Lecture 19:
Recognition with CNNSs

COMP 590/776: Computer Vision e £l I A

L] [ L
..........
.....................

......

Instructor: Soumyadip (Roni) Sengupta st oot *5...;;:: i
TA: Mykhailo (Misha) Shvets tone ot by

Course Website:
Scan Me!



Image Classification:
a core task in computer vision

* Assume given set of discrete labels, e.g.
{cat, dog, cow, apple, tomato, truck, ... }

f(&) = "apple”
f(Rl) = “tomato”

f() - 1 COW”

Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik



Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

0.2 | 05 | 0.1 2.0 56 11 -96.8 | cat score

TR RO RN | 231 | 4 (RN . BAGEGN . oo

o — g |025] 02 | <03 24 -1.2 61.95 i s
&L

Slide adapted from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/



Linear Classifier

* Parameters define a hyperplane for
each class: )

* We can think of each class score as
defining a distribution that is
proportional to distance from the
corresponding hyperplane

The Space of
All Images




Simpler example: binary classification

* Two classes (e.g., “cat” and “not cat”)
* AKA “positive” and “negative” classes

cat not cat



Simpler example: binary classification

» Find linear function (hyperplane) to ®
separate positive and negative °
examples 0
X; positive: X,-w+b=0 s O e\ °
X; negative: X,-w+b<0 o

@

Which hyperplane is best? We
need a loss function to decide ®



Linear classification

,,.‘ -

TODO:

1. Define a loss function
that quantifies our
unhappiness with the

sirplane =3.45 ~Hx 0 s scores across the training
automobile -8.87 6.04 4.64 d t

bird 0.09 W i 2. 65 ata.

- 2.9 -4.22 Bl

door 4.48 -4.19 2.64 2. Come up with a way of

dog 232 3.58 5.55 efficiently finding the

frog . 4.49 -4.34 A N
ol i B T oy parameters that minimize
ship -0.36 —2 .09 _4.79 the loss function.

truck -0.72 -2.93 6.14 (optimization)

licensed under CC-BY 2 0: Carimage is CCO 1.0 public domain; Frog imadge is in the public domain

Output scores



Loss functions

Suppose: 3 training examples, 3 classes.

_ A loss function tells how
With some W the scores f(x, W) = Wz are:

good our current classifier is
Given a dataset of examples

{(9327 yz) i =1

Where Z; is image and

cat 3.2 1.3 2 9 Y; is (integer) label
car 51 4.9 25 Loss over the dataset is a

sum of loss over examples:
frog -17 20 '31

ZL Q’Jz, yz)




Softmax classifier

* Interpret Scores as f(zi,W) =Wz (score function)
unnormalized log
probabilities of classes v softmax function
>je”
Squashes values into probabillities :
ranging from 0 to 1 Pyi |z W)

Example with three classes:
[1,-2,0] — [e!,e?,e% =[2.71,0.14,1] — [0.7,0.04, 0.26]



Softmax classifier
Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 | 05| D1 | 2.0 56 11 -96.8 | cat score 0.06

1D 1.3 2.1 0.0 231 + 32 | —» | 4379 dog score — 0.82
fy;

e

input image O [Reoiiifha ] <0 24 . 61.95 | ship score el 0.12
|74 2 b f(z;; W, b) Softn.@)f
“probabilities”




Cross-entropy loss

f(z;, W) =Wz; (score function)



Cross-entropy loss

f(z;, W) =Wz; (score function)

W fy, : score of correct class

N\

-
e’vi We call L; cross-
Lz‘_——IO . = =T, J l
2 (Z] e’i ) b o 108 ;ef entropy loss




Cross-entropy loss

f(z;,W)=Wgz; (score tunction)

-
e’v We call L; cross-
Lz' = —1lo : = =y j l
g ( _ ) L; = —f, + log ;ef entropy loss

T l.e. we're minimizing
the negative log
likelihood.




Summary

* Have score function and loss function
* Currently, score function is based on linear classifier
* Next, will generalize to convolutional neural networks

* Find W and b to minimize loss

1 efy,' - -
Toc=:- % + A W
a Zz: - Zjeff >k4 >14 -

v Regularization term

Average of cross-entropy loss
over all training examples




(Deep) Neural Networks



Neural networks

(Before) Linear score function: f = Wz



Neural networks

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network  f = W5 max(0, Wix)

Non-linear Activation Function
(many other choices exist)



Neural networks

(Before) Linear score function: f — Wz
(Now) 2-layer Neural Network  f = W5 max(0, Wix)

X| Wy |h| Wy |s

3072 100 10
T
1 h (10 x 100 matrix)

(100 x 3072 matrix)
100D intermediate
vector



Neural networks

(Before) Linear score function: f — Wz
(Now) 2-layer Neural Network  f = W5 max(0, Wix)

X| Wiy |h| Wy |s

3072 100 10

* Total number of weights to learn:
3,072 x 100 + 100 x 10 = 308,200



Neural networks

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network ~ f = W5 max(0, Wix)
or 3-layer Neural Network

f = W3 max(0, Wy max(0, Wiz))

\

also called “Multi-Layer
Perceptrons” (MLPs)



Neural networks

* \Very coarse generalization of neural networks:

 Linear functions chained together and separated by non-linearities
(activation functions), e.g. “max”

f — W3 max(O, W2 max(O, WlZE))

* Why separate linear functions with non-linear functions?
* Very roughly inspired by real neurons

Impulses carried toward cell body

\ dendrite

Impulses carried away
from cell body




Activation functions

Siamoid 1/ Leaky ReLU )
9 1 max(0.1x, x)
o(z) = Y,

l14+e—=
b= 0 7 — Lo——]
tanh / Maxout
tanh(x) e / N max(wr‘lrx + by, ng + b2)
RelLU ELU

max(0, ) SO



Neural network architecture

 Computation graph for a 2-layer neural network

output layer
input layer
hidden layer

Neuron or unit



Neural networks: Architectures

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or

“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

Deep networks typically have many layers and potentially millions of parameters



Example feed-forward computation of a neural network

S A
SO
%"

\\ ‘ output layer

hidden layer 1 hidden layer 2

input layer

f = lambda x: 1.0/(1.0 + np.exp(-Xx)) # activation funct
X = np.random.randn(3, 1) # random input vector of three
hl = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4xl
h2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 # output neuron (I



Optimizing parameters with gradient descent

* How do we find the best W and b parameters?

* In general: gradient descent

1.
2.

4.

Start with a guess of a good W and b (or randomly initialize them)

Compute the loss function for this initial guess and the gradient of the loss
function

Step some distance in the negative gradient direction (direction of steepest
descent)

Repeat steps 2 & 3

* Note: efficiently performing step 2 for deep networks is called
backpropagation



. The Learning Cycle: Forward Propagation

>

2*3 +.1*2=8
2
TR 8*2 +-6*5 + 7*.1 =21
‘_.I W3
] Using the current weights of the model

calculate the hidden layer neurons, then

3 W calculate the output p.
2*5+.1*3=7




. The Learning Cycle: Backward Propagation

Want p to be larger...

(Y - p) is positive

—— How do we change our weights?



original W

negative gradient direction

Gradient descent: walk in the direction opposite gradient
* Q:How far?

* A:Step size: learning rate

* Too big: will miss the minimum

* Too small: slow convergence



2D example of gradient descent

* In reality, in deep learning we are
° Surface plot optimizing a highly complex loss
function with millions of
variables (or more)

* More on this later...

----- epochs: 0

https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/



https://laptrinhx.com/gradient-descent-animation-2-multiple-linear-regression-3070246823/

Convolutional Neural Networks (CNNs)



Convolutional neural networks

A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps

Convolutions Fu ||yC
Subsa mpl

LeNet-5



Classification

mlie

Fast-forward to today: ConvNets are everywhere

container s motor scooter 0
mite container ship motor scooter leapard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
.

gr e mushroom cher adagascar ca
vertible agaric \ monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus rlordshln bullterrier indri
fire engine | dead-man's-fingers currant howler monkey

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Retrieval




Image features vs ConvNets

f f =linear classifier

Feature Extraction g 10 numbers giving

[I I] [|[l l] |] scores for classes
h

training

| | ) I Krizhevsky, Sutskever, and Hirton, “Imagenet classifiation
\ /A — 4 ! \ 1 1 | [ S 4 \ with deep convolitional neural networks”®, NIPS 2012,
Figure copyright Krizhevsky, Sutskever, and Hintan, 2012.
Reproduced with permission.

10 numbers giving

training




Last layer of most CNNs is a linear classifier

This piece is just a linear classifier

(GoogLeNet)
Input Perform everything with a big neural
Pixels network, trained end-to-end

Key: perform enough processing so that by the time you get
to the end of the network, the classes are linearly separable



e structure, construction

covering

| 3|
r~‘~
57 128
30
_______ 2%
N\ |27 EN
3
pooling

» commodity, trade good, good

¢ conveyance, transport

¢ invertebrate
e bird
e hunting dog

(2D visualization using t-SNE)

Visualizing AlexNet in 2D with t-SNE

7 3“ f
/ 3 -------
; - |
- 93 128 2048 2048
13 \ 13
EN
e 3 = - > >
13 EE - 13 dense’| [dense
192 192 128 Max || L
Yo pooling 2048 2048
pooling

(c) DeCAF;

[Donahue, “DeCAF: DeCAF: A Deep Convolutional

(d) DeCAF

dense

.., arXiv 2013]



Convolutional neural networks

* Layer types:
e Convolutional layer
* Pooling layer
* Fully-connected layer



. AlexNet: An Early Example

227

13 13

\ |
11
1
27 256 384
96
Conv. Layer, stride 4 Conv. Layer Conv. Layer
227 Maxpool, stride 2 Maxpool, stride 2
I

|

13|3

13

Conv. Layer

384

Conv. Layer
Maxpool, stride 2

256

4096

4096

1000

Connected




Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth



Convolution Layer

32x32x3 image

5x5x3 filter
32 &/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32




Convolution (Recap)

* Same as cross-correlation, except that the kernel is “flipped”
(horizontally and vertically)

Eoook
Z Z Hlu,v|F|i —u,j — v

u=—kv=—=%r%

G[Z j] p— Z Z H[”U, ”U]F[’Z, —|— U j —|— ’U] Cross-correlation

u=—-kv=—k

 Convolution is commutative and associative



CO Nvo I Utl on I—aye r Filters always extend the full

. depth of the input volume
32x32x3 image /

5x5x3 filter
32 &/
Il Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32




Convolution Layer

32x32x3 image

5x5x3 filter
32 &/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Number of weights: 5x5x3+1=76
(vs. 3072 for a fully-connected layer)
(+1 for bias)



Convolution Layer

___— 32x32x3 image

5x5x3 filter w
= —
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

™~~~ 1 number:




Convolution Layer

activation map

___— 32x32x3 image

5x5x3 filter /
2
@>@ a

convolve (slide) over all

spatial locations
32 28




Convolution Layer consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter %
2
@>@ 2

convolve (slide) over all

spatial locations
32 / 28




For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

N

Convolution Layer

g .

3 6

28

We stack these up to get a “new image” of size 28x28x6!

(total number of parameters: 6 x (75 + 1) = 456)



Activation functions

Sigmoid

o(T) = —

l14+e—*=

tanh
tanh(x)

Rel U
max(0, )

[

—-10 10
1

IO
1
10

Leaky RelLU )
max(0.1z, x)

Maxout
max(wi x + by, wa x + by)

ELU

T x>0
ae® —1) =<0




Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g. 6
5x5x3
filters

32 28




Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

CONYV,
RelLU
e.g. 6
5x5x3
filters

28

28

CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

CONV,
RelLU

24



. AlexNet: An Early Example

227

13 13

\ |
11
1
27 256 384
96
Conv. Layer, stride 4 Conv. Layer Conv. Layer
227 Maxpool, stride 2 Maxpool, stride 2
I

|

13|3

13

Conv. Layer

384

Conv. Layer
Maxpool, stride 2

256

4096

4096

1000

Connected




Convolutional Networks

Learnable 3x3 Convolutional Kernels

Conv. Feature Maps

Input Image (Grayscale)

2D Conv.

»

80 x120 x 1

80x120 x 4

N

# of Output Channels

Slide Credits: (

Gedas Bertasius



. How Else to Shrink the Model Size?

Pooling Layer:
* Max Pooling
* Other pooling options like average pooling are also used

Single depth slice
i1 0 2 3

_, 6 8
3 e

& O @




Convolutional Networks

Learnable 3x3 Convolutional Kernels

Conv. Feature Maps
Pooled Feature Maps

2D Max Pooling I

>

Input Image (Grayscale)

2D Conv.

>

80x120x 1
40x 60 x4
80x120x 4

Slide Credits: (

sedas Bertasius



. AlexNet: An Early Example

X |
11
1

5 13|3 13]3 133 )
227 5 3 3 3
6
13 13 13 256 1000
07 256 384 384
96 - -
4096 4096
Conv. Layer, stride 4 Conv. Layer Conv. Layer Conv. Layer Conv. Layer Fully Fully Fully
227 Maxpool, stride 2 Maxpool, stride 2 Maxpool, stride 2 Connected Connected Connected
3
]

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



Fully Connected Layer

iInput layer

hidden layer 1 hidden layer 2



Convolutional Networks

Learnable FC Layer Weight Matrix

W € R4*C¢

d - feature dimensionality (4800 in
this example)

C - number of classes

-------

©:
Pooled Feature Maps @
@

2D Conv. Flatten
I Lt

40x60 x 2

-

-------

40x 60 x 4 1x 4800 Slide Credits: Gedas Bertasius



Convolutional Networks

Learnable FC Layer Weight Matrix

W e RdXC

d - feature dimensionality (4800 in
this example)

(' - number of classes

2D Conv. F FIatten
e

40 x60x 2

Pooled Feature Maps

r

40x60x4 1 x 4800

FC Layer
+Softmax @ Dog: 0.03

Slide Credits: Gedas Bertasius



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation

Wax

1 —> — 1 [O

3072 10 x 3072 10

weights



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
b W
1 10 x 3072 1 b
3072 . 10
weights /
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Same as a linear classifer!



Where Models Learn Features of an Image

Predictor
Low-level features . .
. . Mid-level features High-level features Process features and
Lines, oriented edges i ) .
Combine edges: Combine shapes: predict output
curves, shapes objects, scenes

o

w
p
L1

@

w
2—>
’J

o

256 38

Conv. Layer, strilde 4 Conv. Layer Conv. Layer Conv. Layer Conv. Layer Fully

Maxpool, stride 2 Maxpool, stride 2 Maxpool, stride 2 Connected




Preview

[Zeiler and Fergus 2013]

Low-level
features

Mid-level
features

Visualization of VGG-16 by Lane Mcintosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

VGG-16 Conv1_

High-level
features

Linearly

» separable >
classifier




AlexNet (2012)

6M parameters in total

Input CONV1
CONV2
CONV3 CONV4 CONV5 FC6 FC7 FC8
55
27 Dense Dense
o 13 13 13 Dense
1R I | ==
[ ¢ 3 =
a > ~ ./ 13 13 t 13 - - -
114 U 27
384 384 256
20 256 1000
MTX 4096 4096
Max pooling T
96
224 pooling
Input - 2/:;?] Output: 1,000-D vector
image 3 pooling (probabilities over 1,000
(RGB) St;lfie ImageNet categories)
0
I | | | | |
Image input 5 Convolution layers 3 Fully-connected

Elgendy, Deep Learning for Vision Systemes,

layers

https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/



https://livebook.manning.com/book/grokking-deep-learning-for-computer-vision/chapter-5/v-3/

“AlexNet”

Z61

XeW gzt

Guy
ISuIP
X B8Z

ujjood

[ Krizhevsky et al. NIPS 2012]

“GoogLeNet”

Bflee]ee

== B 3 =

=== ]

a |—

C ]
3 5 25 e

B e
===l

= 5 R
B aEaaE
-] |
] [=S]
= 1 ]

[Szegedy et al. CVPR 2015]

“VGG Net”

. maxpool

~ conv-128
conv-128
maxpool

~ conv-256
~ conv-256
~ maxpool

~ conv-512
conv-512
~maxpool

conv-512

conv-512

maxpool

FC-4096
. FC-4096

FC-1000

softmax

[Simonyan & Zisserman,
ICLR 2015]

“ResNet”

[He et al. CVPR 2016]



Big picture

* A convolutional neural network can be thought of as a function from
images to class scores
* With millions of adjustable weights...
* ... leading to a very non-linear mapping from images to features / class scores.
* We will set these weights based on classification accuracy on training data...
* ... and hopefully our network will generalize to new images at test time



Data is key—enter ImageNet

* ImageNet (and the ImageNet Large-Scale Visual Recognition Challege,

aka ILSVRC) has been key to training deep learning methods

e J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical
Image Database. CVPR, 2009.

* ILSVRC: 1,000 object categories, each with ~700-1300 training
images. Test set has 100 images per categories (100,000 total).

e Standard ILSVRC error metric: top-5 error

* if the correct answer for a given test image is in the top 5 categories, your
answer is judged to be correct



Performance improvements on ILSVRC

* ImageNet Large-Scale Visual
Recognition Challenge

e Held from 2011-2017

* 1000 categories, 1000 training

images per category

* Test performance on held-out test

set of images

ImageNet competition results

051 ©

Pre-deep
learning era |

o
()

Error rate

o©
N

0.1

e

¢ Deep learning era

—

§

o

o

8

(o)
0
8
8

E 8
0.0 T T r . . ;
2011 2012 2013 2014 2015 2016
Year
AlexNet




30 +

ImageNet Top-5 Error

—
=
1

N
>
L)

—
h
T

28.2

25.8

2010 2011

2012 2013 2014 2014

2.25

2015 2016 2017

Image credit: Zaid Alyafeai, Lahouari Ghouti



Closer look at Convolution



A closer look at spatial dimensions:

activation map

__— 32x32x3 image

5x5x3 filter
e
@>@ ”

convolve (slide) over all
spatial locations

32 28




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter

=> 5x5 output




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 2




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 2




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?




A closer look at spatial dimensions:

7

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.



Output size:
(N - F) / stride + 1

eg.N=7F=3:
stride1=>(7-3)1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=233:\



n practice: Common to zero pad the border

0(0|j0|0O(0]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

(recall:)
(N - F) /stride + 1




n practice: Common to zero pad the border

0(0|j0|0O(0]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!

Output filter size: (N + 2*pad — F)/S +1




n practice: Common to zero pad the border

0(0|j0|0O(0]O

e.g. input 7x7
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
° 7x7 output!

in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F =5 =>zero pad with 2
F =7 =>zero pad with 3




Padding & Stride in CNN

CLASS torch.nn.Conv2d (in_channels, out_channels, kernel_size, stride=1, padding=0,
dilation=1, groups=1, bias=True, padding_mode='zeros ', device=None, dtype=None) [SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Chu, H, W) and output
(N, Couty Hout, Wout) can be precisely described as:

Cin—1
out(N;, Cout;) = bias(Cout;) + Z weight(Coy,, k) * input (IV;, k)
k=0

where x is the valid 2D cross-correlation operator, IV is a batch size, C denotes a number of channels, H is a height
of input planes in pixels, and W is width in pixels.

H;, + 2 x padding[0] — dilation[0] x (kernel_size[0] — 1) — 1
Hout — . +1
i stride|0]
Win + 2 x padding[1] — dilation[1] x (kernel_size[l] — 1) — 1
Wour = . +1
i stride[1]

padding=1, stride=2



Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ..)). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24

3 6 10



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

N

N



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

N

<




Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

N

N



Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 i

<
A

Number of parameters in this layer?
each filter has 5*5*3 + 1 = /6 params  (+1 for bias)
=> 7610 =760



(btw, 1x1 convolution layers make perfect sense)

64

56

56

1x1 CONV
with 32 filters

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56



Convolutional layer—properties

* Small number of parameters to learn compared to a fully connected
layer

* Preserves spatial structure—output of a convolutional layer is shaped
like an image

* Translation equivariant: passing a translated image through a
convolutional layer is (almost) equivalent to translating the
convolution output (but be careful of image boundaries)



Self-study



[ConvNetdS demo: training on CIFAR-10]

ConvNetJS CIFAR-10 demo

Description

Network Visualization

This demo trains a Convolutional Neural Network on the CIFAR-10 dataset in your browser, with nothing but
Javascript. The state of the art on this dataset is about 90% accuracy and human performance is at about 94%
(not perfect as the dataset can be a bit ambiguous). | used this python script to parse the original files (python
version) into batches of images that can be easily loaded into page DOM with img tags.

This dataset is more difficult and it takes longer to train a network. Data augmentation includes random flipping
and random image shifts by up to 2px horizontally and verically.

By default, in this demo we're using Adadelta which is one of per-parameter adaptive step size methods, so we
don't have to worry about changing learning rates or momentum over time. However, | still included the text fields
for changing these if you'd like to play around with SGD+Momentum trainer.

Report questions/bugs/suggestions to @karpathy.

input (32x32x3)
max activation: 0.34313, min: -0.49608
max gradient: 0.04754, min: -0.0368

conv (32x32x16)

filter size 5x5x3, stride 1

max activation: 1.42613, min: -1.28123
max gradient: 0.03521, min: -0.03962
parameters: 16x5x5x3+16 = 1216

Activations:

Activations:

EENN - G5
-Hoen =
w8

Activation Gradients:

Weights:
PRYNEEANFEONREEE
Weight Gradients:

LTl [l PSS ]

https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Train a neural network for classification
on CIFAR10 dataset in google colab

Google Colab Page



https://colab.research.google.com/github/pytorch/tutorials/blob/gh-pages/_downloads/cifar10_tutorial.ipynb

Where to Look for More Information

® Explore existing computer vision and machine learning frameworks
o) https://pytorch.org/

o) https://www.tensorflow.org/
o) https://keras.io/
o)

https://opencv.org/

e Watch more in-depth lecture series

o) The Ancient Secrets of Computer Vision - Joseph Redmon

o} Deep Learning Specialization - Andrew Ng

® Checkout other online courses and guides
o) https://ai.google/education/

o) https://www.udacity.com/course/deep-learning-pytorch--ud188



https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/
https://opencv.org/
https://www.youtube.com/watch?v=8jXIAWg_yHU&list=PLjMXczUzEYcHvw5YYSU92WrY8IwhTuq7p
https://www.youtube.com/watch?v=CS4cs9xVecg&list=PLkDaE6sCZn6Ec-XTbcX1uRg2_u4xOEky0
https://ai.google/education/
https://www.udacity.com/course/deep-learning-pytorch--ud188

Slide Credits

* CS5670, Introduction to Computer Vision, Cornell Tech, by Noah
Snavely.

* CS 543 Computer Vision, by Stevlana Lazebnik, UIUC.

* EECS 442 Computer Vision, by Justin Johnson & David Fouhey, U
Michigan.



https://www.cs.cornell.edu/courses/cs5670/2022sp/
https://slazebni.cs.illinois.edu/fall22/
https://web.eecs.umich.edu/~justincj/teaching/eecs442/WI2021/

