Lecture 21: Segmentation

COMP 590/776: Computer Vision

Instructor: Soumyadip (Roni) Sengupta

TA: Mykhailo (Misha) Shvets

Course Website: Scan Me!

Classification

CAT

No spatial extent

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Objects

This image is CCO public domain

Recap

"Slow" R-CNN: Run CNN independently for each region

Fast R-CNN: Apply differentiable cropping to shared image features

Faster R-CNN:
Compute proposals
with CNN

Single-Stage: Fully convolutional detector

With anchors: RetinaNet

Anchor-Free: FCOS

R-CNN: Region-Based CNN

Fast R-CNN

Category and box

Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a

Two-stage object detector

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

Faster R-CNN: Learnable Region Proposals

R-CNN Test-Time Speed

Single-Stage Detectors: RetinaNet

Run backbone CNN to get features aligned to input image

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Similar to RPN – but rather than classify anchors as object/no object, directly predict object category (among C categories) or background

Single-Stage Detectors: RetinaNet

In practice, RetinaNet also uses Feature Pyramid Network to handle multiscale

Single-Stage Detectors: FCOS ("Anchor-free" detector)

Run backbone CNN to get features aligned to input image

CNN

Input Image (e.g. 3 x 640 x 480)

Each feature corresponds to a point in the input

Image features (e.g. 512 x 5 x 6)

Finally, predict "centerness" for all positive points (using logistic regression loss)

$$centerness = \sqrt{\frac{\min(L,R)}{\max(L,R)}} \cdot \frac{\min(T,B)}{\max(T,B)}$$

Ranges from 1 at box center to 0 at box edge

Test-time: predicted "confidence" for the box from each point is product of its class score and centerness.

Comparing Boxes: Intersection over Union (IoU)

How can we compare our prediction to the ground-truth box?

Intersection over Union (IoU) (Also called "Jaccard similarity" or "Jaccard index"):

Area of Intersection
Area of Union

Precision & Recall

- True detection: high intersection over union
 - Choose IoU threshold
- Precision: #true detections / #detections
- Recall: #true detections / #true positives

Reject everything: no mistakes

Ideal!

Summarize by area under curve (avg. precision)

Accept everything: Miss nothing

Car AP = 0.65

Cat AP = 0.80

Dog AP = 0.86

mAP@0.5 = 0.77

mAP@0.5 = 0.77

mAP@0.55 = 0.71

mAP@0.60 = 0.65

• • •

mAP@0.95 = 0.2

COCO mAP = 0.4

Today's class

Classification

No spatial extent

CAT

Semantic Segmentation

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Objects

How to measure segmentation accuracy?

Report mean IoU or DICE score over the test dataset

Semantic Segmentation vs. Instance Segmentation vs. Panoptic Segmentation

(a) Image

(b) Semantic Segmentation

(c) Instance Segmentation

(d) Panoptic Segmentation

Most popular Semantic Segmentation dataset: ADE20k

- 20K scene-centric images exhaustively annotated with pixel-level objects and object parts labels.
- 150 semantic categories, which include stuffs like sky, road, grass, and discrete objects like person, car, bed.

Most popular Instance & Panoptic Segmentation dataset: MS COCO

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Semantic Segmentation Idea: Sliding Window

between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation: Fully Convolutional Network

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Problem #1: Effective receptive field size is linear in number of conv layers: With L 3x3 conv layers, receptive field is 1+2L

Loss function: Per-Pixel cross-entropy

Problem #2: Convolution on high res images is expensive! Recall ResNet stem aggressively downsamples

Semantic Segmentation: Fully Convolutional Network

Downsampling: Pooling, strided convolution

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

High-res:

 $D_1 \times H/2 \times W/2$

Upsampling: ???

Input: $3 \times H \times W$

 $D_3 \times H/4 \times W/4$ $D_1 \times H/2 \times W/2$

Predictions: H x W

In-Network Upsampling: "Unpooling"

Bed of Nails

		1	0	2	0
1	2	 0	0	0	0
3	4	3	0	4	0
		0	0	0	0

Nearest Neighbor

	_	1	1	2	2
1	2	 1	1	2	2
3	4	3	3	4	4
		3	3	4	4

Input C x 2 x 2

Output C x 4 x 4

Input C x 2 x 2

Output C x 4 x 4

In-Network Upsampling: Bilinear Interpolation

Input: C x 2 x 2

Output: C x 4 x 4

$$f_{x,y} = \sum_{i,j} f_{i,j} \max(0,1-|x-i|) \max(0,1-|y-j|) \quad i \in \{\lfloor x \rfloor -1, \ldots, \lceil x \rceil +1\}$$
 Use two closest neighbors in x and y
$$j \in \{\lfloor y \rfloor -1, \ldots, \lceil y \rceil +1\}$$
 to construct linear approximations

In-Network Upsampling: Bicubic Interpolation

Input: C x 2 x 2 Output: C x 4 x 4

Use **three** closest neighbors in x and y to construct **cubic** approximations (This is how we normally resize images!)

In-Network Upsampling: "Max Unpooling"

Max Pooling: Remember which position had the max

Max Unpooling: Place into remembered positions

1	2	6	3							_	0	0	2	0
3	5	2	1		5	6	Rest	1	2		0	1	0	0
1	2	2	1	-	7	8	→ or → net	3	4		0	0	0	0
		4	0				-			-))		1

Pair each downsampling layer with an upsampling layer

Regular vs Transposed Convolution

Filter size is 3x3

Regular Convolution reduces feature size

Transposed convolution increases feature size

Strided transpose convolution

Semantic Segmentation: Fully Convolutional Network

Downsampling: Pooling, strided convolution

Input: 3 x H x W

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

High-res: $D_1 \times H/2 \times W/2$

High-res: D₁ x H/2 x W/2

Upsampling: ???

Predictions: H x W

Upsampling:

Bilinear Upsampling (non learnable)
Strided Transpose Convolution (learnable)

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

U-Net for segmentation

SOTA Detection + Segmentation

Swin Transformer

```
Ranked #13 Object Detection on COCO test-dev Ranked #6 Instance Segmentation on COCO test-dev (using additional training data)

Ranked #10 Semantic Segmentation on ADE20K (using additional training data)

Ranked #24 Action Classification on Kinetics-400 (using additional training data)
```

This repo is the official implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" as well as the follow-ups. It currently includes code and models for the following tasks:

- Image Classification: Included in this repo. See get_started.md for a quick start.
- Object Detection and Instance Segmentation: See Swin Transformer for Object Detection.
- Semantic Segmentation: See Swin Transformer for Semantic Segmentation.
- Video Action Recognition: See Video Swin Transformer.
- Semi-Supervised Object Detection: See Soft Teacher.
- SSL: Contrasitive Learning: See Transformer-SSL.
- SSL: Masked Image Modeling: See get_started.md#simmim-support.
- Mixture-of-Experts: See get_started for more instructions.
- Feature-Distillation: See Feature-Distillation.

Computer Vision Tasks: Instance Segmentation

Instance Segmentation:

Detect all objects in the image, and identify the pixels that belong to each object (Only things!)

Approach: Perform object detection, then predict a segmentation mask for each object!

Instance segmentation with Mask R-CNN

This image is CC0 public domain

Predict a mask for each of C classes: C x 28 x 28

Mask R-CNN: Example Training Targets

Mask R-CNN: Very Good Results!

Can we generalize Faster R-CNN architecture to other Vision tasks?

Beyond Instance Segmentation: Human Keypoints

Represent the pose of a human by locating a set of **keypoints**

e.g. 17 keypoints:

- Nose
- Left / Right eye
- Left / Right ear
- Left / Right shoulder
- Left / Right elbow
- Left / Right wrist
- Left / Right hip
- Left / Right knee
- Left / Right ankle

Instance segmentation with Mask R-CNN

This image is CCO public domain

Ground-truth has one "pixel" turned on per keypoint. Train with softmax loss

Interactive Segmentation with Scribbles

(Red = foreground, blue= background)

Earlier works of segmentation used Graph Cut techniques to solve this problem.

Deep Extreme Cut (DEXTR): From Extreme Points to Object Segmentation, CVPR 2018

Interactive Segmentation with few points

Efficient Annotation of Segmentation Datasets with Polygon-RNN++, CVPR 2018

Interactive Segmentation with 2 points

(Green = foreground, red= background)

Interactive Image Segmentation with Latent Diversity, CVPR 2018

Interactive Segmentation with points

SimpleClick: Interactive Image Segmentation with Simple Vision Transformers, Liu et al. 2022.

Foundation Models and Promptable Segmentation

What is a foundation model?

- A foundation model is a large-scale pretrained model (e.g., BERT, DALL-E, GPT-3) that can be adapted to a wide range of downstream applications.
- This term was first popularized by researchers in Stanford University in this review: On the Opportunities and Risks of Foundation Models.
- Checkout more papers on foundation models: <u>Awesome-Foundation-Models</u>).

A foundation model can centralize the information from various modalities.

Segment Anything Model (SAM): the first foundation model for promptable segmentation.

Prompt it with interactive points and boxes

Automatically segment everything in an image

Generate multiple valid masks for ambiguous prompts

Try the demo: https://segment-anything.com/demo

Slide Credits: Qin Liu

SAM is built with three interconnected components: A task, an model, and a data engine.

Task: Promptable Segmentation

(a) Task: promptable segmentation

- SAM considers two sets of prompts: sparse (clicks, boxes, text) and dense (masks).
- SAM's promptable design enables flexible integration with other systems (i.e., used as *component* in larger systems).

Model: Segment Anything Model (SAM)

- A heavyweight image encoder outputs an image embedding.
- A lightweight prompt encoder efficiently queries the image embedding.
- A lightweight mask decoder produces object masks and confidence scores.

Ambiguity-Aware Segmentation

- SAM is designed to predict multiple masks (i.e., 3 masks: whole, part, subpart) for a single prompt.
- During training, the model only backprops the minimum loss over masks.
- To rank masks, the model predicts a confidence score (i.e., estimated IoU) for each mask.

Dataset: SA-1B

- Built with a SAM model in the loop
- 11M images with 1.1B segmentation masks
- 400x more masks than any prior segmentation dataset

Task 1: Zero-Shot Single Point Valid Mask Evaluation

- Training dataset: the whole SA-1B dataset
- Test datasets: 23 diverse segmentation datasets (only validation/test sets??)

Slide Credits: Qin Liu

Task 1: Zero-Shot Single Point Valid Mask Evaluation

SAM significantly outperforms baselines with 1 point and is on par with more points.

Limitations

- SAM may miss fine structures, hallucinate small disconnected components at times, and produce wrong boundaries.
- SAM is expected to be outperformed by dedicated interactive segmentation methods (e.g., SimpleClick) when many points are provided.
- SAM is expected to be outperformed by domain-specific tools (e.g., ilastik).
- SAM's performance on the text-to-mask task is not entirely robust.
- While SAM is initialized with a self-supervised technique (i.e., MAE), the
 vast majority of its capabilities come from large-scale supervised
 training.

Grounded-Segment-Anything

Text Prompt: Bench

Grounded-SAM Output

Stable-Diffusion Inpainting A Sofa, high quality, detailed

BLIP + Grounded-SAM: Automatic Label System!

Using BLIP to generate caption, extract tags and using Grounded-SAM for box and mask generating. Here's the demo output:

there are two dogs playing with a stick on the beach

Video Object Segmentation

Unsupervised: the user does not interact with the algorithm to obtain the segmentation masks. Methods should provide a set of object candidates.

Semi-supervised: user inputs full mask of the object of interest in the first frame only.

Interactive: user gives iterative refinement inputs to the algorithm, in the form of a scribble, to segment the objects of interest.

DAVIS: Densely Annotated VIdeo Segmentation

Beyond Segmentation: Alpha Matting

Image

Alpha matte

Compose the fire of the compose the compos

Under-constrained!

$$I = \alpha * F + (1 - \alpha) * B$$

Solving Matting with user annotation!

Image Matting with Trimap

Background Subtraction

Segmentation

Vs

Matting

- Binary Mask
- No color separation

Solving Matting with user annotation!

User Annotation during inference

Expensive – especially for a video

Background Matting: The World is Your Green Screen

Soumyadip Sengupta
Vivek Jayaram
Brian Curless
Steve Seitz
Ira Kemelmacher-Shlizerman

University of Washington

Original Video

Replaced Background

BMv2 [CVPR 2021] BMv1 [CVPR 2020] Input (zoomed) Input

X requires explicit background capture.

X can't handle large camera motion.

Idea: Use RNN to aggregate temporal motion information to separate foreground and background Robust Video Matting, WACV 2022.

Alpha Matting in presence of foreground-background interaction

Omnimatte: Associating Objects and Their Effects in Video, Siggraph 2020

Recap

- Semantic segmentation: detect masks of specific object classes
- Instance segmentation: detect masks of each instances of specific object class
- Panoptic segmentation: Semantic + Instance combined.

Evolution of Neural network architectures to solve segmentation:

- Fully convolutional networks (VGGlike)
- Mask R-CNN (instance segmentation)
- U-Net
- Transformer based architecture (Swin V2)

Interactive Segmentation (scribbles, points, text prompts etc):

- Segment Anything (SAM)
- Way more robust than semantic/instance segmentation

Beyond Image segmentation:

- Video object segmentation (unsupervised, weak-supervised, interactive)
- Alpha Matting

Slide Credits

• EECS 442/498 Computer Vision, by Justin Johnson & David Fouhey, U Michigan.