------------------------------------------------------|
| 1  | 1111XXXX7717X77711+++1)))XA*AZZXX111                                |
| 2  | 111 XAA XA X17 X217 MAX 771117X MAAXXXXX M111                       |
| 3  | 111 HOAM 4 AAAXXMXA 494 XX7774 HHHAXA XA111                         |
| 4  | 111 MMMMAAAMXXXXXXXXXXXXXXXXXXXXXXXXXXXX                            |
| 5  | 111MHHAMAX7XAXX7AXAXXAXXAAXAAAMMMX111                               |
| 6  | 1116MMXAXX717XX711X6AXX77XX7XMMMM4111                               |
| ž  | 111 ***********************************                             |
| 8  | 11144444447 8444444444444444444444444444                            |
| 9  | 1111XXX7XXX7XA99 YOB COO YWWWX77XX7X111                             |
| 10 |                                                                     |
| 11 |                                                                     |
| 12 | 1114M4X74/F966 F8888888888899999999999999111                        |
| 13 | 111966FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF                             |
| 14 |                                                                     |
| 15 | 111 AMAAMMAMMAMAAAAAAAAAAAAAAAAAAAAAAAA                             |
| 16 | 111AXA44XAX77771111+11)1764#A57777111                               |
| 17 | 111 XA XXXAXX71+1111+ -7A 404 4AXXAA111                             |
| 18 | 111XXXA1 4X7111+111+ = 17 AHR4XAAAXA111                             |
| 10 | 111 AM AM ##############################                            |
| 20 | 111 XMERESSAGE VAAVPAMEE OBAMAXXMA111                               |
| 21 | 111X AAMMA ARE THAA AMAR BER MAAMAXXMMM9111                         |
| 22 | 111 × 7 ΔΔ× ×******************************                         |
| 23 | 1117717474X7XX7/1111177X1744X4HM4 4111                              |
| 24 | 111 x 7 7 x 7 117 1 + + + 1 7 1 1 1 1 1 1 x x 7 x 4 4 A X X 4 1 1 1 |
| 25 | 111 AAMMWM AX111+==++++11111777X1111111                             |
| 26 | 11140000004Y1X11771711+++1171177X17111                              |
| 27 | 11100 MAXX7 177 XAAXX22 1++ 11 11117 12X111                         |
| 23 | 1112x2221))2Ax2v A77)+=+)+++)))111111                               |
| 29 | 11121+1)+1122X0H44X2272211+++1+11=111                               |
| 30 | 111111++17++))7)11717xxxxx1)+)+ ++111                               |
| 31 | 1112))11 XA*AX1))122XXAPM271)++= + 111                              |
| 32 | 11171117 PRFX11711XXXMM8AX27+)17771111                              |
| 33 | 111+) ) 1 XAAAAAZ++1 Z1 X X Z Z X Z X AZ 1 Z Z Z 1111               |
| 34 | 111))) ZZX ZXX ZZZX)) 11) 12122 ZZZ XZ XAL111                       |
| 35 | 1111127+11+111111+++112XXXAAAAA11111                                |
|    |                                                                     |
|    | 1234567890123456789012345678901234567890                            |

L(EV)A for hair. (Density at a point is proportional

to probability that hair is present at that loca-



HAIR WAS LOCATED AT (11, 21) L/EDGE WAS LOCATED AT (25, 11) R/EDGE WAS LOCATED AT (25, 24) L/EYE WAS LOCATED AT (21, 15) R/EYE WAS LOCATED AT (21, 21) NOSE WAS LOCATED AT (22, 18) MOUTH WAS LOCATED AT (29, 17)

M. Fischler and R. Elschlager, <u>The representation and matching of pictorial structures</u>, IEEE Trans. on Computers, 1973

tion.)

### History of recognition: Appearance-based models



M. Turk and A. Pentland, <u>Face recognition using</u> <u>eigenfaces</u>, CVPR 1991





H. Murase and S. Nayar, <u>Visual learning and recognition of 3-d</u> objects from appearance, IJCV 1995

### History of recognition: Features and classifiers


# History of recognition: Deformable templates

#### Pictorial structures revisited



Felzenszwalb & Huttenlocher (2000)

#### Discriminatively trained deformable part-based models



Felzenszwalb et al. (2008)

## History of recognition: Constellation models



Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

## History of recognition: Bags of keypoints



Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

Inspired by Bag of Words features from NLP

# Spatial pyramids

• Orderless pooling of local features over a coarse grid



Lazebnik, Schmid & Ponce (CVPR 2006)

# Spatial pyramids

• Caltech101 classification results:



|       | Weak features (16) |                | Strong features (200) |                  |  |
|-------|--------------------|----------------|-----------------------|------------------|--|
| Level | Single-level       | Pyramid        | Single-level          | Pyramid          |  |
| 0     | $15.5 \pm 0.9$     |                | $41.2 \pm 1.2$        |                  |  |
| 1     | $31.4 \pm 1.2$     | $32.8 \pm 1.3$ | $55.9\pm0.9$          | $57.0\pm0.8$     |  |
| 2     | $47.2 \pm 1.1$     | $49.3 \pm 1.4$ | $63.6 \pm 0.9$        | <b>64.6</b> ±0.8 |  |
| 3     | $52.2 \pm 0.8$     | $54.0 \pm 1.1$ | $60.3 \pm 0.9$        | $64.6\pm\!0.7$   |  |

# History of recognition: Neural networks

#### Perceptrons







Minsky & Papert (1969)

LeNet-5



Rumelhart, Hinton & Williams (1986)







#### AlexNet



Krizhevsky et al. (2012)

LeCun et al. (1998)

# What Matters in Recognition?

### • Data

- More is always better (as long as it is good data)
- Annotation is the hard part
- Representation
  - Low level: SIFT, HoG, GIST, edges
  - Mid level: Bag of words, sliding window, deformable model
  - High level: Contextual dependence
  - Deep learned features
- Learning Techniques
  - E.g. choice of classifier or inference method

### Training & Testing a Classifier



## Training & Testing a Classifier



# Classifiers

- Nearest Neighbor
- kNN ("k-Nearest Neighbors")
- Linear Classifier
- Neural Network
- Deep Neural Network
- •

# Classifiers

- Nearest Neighbor
- kNN ("k-Nearest Neighbors")
- Linear Classifier
- Neural Network

•

Deep Neural Network

# Nearest Neighbor (NN) Classifier

### • Train

- Remember all training images and their labels
- Predict
  - Find the closest (most similar) training image
  - Predict its label as the true label



### CIFAR-10 and NN results

#### Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

| airplane   | Sand . | X   | -      | X   | ¥   | -   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1  |     | -         |
|------------|--------|-----|--------|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----------|
| automobile |        | No. | C      |     | -   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٩, | 100 | *         |
| bird       | 19     | 5   | 1      | R   |     | 4   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y  | -   | 4         |
| cat        | 1      |     |        | Se. |     | 1   | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A. | No. | 1         |
| deer       | 1      | 40  | Ľ.     | R   |     | Y   | Ŷ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K  | T   | <u>\$</u> |
| dog        | 376    | 1:  | 10     | 3   | 1   | -   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1  | 1   | 14        |
| frog       |        | 1   | -      | S-  | - 🐐 | ٠)  | and the second s |    |     | 32        |
| horse      | m.     | -   | P      | 7   | 3   | TAB | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t. | 6   | N.        |
| ship       | -      | 6   | a inte | -   | 144 | -   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 | -   | -         |
| truck      |        | No. | 1      |     |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4  |     | da        |

# For every test image (first column), examples of nearest neighbors in rows



Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

### k-nearest neighbor

- Find the k closest points from training data
- Take majority vote from K closest points



What does this look like?



### What does this look like?



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance  $d_1(I_1, I_2) = \sum |I_1^p - I_2^p|$ 



K = 1

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$



K = 1

Demo: <u>http://vision.stanford.edu/teaching/cs231n-demos/knn/</u>

### Hyperparameters

- What is the **best distance** to use?
- What is the **best value of k** to use?
- These are **hyperparameters**: choices about the algorithm that we set rather than learn
- How do we set them?
  - One option: try them all and see what works best

### Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

**BAD**: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, chooseBAD: No idea how algorithmhyperparameters that work best on test datawill perform on new data

train test

| Idea #3: Split data into train, val, and test; choose | Betterl |
|-------------------------------------------------------|---------|
| hyperparameters on val and evaluate on test           | Detter  |

|--|

### **Setting Hyperparameters**

Your Dataset

# Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | test |
|--------|--------|--------|--------|--------|------|
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | test |
| fold 1 | fold 2 | fold 3 | fold 4 | fold 5 | test |

Useful for small datasets, but not used too frequently in deep learning

# kNN -- Complexity and Storage

- N training images, M test images
- Training: O(1)
- Testing: O(MN)
- We often need the opposite:
  - Slow training is ok
  - Fast testing is necessary



# k-Nearest Neighbors: Summary

- In image classification we start with a training set of images and labels, and must predict labels on the test set
- The K-Nearest Neighbors classifier predicts labels based on nearest training examples
- Distance metric and K are **hyperparameters**
- Choose hyperparameters using the validation set; only run on the test set once at the very end!

# Problems with KNN: Distance Metrics

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive



(all 3 images have same L2 distance to the one on the left)

# Problems with KNN: The Curse of Dimensionality

- As the number of dimensions increases, the same amount of data becomes more sparse.
- Amount of data we need ends up being exponential in the number of dimensions



# Classifiers

- Nearest Neighbor
- kNN ("k-Nearest Neighbors")
- Linear Classifier
- Neural Network

•

Deep Neural Network

## Linear Classifiers



This image is <u>CC0 1.0 public</u> domain

# Linear Classification vs. Nearest Neighbors

- Nearest Neighbors
  - Store every image
  - Find nearest neighbors at test time, and assign same class



# Linear Classification vs. Nearest Neighbors

- Nearest Neighbors
  - Store every image
  - Find nearest neighbors at test time, and assign same class
- Linear Classifier
  - Store hyperplanes that best separate different classes
  - We can compute continuous class score by calculating (signed) distance from hyperplane



We can interpret this as a linear "score function" for each class.

## Score functions



### class scores

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

### Parametric Approach

image parameters f(x,W)

**10** numbers, indicating class scores

[32x32x3] = 3072array of numbers 0...1 (3072 numbers total)

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/

### Parametric Approach: Linear Classifier



### Parametric Approach: Linear Classifier



### Linear Classifier



### Interpretation: Algebraic

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



## Interpretation: Geometric

 Parameters define a hyperplane for each class:

$$f(x_i, W, b) = Wx_i + b$$

• We can think of each class score as defining a distribution that is proportional to distance from the corresponding hyperplane



### Interpretation: Template matching

• We can think of the rows in  $W\,$  as templates for each class



Rows of W in  $f(x_i, W, b) = Wx_i + b$
#### Linear Classifier: Three Viewpoints

f(x,W) = Wx

Algebraic Viewpoint



<u>Visual Viewpoint</u> One template per class



Hyperplanes cutting up space

**Geometric Viewpoint** 



# Hard Cases for a Linear Classifier

#### Class 1:

First and third quadrants

#### Class 2

Second and fourth quadrants

Class 1: 1 <= L2 norm <= 2

Class 2: Everything else



Class 1: Three modes

#### Class 2: Everything else



#### **So far**: Defined a (linear) <u>score function</u> f(x,W) = Wx + b

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

Cat image by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u> Car image is <u>CCO 1.0</u> public domain <u>Frog image</u> is in the public domain





| airplane   | -3.45 | -0.51 | 3.42  |
|------------|-------|-------|-------|
| automobile | -8.87 | 6.04  | 4.64  |
| bird       | 0.09  | 5.31  | 2.65  |
| cat        | 2.9   | -4.22 | 5.1   |
| deer       | 4.48  | -4.19 | 2.64  |
| dog        | 8.02  | 3.58  | 5.55  |
| frog       | 3.78  | 4.49  | -4.34 |
| horse      | 1.06  | -4.37 | -1.5  |
| ship       | -0.36 | -2.09 | -4.79 |
| truck      | -0.72 | -2.93 | 6.14  |

## Recap

- Learning methods
  - k-Nearest Neighbors
  - Linear classification
- Classifier outputs a score function giving a score to each class
- How do we define how good a classifier is based on the training data? (Spoiler: define a *loss function*)

### Linear classification



| airplane   | -3.45 | -0.51 | 3.42  |
|------------|-------|-------|-------|
| automobile | -8.87 | 6.04  | 4.64  |
| bird       | 0.09  | 5.31  | 2.65  |
| cat        | 2.9   | -4.22 | 5.1   |
| deer       | 4.48  | -4.19 | 2.64  |
| dog        | 8.02  | 3.58  | 5.55  |
| frog       | 3.78  | 4.49  | -4.34 |
| horse      | 1.06  | -4.37 | -1.5  |
| ship       | -0.36 | -2.09 | -4.79 |
| truck      | -0.72 | -2.93 | 6.14  |

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

#### Output scores

#### TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- 2. Come up with a way of efficiently finding the parameters that minimize the loss function.
  (optimization)

## Loss functions

3.2

5.1

-1.7

cat

car

frog

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:



1.3

4.9

2.0

2.2

2.5

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples  $\{(x_i, y_i)\}_{i=1}^N$ 

Where  $oldsymbol{x_i}$  is image and  $oldsymbol{y_i}$  is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

# Simpler example: binary classification

- Two classes (e.g., "cat" and "not cat")
  - AKA "positive" and "negative" classes









not cat

# Linear classifiers

- Find linear function (*hyperplane*) to separate positive and negative examples
  - $\mathbf{x}_i \text{ positive}: \quad \mathbf{x}_i \cdot \mathbf{w} + b \ge 0$  $\mathbf{x}_i \text{ negative}: \quad \mathbf{x}_i \cdot \mathbf{w} + b < 0$

Which hyperplane is best? We need a **loss function** to decide



# What is a good loss function?

- One possibility: Number of misclassified examples
  - Problems: discrete, can't break ties
  - We want the loss to lead to good generalization
  - We want the loss to work for more than 2 classes



## Softmax classifier

 Interpret Scores as unnormalized log probabilities of classes

$$f(x_i, W) = Wx_i$$
 (score function)



softmax function

Squashes values into *probabilities* ranging from 0 to 1

$$P(y_i \mid x_i; W)$$

Example with three classes:

 $[1,-2,0] \rightarrow [e^1,e^{-2},e^0] = [2.71,0.14,1] \rightarrow [0.7,0.04,0.26]$ 

### Softmax classifier

#### Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



### Cross-entropy loss

 $f(x_i, W) = Wx_i$  (score function)

### Cross-entropy loss

 $f(x_i, W) = W x_i$  (score function)



### Cross-entropy loss

 $f(x_i, W) = W x_i$  (score function)



#### Losses

- Cross-entropy loss is just one possible loss function
  - One nice property is that it reinterprets scores as probabilities, which have a natural meaning
- SVM (max-margin) loss functions also used to be popular
  - But currently, cross-entropy is the most common classification loss

# Summary

- Have score function and loss function
  - Currently, score function is based on linear classifier
  - Next, will generalize to convolutional neural networks
- Find W and b to minimize loss



# What's Still Hard?

- Fine-grain classification
  - How do we distinguish between more subtle class differences?

Animal->Bird->Oriole...



Baltimore Oriole



Hooded Oriole



Scott Oriole

# What's Still Hard?

- Few shot learning
  - How do we generalize from only a small number of examples?





# Slide Credits

- <u>CS5670, Introduction to Computer Vision</u>, Cornell Tech, by Noah Snavely.
- CS 543 Computer Vision, by Stevlana Lazebnik, UIUC.
- EECS 442 <u>Computer Vision</u>, by Justin Johnson & David Fouhey, U Michigan.